1
|
Hai T, Basem A, Alizadeh A, Sharma K, Jasim DJ, Rajab H, Mabrouk A, Kolsi L, Rajhi W, Maleki H, Sawaran Singh NS. Integrating artificial neural networks, multi-objective metaheuristic optimization, and multi-criteria decision-making for improving MXene-based ionanofluids applicable in PV/T solar systems. Sci Rep 2024; 14:29524. [PMID: 39604527 PMCID: PMC11603342 DOI: 10.1038/s41598-024-81044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
Optimization of thermophysical properties (TPPs) of MXene-based nanofluids is essential to increase the performance of hybrid solar photovoltaic and thermal (PV/T) systems. This study proposes a hybrid approach to optimize the TPPs of MXene-based Ionanofluids. The input variables are the MXene mass fraction (MF) and temperature. The optimization objectives include three TPPs: specific heat capacity (SHC), dynamic viscosity (DV), and thermal conductivity (TC). In the proposed hybrid approach, the powerful group method of data handling (GMDH)-type ANN technique is used to model TPPs in terms of input variables. The obtained models are integrated into the multi-objective particle swarm optimization (MOPSO) and multi-objective thermal exchange optimization (MOTEO) algorithms, forming a three-objective optimization problem. In the final step, the TOPSIS technique, one of the well-known multi-criteria decision-making (MCDM) approaches, is employed to identify the desirable Pareto points. Modeling results showed that the developed models for TC, DV, and SHC demonstrate a strong performance by R-values of 0.9984, 0.9985, and 0.9987, respectively. The outputs of MOPSO revealed that the Pareto points dispersed a broad range of MXene MFs (0-0.4%). However, the temperature of these optimal points was found to be constrained within a narrow range near the maximum value (75 °C). In scenarios where TC precedes other objectives, the TOPSIS method recommended utilizing an MF of over 0.2%. Alternatively, when DV holds greater importance, decision-makers can opt for an MF ranging from 0.15 to 0.17%. Also, when SHC becomes the primary concern, TOPSIS advised utilizing the base fluid without any MXene additive.
Collapse
Affiliation(s)
- Tao Hai
- State Key Laboratory of Public Big Data, Guizhou University, Guizhou Guiyang, 550025, China
- School of Computer and Information, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
- Faculty of Data Science and Information Technology, INTI International University, Nilai, 71800, Malaysia
- Artificial Intelligence Research Center (AIRC), Ajman University, P.O. Box 346, Ajman, UAE
| | - Ali Basem
- Faculty of Engineering, Warith Al-Anbiyaa University, Karbala, 56001, Iraq
| | - As'ad Alizadeh
- Department of Civil Engineering, College of Engineering, Cihan University-Erbil, Erbil, Iraq
| | - Kamal Sharma
- Institute of Engineering and Technology, GLA University, Mathura, U.P, 281406, India
| | - Dheyaa J Jasim
- Department of Petroleum Engineering, Al-Amarah University College, Maysan, Iraq
| | - Husam Rajab
- College of Engineering, Department of Mechanical Engineering, Najran University, King Abdulaziz Road, P.O Box 1988, Najran, Kingdom of Saudi Arabia
| | - Abdelkader Mabrouk
- Department of Civil Engineering, College of Engineering, Northern Border University, Arar, 73222, Saudi Arabia
| | - Lioua Kolsi
- Department of Mechanical Engineering, College of Engineering, University of Ha'il, Ha'il City, 81451, Saudi Arabia
| | - Wajdi Rajhi
- Department of Mechanical Engineering, College of Engineering, University of Ha'il, Ha'il City, 81451, Saudi Arabia
- Laboratoire de Mécanique, Matériaux et Procédés LR99ES05, Ecole Nationale Supérieure d'Ingénieurs de Tunis, Université de Tunis, 5 Avenue Taha Hussein, Montfleury, 1008 Tunis, Tunisia
| | - Hamid Maleki
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran.
| | | |
Collapse
|
2
|
Zhang X, Xue C, Cao H, Wu Y, Yang B, Zhou T, Zhai W, Deng J. Ultra-small CuO x/GDYO nanozyme with boosting peroxidase-like activity via electrochemical strategy: Toward applicable colorimetric detection of organophosphate pesticides. Talanta 2024; 279:126639. [PMID: 39094531 DOI: 10.1016/j.talanta.2024.126639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
In this paper, an ultra-small-sized CuOx/GDYO nanozyme in situ grown on ITO glass was rationally synthesized from mixed precursors of graphdiyne oxide (GDYO) and copper based infinite coordination polymer (Cu-ICP, consisting of Cu ions and two organic ligands 3,5-di-tert-butylcatechol and 1,4-bis(imidazole-1-ylmethyl)benzene) via mild and simple electrochemical strategy. On one hand, the preferential electro-reduction of Cu-ICP enabled the formation of ultra-small CuOx with Cu(I) as the main component and avoided the loss of oxygen-containing functional groups and defects on the surface of GDYO; on the other hand, GDYO can also serve as electroless reductive species to facilitate the electrochemical deposition of CuOx and turn itself to a higher oxidation state with more exposed functional groups and defects. This one-stone-two-birds electrochemical strategy empowered CuOx/GDYO nanozyme with superior peroxidase-mimicking activity and robust anchoring stability on ITO glass, thus enabled further exploration of the portable device with availability for point-of-use applications. Based on the organophosphorus pesticides (OPs) blocked acetylcholinesterase (AChE) activity, the competitive redox reaction was regulated to initiate the chromogenic reaction of 3,3',5,5'-tetramethylbenzidine (TMB) catalyzed by CuOx/GDYO peroxidase-like nanozyme, which laid out a foundation for the detection of OPs (with chlorpyrifos as an example). With a detection of limit low to 0.57 nM, the OPs residues during agricultural production can be directly monitored by the portable device we developed.
Collapse
Affiliation(s)
- Xuefei Zhang
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai, 200062, China
| | - Chenyi Xue
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai, 200062, China
| | - Huihan Cao
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai, 200062, China
| | - Yuanyue Wu
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai, 200062, China
| | - Bowen Yang
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai, 200062, China
| | - Tianshu Zhou
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai, 200062, China
| | - Wanying Zhai
- Changjiang Basin Ecology and Environment Monitoring and Scientific Research Center, Changjiang Basin Ecology and Environment Administration, Ministry of Ecology and Environment, 13 Yongqing Road, Wuhan, 430019, China.
| | - Jingjing Deng
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai, 200062, China.
| |
Collapse
|
3
|
He Q, Li X, Chai W, Chen L, Mao X. A novel functionalized graphdiyne oxide membrane for efficient removal and rapid detection of mercury in water. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133711. [PMID: 38340563 DOI: 10.1016/j.jhazmat.2024.133711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
In practice, efficient, rapid and simple removal of Hg(II) from water using nano adsorbents remains an extreme challenge at present. In this work, a novel Hg(II) adsorbent based on functionalized graphdiyne oxide (GDYO-3M) membrane was designed for the purpose of effective and prompt removal of Hg(II) from environmental water for the first time. Through filtration, the proposed GDYO-3M membrane (4 cm diameter size) fulfilled an exceeding 97% removal efficiency in > 10 L water containing 0.1 mg/L Hg(II) within 1 h. Due to the presence of -SH groups, the GDYO-3M membrane demonstrates an excellent selectivity for Hg(II) vs. 14 co-existing metal ions. In the meantime, the GDYO-3M membrane represents a favorable reproducibility (above 95% Hg(II) removal) after 9 successive adsorption-desorption cycles. For the mechanism, it is believed that the active sites in the adsorption process mainly include -SH groups, oxygen-containing functional groups, and alkyne bonds. Further, the GDYO-3M membrane can be utilized as an enrichment approach for sensitive analysis of Hg(II) in water based on energy dispersion X-ray fluorescence spectrometry (ED-XRF), whose detection limit (LOD) reaches 0.2 μg/L within 15 min. This work not only provides a green and efficient method for removing Hg(II), but also renders an approach for rapid, sensitive and portable Hg(II) detection in water.
Collapse
Affiliation(s)
- Qianli He
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xue Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Weiwei Chai
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Lin Chen
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xuefei Mao
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
4
|
Ming J, Zhang JR, Song XN, Li X, Hua W, Ma Y. First-principles simulation of X-ray spectra of graphdiyne and graphdiyne oxides at the carbon K-edge. Phys Chem Chem Phys 2023; 25:32421-32429. [PMID: 37782052 DOI: 10.1039/d3cp03193d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The experimental C 1s near-edge X-ray absorption fine-structure (NEXAFS) spectra of graphdiyne (GDY) show an evident change at different exposure periods, which is explained by oxidation. Herein, to better understand the structure-spectra relationship and the influence of oxidization, we performed a first-principles simulation of the NEXAFS spectra and X-ray photoelectron spectra (XPS) of both pure GDY and its four typical graphdiyne oxides (GDO) at the carbon K-edge. Pure GDY contains one sp2-hybridized (C1) and two sp-hybridized (C2, C3) carbons, while oxidation introduces more nonequivalent carbons. The experimental NEXAFS spectrum exhibits the lowest peak at ca. 285.8 eV. It was found that the C 1s → π* excitation from the sp2-hybridized carbon atoms (C1) in pure GDY and the sp-hybridized atoms (C2, C3) in GDOs contributes to this peak. The two weak resonances at around 289.0 and 290.6 eV in the experiment are contributed by the carbon atoms bonded to the oxygen atoms. Meanwhile, we found that oxidization leads to an increase in the C 1s ionization potentials (IPs) by 0.3-2.7 eV, which is consistent with the XPS experiments. Our calculations provide a clear explanation of the structure-spectra relationships of GDY and GDOs, and the signatures are useful for estimating the degree of oxidation.
Collapse
Affiliation(s)
- Jing Ming
- School of Physics and Electronics, Shandong Normal University, 250358 Jinan, China.
| | - Jun-Rong Zhang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Science, Nanjing University of Science and Technology, 210094 Nanjing, China.
| | - Xiu-Neng Song
- School of Physics and Electronics, Shandong Normal University, 250358 Jinan, China.
| | - Xin Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026 Hefei, China
| | - Weijie Hua
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Science, Nanjing University of Science and Technology, 210094 Nanjing, China.
| | - Yong Ma
- School of Physics and Electronics, Shandong Normal University, 250358 Jinan, China.
| |
Collapse
|
5
|
Vakili B, Karami-Darehnaranji M, Mirzaei E, Hosseini F, Nezafat N. Graphene oxide as novel vaccine adjuvant. Int Immunopharmacol 2023; 125:111062. [PMID: 37866317 DOI: 10.1016/j.intimp.2023.111062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
To improve antigen immunogenicity and promote long-lasting immunity, vaccine formulations have been appropriately supplemented with adjuvants. Graphene has been found to enhance the presentation of antigens to CD8+ T cells, as well as stimulating innate immune responses and inflammatory factors. Its properties, such as large surface area, water stability, and high aspect ratio, make it a suitable candidate for delivering biological substances. Graphene-based nanomaterials have recently attracted significant attention as a new type of vaccine adjuvants due to their potential role in the activation of immune responses. Due to the limited functionality of some approved human adjuvants for use, the development of new all-purpose adjuvants is urgently required. Research on the immunological and biomedical use of graphene oxide (GO) indicates that these nanocarriers possess excellent physicochemical properties, acceptable biocompatibility, and a high capacity for drug loading. Graphene-based nanocarriers also could improve the function of some immune cells such as dendritic cells and macrophages through specific signaling pathways. However, GO injection can lead to significant oxidative stress and inflammation. Various surface functionalization protocols have been employed to reduce possible adverse effects of GO, such as aggregation of GO in biological liquids and induce cell death. Furthermore, these modifications enhance the properties of functionalized-GO's qualities, making it an excellent carrier and adjuvant. Shedding light on different physicochemical and structural properties of GO and its derivatives has led to their application in various therapeutic and drug delivery fields. In this review, we have endeavored to elaborate on different aspects of GO.
Collapse
Affiliation(s)
- Bahareh Vakili
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboubeh Karami-Darehnaranji
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnaz Hosseini
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Computational Vaccine and Drug Design Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Tao Y, Jia W, Fang N, Wang Y, Zhang H, Wu P, Cai C. An intelligent alkyne-tag for Raman imaging of living cells: graphdiyne-encapsulated Au nanospheres. Chem Commun (Camb) 2023; 59:13297-13300. [PMID: 37859547 DOI: 10.1039/d3cc04711c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
A new graphdiyne-encapsulated Au nanosphere (Au@GDY) material was fabricated, which possessed an amplified Raman signal of acetylene linkage and produced bright, stable, and distinct signals in the cellular Raman-silent region. Its signal repeatability is far superior to that of alkyne-containing molecules. This work provides promise as an alkyne-tag for Raman imaging of living cells.
Collapse
Affiliation(s)
- Yutong Tao
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Wenyu Jia
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Ningning Fang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Yuan Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Hui Zhang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Ping Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Chenxin Cai
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| |
Collapse
|
7
|
Wang L, Zhang Y, Li L, Geng X, Dou D, Yu L, Jing H, Fan Y. Graphdiyne oxide elicits a minor foreign-body response and generates quantum dots due to fast degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130512. [PMID: 36463743 DOI: 10.1016/j.jhazmat.2022.130512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/14/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Graphdiyne (GDY) is a novel two-dimensional (2D) carbon allotrope that has attracted much attention in materials, physics, chemistry, and microelectronics for its excellent properties. Much effort has been devoted to exploring the biomedical applications of GDY in 2D carbon nanomaterials, especially for smart drugs and gene delivery. However, few studies have focused on the biocompatibility and potential environmental hazards of GDY and its derivatives. In this study, graphdiyne oxide (GDYO) and graphene oxide (GO) were obtained using different oxidation methods. Their cytotoxicity and hemolysis in vitro and biocompatibility in subcutaneous and peritoneal locations in vivo were compared. GDYO had very low biotoxicity in vitro and was moderately biocompatible in the muscle and abdominal cavity in vivo. Highly oxidized products and graphdiyne quantum dots (GDQDs) were observed in peritoneal cells. GDYO had better biocompatibility and its sheet size was easily diminished through oxidative degradation. Therefore, GDYO is a good candidate for use in 2D carbon nanomaterials in biomedicine.
Collapse
Affiliation(s)
- Lizhen Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yang Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Linhao Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xuezheng Geng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Dandan Dou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Lu Yu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Haoyu Jing
- Department of Ultrasound, Chinese PLA General Hospital, Beijing 100039, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
8
|
Taheriazam A, Abad GGY, Hajimazdarany S, Imani MH, Ziaolhagh S, Zandieh MA, Bayanzadeh SD, Mirzaei S, Hamblin MR, Entezari M, Aref AR, Zarrabi A, Ertas YN, Ren J, Rajabi R, Paskeh MDA, Hashemi M, Hushmandi K. Graphene oxide nanoarchitectures in cancer biology: Nano-modulators of autophagy and apoptosis. J Control Release 2023; 354:503-522. [PMID: 36641122 DOI: 10.1016/j.jconrel.2023.01.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/16/2023]
Abstract
Nanotechnology is a growing field, with many potential biomedical applications of nanomedicine for the treatment of different diseases, particularly cancer, on the horizon. Graphene oxide (GO) nanoparticles can act as carbon-based nanocarriers with advantages such as a large surface area, good mechanical strength, and the capacity for surface modification. These nanostructures have been extensively used in cancer therapy for drug and gene delivery, photothermal therapy, overcoming chemotherapy resistance, and for imaging procedures. In the current review, we focus on the biological functions of GO nanoparticles as regulators of apoptosis and autophagy, the two major forms of programmed cell death. GO nanoparticles can either induce or inhibit autophagy in cancer cells, depending on the conditions. By stimulating autophagy, GO nanocarriers can promote the sensitivity of cancer cells to chemotherapy. However, by impairing autophagy flux, GO nanoparticles can reduce cell survival and enhance inflammation. Similarly, GO nanomaterials can increase ROS production and induce DNA damage, thereby sensitizing cancer cells to apoptosis. In vitro and in vivo experiments have investigated whether GO nanomaterials show any toxicity in major body organs, such as the brain, liver, spleen, and heart. Molecular pathways, such as ATG, MAPK, JNK, and Akt, can be regulated by GO nanomaterials, leading to effects on autophagy and apoptosis. These topics are discussed in this review to shed some lights towards the biomedical potential of GO nanoparticles and their biocompatibility, paving the way for their future application in clinical trials.
Collapse
Affiliation(s)
- Afshin Taheriazam
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Ghazaleh Gholamiyan Yousef Abad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shima Hajimazdarany
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hassan Imani
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Setayesh Ziaolhagh
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Vice President at Translational Sciences, Xsphera Biosciences Inc., 6 Tide Street, Boston, MA, 02210, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
9
|
Yang J, Dong X, Li B, Chen T, Yu B, Wang X, Dou X, Peng B, Hu Q. Poria cocos polysaccharide-functionalized graphene oxide nanosheet induces efficient cancer immunotherapy in mice. Front Bioeng Biotechnol 2023; 10:1050077. [PMID: 36727039 PMCID: PMC9885324 DOI: 10.3389/fbioe.2022.1050077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction: Tumor vaccines that induce robust humoral and cellular immune responses have attracted tremendous interest for cancer immunotherapy. Despite the tremendous potential of tumor vaccines as an effective approach for cancer treatment and prevention, a major challenge in achieving sustained antitumor immunity is inefficient antigen delivery to secondary lymphoid organs, even with adjuvant aid. Methods: Herein, we present antigen/adjuvant integrated nanocomplexes termed nsGO/PCP/OVA by employing graphene oxide nanosheet (nsGO) as antigen nanocarriers loaded with model antigen ovalbumin (OVA) and adjuvant, Poria cocos polysaccharides (PCP). We evaluated the efficacy of nsGO/PCP/OVA in activating antigen-specific humoral as well as cellular immune responses and consequent tumor prevention and rejection in vivo. Results: The optimally formed nsGO/PCP/OVA was approximately 120-150 nm in diameter with a uniform size distribution. Nanoparticles can be effectively engulfed by dendritic cells (DCs) through receptor-mediated endocytosis, induced the maturation of DCs and improved the delivery efficiency both in vitro and in vivo. The nsGO/PCP/OVA nanoparticles also induced a significant enhancement of OVA antigen-specific Th1 and Th2 immune responses in vivo. In addition, vaccination with nsGO/PCP/OVA not only significantly suppressed tumor growth in prophylactic treatments, but also achieved a therapeutic effect in inhibiting the growth of already-established tumors. Conclusion: Therefore, this potent nanovaccine platform with nanocarrier nsGO and PCP as adjuvants provides a promising strategy for boosting anti-tumor immunity for cancer immunotherapy.
Collapse
Affiliation(s)
- Jinning Yang
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, China,Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, China
| | - Xiaoxiao Dong
- Institute of Medical Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Boye Li
- Civil Aviation Medicine Center, Civil Aviation Administration of China, Beijing, China
| | - Tian Chen
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, China,Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, China
| | - Boyang Yu
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, China,Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, China
| | - Xiaoli Wang
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, China,Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, China,*Correspondence: Xiaoli Wang, ; Xiangnan Dou, ; Bo Peng, ; Qin Hu,
| | - Xiangnan Dou
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, China,*Correspondence: Xiaoli Wang, ; Xiangnan Dou, ; Bo Peng, ; Qin Hu,
| | - Bo Peng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Xiaoli Wang, ; Xiangnan Dou, ; Bo Peng, ; Qin Hu,
| | - Qin Hu
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, China,Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, China,*Correspondence: Xiaoli Wang, ; Xiangnan Dou, ; Bo Peng, ; Qin Hu,
| |
Collapse
|
10
|
Huang Z, Chen G, Deng F, Li Y. Nanostructured Graphdiyne: Synthesis and Biomedical Applications. Int J Nanomedicine 2022; 17:6467-6490. [PMID: 36573204 PMCID: PMC9789722 DOI: 10.2147/ijn.s383707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Graphdiyne (GDY) is a 2D carbon allotrope that features a one-atom-thick network of sp- and sp2-hybridized carbon atoms with high degrees of π conjugation. Due to its distinct electronic, chemical, mechanical, and magnetic properties, GDY has attracted great attention and shown great potential in various fields, such as catalysis, energy storage, and the environment. Preparation of GDY with various nanostructures, including 0D quantum dots, 1D nanotubes/nanowires/nanoribbons, 2D nanosheets/nanowalls/ordered stripe arrays, and 3D nanospheres, greatly improves its function and has propelled its applications forward. High biocompatibility and stability make GDY a promising candidate for biomedical applications. This review introduces the latest developments in fabrication of GDY-based nanomaterials with various morphologies and summarizes their propective use in the biomedical domain, specifically focusing on their potential advantages and applications for biosensing, cancer diagnosis and therapy, radiation protection, and tissue engineering.
Collapse
Affiliation(s)
- Ziqing Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Guanhui Chen
- Department of Stomatology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Yiming Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| |
Collapse
|
11
|
Bai Q, Wang Z, An Y, Tian J, Li Z, Yang Y, Dong Y, Chen M, Liu T. Chitosan-functionalized graphene oxide as adjuvant in HEV P239 vaccine. Vaccine 2022; 40:7613-7621. [PMID: 36371365 DOI: 10.1016/j.vaccine.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022]
Abstract
Searching appropriate adjuvants for vaccine is a potent method to intense the immune efficacy. In the present study, we developed a novel Hepatitis E virus (HEV) vaccine by utilizing chitosan modified nano-graphene oxide (GO-CS) as an adjuvant to support HEV antigen P239 protein (GO/CS/P239). The characterization of GO/CS/P239 was observed by atomic force microscope. The safety of GO/CS/P239 was measured by CCK-8 method, hemolysis test and acute challenge test. The anti-HEV titers and cytokines production were analyzed by double antibody sandwich ELISA. As the results showed, by contrast with a vaccine that contained only the P239 protein, GO/CS/P239 vaccine can promote immune cells to produce more IgG antibodies and cytokines, which were able to stimulate the organism to produce stronger both cellular and humoral immunity. Collectively, GO/CS/P239 particles have been demonstrated to be safe both in vitro and in vivo, and can facilitate sufficient immune response to protect organisms from virus infection, which suggested that our exploration offers a promising alternative vaccine that can control HEV infection.
Collapse
Affiliation(s)
- Qianyu Bai
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, PR China
| | - Zhiwen Wang
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, PR China
| | - Yina An
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, PR China
| | - Jijing Tian
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, PR China
| | - Zhilin Li
- College of Pratacultural Science and Technology, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, PR China
| | - Yifei Yang
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, PR China
| | - Yanjun Dong
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, PR China
| | - Mingyong Chen
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, PR China
| | - Tianlong Liu
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, PR China.
| |
Collapse
|
12
|
A comprehensive review of MXene-based nanofluids: Preparation, stability, physical properties, and applications. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Wang Q, Liu Y, Wang H, Jiang P, Qian W, You M, Han Y, Zeng X, Li J, Lu H, Jiang L, Zhu M, Li S, Huang K, Tang M, Wang X, Yan L, Xiong Z, Shi X, Bai G, Liu H, Li Y, Zhao Y, Chen C, Qian P. Graphdiyne oxide nanosheets display selective anti-leukemia efficacy against DNMT3A-mutant AML cells. Nat Commun 2022; 13:5657. [PMID: 36163326 PMCID: PMC9512932 DOI: 10.1038/s41467-022-33410-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022] Open
Abstract
DNA methyltransferase 3 A (DNMT3A) is the most frequently mutated gene in acute myeloid leukemia (AML). Although chemotherapy agents have improved outcomes for DNMT3A-mutant AML patients, there is still no targeted therapy highlighting the need for further study of how DNMT3A mutations affect AML phenotype. Here, we demonstrate that cell adhesion-related genes are predominantly enriched in DNMT3A-mutant AML cells and identify that graphdiyne oxide (GDYO) display an anti-leukemia effect specifically against these mutated cells. Mechanistically, GDYO directly interacts with integrin β2 (ITGB2) and c-type mannose receptor (MRC2), which facilitate the attachment and cellular uptake of GDYO. Furthermore, GDYO binds to actin and prevents actin polymerization, thus disrupting the actin cytoskeleton and eventually leading to cell apoptosis. Finally, we validate the in vivo safety and therapeutic potential of GDYO against DNMT3A-mutant AML cells. Collectively, these findings demonstrate that GDYO is an efficient and specific drug candidate against DNMT3A-mutant AML. DNA methyltransferase 3A, a mutated gene associated with hematologic malignancies in age-related clonal haematopoiesis lacks targeted therapies. Here, the authors screen carbon nanomaterials and find graphdiyne oxide binds to mutant cells and disrupts cellular processes with a therapeutic effect in vitro and in vivo.
Collapse
Affiliation(s)
- Qiwei Wang
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,The GBA National Institute for Nanotechnology Innovation, Guangzhou, 510700, China
| | - Hui Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China.,Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Penglei Jiang
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Wenchang Qian
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Min You
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,The GBA National Institute for Nanotechnology Innovation, Guangzhou, 510700, China
| | - Yingli Han
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Xin Zeng
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Jinxin Li
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Huan Lu
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Lingli Jiang
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Meng Zhu
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Shilin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,The GBA National Institute for Nanotechnology Innovation, Guangzhou, 510700, China
| | - Kang Huang
- University of Chinese Academy of Sciences, Beijing, 100049, China.,Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Mingmin Tang
- Institute of Brain and Cognition, Zhejiang University City College School of Medicine, Hangzhou, 310015, China.,The MOE Frontier Research Center of Brain & Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, 310058, China
| | - Xinlian Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,The GBA National Institute for Nanotechnology Innovation, Guangzhou, 510700, China
| | - Liang Yan
- University of Chinese Academy of Sciences, Beijing, 100049, China.,CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zecheng Xiong
- University of Chinese Academy of Sciences, Beijing, 100049, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xinghua Shi
- University of Chinese Academy of Sciences, Beijing, 100049, China.,Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Ge Bai
- The MOE Frontier Research Center of Brain & Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, 310058, China
| | - Huibiao Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuliang Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Pengxu Qian
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China. .,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Li X, Jiang H, He N, Yuan WE, Qian Y, Ouyang Y. Graphdiyne-Related Materials in Biomedical Applications and Their Potential in Peripheral Nerve Tissue Engineering. CYBORG AND BIONIC SYSTEMS 2022; 2022:9892526. [PMID: 36285317 PMCID: PMC9494693 DOI: 10.34133/2022/9892526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022] Open
Abstract
Graphdiyne (GDY) is a new member of the family of carbon-based nanomaterials with hybridized carbon atoms of sp and sp2, including α, β, γ, and (6,6,12)-GDY, which differ in their percentage of acetylene bonds. The unique structure of GDY provides many attractive features, such as uniformly distributed pores, highly π-conjugated structure, high thermal stability, low toxicity, biodegradability, large specific surface area, tunable electrical conductivity, and remarkable thermal conductivity. Therefore, GDY is widely used in energy storage, catalysis, and energy fields, in addition to biomedical fields, such as biosensing, cancer therapy, drug delivery, radiation protection, and tissue engineering. In this review, we first discuss the synthesis of GDY with different shapes, including nanotubes, nanowires, nanowalls, and nanosheets. Second, we present the research progress in the biomedical field in recent years, along with the biodegradability and biocompatibility of GDY based on the existing literature. Subsequently, we present recent research results on the use of nanomaterials in peripheral nerve regeneration (PNR). Based on the wide application of nanomaterials in PNR and the remarkable properties of GDY, we predict the prospects and current challenges of GDY-based materials for PNR.
Collapse
Affiliation(s)
- Xiao Li
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, China
| | - Huiquan Jiang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, China
| | - Ning He
- Shanghai Eighth People’s Hospital, Shanghai, China
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, China
| | - Yuanming Ouyang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, China
| |
Collapse
|
15
|
Guo X, Huang H, Cui R, Wang D, Liu J, Wang D, Liu S, Zhao Y, Dong J, Sun B. Graphdiyne Oxide Quantum Dots: The Enhancement of Peroxidase-like Activity and Their Applications in Sensing H 2O 2 and Cysteine. ACS APPLIED BIO MATERIALS 2022; 5:3418-3427. [PMID: 35703404 DOI: 10.1021/acsabm.2c00361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
As one of the typical carbon nanomaterials, graphdiyne (GDY) with unique chemical, physical, and electronic properties has a great potential in various fields. Although it is an important member of carbon nanozymes, the research on its intrinsic enzyme mimetic properties and applications is still limited. Herein, graphdiyne oxide quantum dots (GDYO QDs) have been synthesized through oxidative cleavage, which exhibit enhanced peroxidase-like activity with lower Km and higher Vmax than those of most carbon-based nanozymes. The catalytic mechanism is explored, showing that the enhanced catalytic performance is attributed to the good conjugated structure, large number of oxygen-containing groups, and small-sized nanosheets with few layers. As a kind of peroxidase mimetic, the GDY-based nanozyme has excellent potential in sensing H2O2 and biological antioxidants through the colorimetric assay, with a linear range from 5 to 500 μM and detection limit of 1.5 μM for H2O2 and a linear range from 0 to 90 μM and detection limit of 0.48 μM for l-cysteine. Our work will be beneficial to develop high-performance artificial enzymes and to understand their mechanism for better applications.
Collapse
Affiliation(s)
- Xihong Guo
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Huang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Rongli Cui
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Dongmei Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,University of Chinese Academy of Science, Beijing 100049, China
| | - Jiali Liu
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,University of Chinese Academy of Science, Beijing 100049, China
| | - Shuhu Liu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yidong Zhao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jinquan Dong
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Baoyun Sun
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Romaldini A, Spanò R, Catalano F, Villa F, Poggi A, Sabella S. Sub-Lethal Concentrations of Graphene Oxide Trigger Acute-Phase Response and Impairment of Phase-I Xenobiotic Metabolism in Upcyte® Hepatocytes. Front Bioeng Biotechnol 2022; 10:867728. [PMID: 35662849 PMCID: PMC9161028 DOI: 10.3389/fbioe.2022.867728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022] Open
Abstract
The impact of graphene oxide on hepatic functional cells represents a crucial evaluation step for its potential application in nanomedicine. Primary human hepatocytes are the gold standard for studying drug toxicity and metabolism; however, current technical limitations may slow down the large-scale diffusion of this cellular tool for in vitro investigations. To assess the potential hepatotoxicity of graphene oxide, we propose an alternative cell model, the second-generation upcyte® hepatocytes, which show metabolic and functional profiles akin to primary human hepatocytes. Cells were acutely exposed to sub-lethal concentrations of graphene oxide (≤80 μg/ml) for 24 h and stress-related cell responses (such as apoptosis, oxidative stress, and inflammatory response) were evaluated, along with a broad investigation of graphene oxide impact on specialized hepatic functions. Results show a mild activation of early apoptosis but not oxidative stress or inflammatory response in our cell model. Notably, while graphene oxide clearly impacted phase-I drug-metabolism enzymes (e.g., CYP3A4, CYP2C9) through the inhibition of gene expression and metabolic activity, conversely, no effect was observed for phase-II enzyme GST and phase-III efflux transporter ABCG2. The GO-induced impairment of CYP3A4 occurs concomitantly with the activation of an early acute-phase response, characterized by altered levels of gene expression and protein production of relevant acute-phase proteins (i.e., CRP, Albumin, TFR, TTR). These data suggest that graphene oxide induces an acute phase response, which is in line with recent in vivo findings. In conclusion, upcyte® hepatocytes appear a reliable in vitro model for assessing nanomaterial-induced hepatotoxicity, specifically showing that sub-lethal doses of graphene oxide have a negative impact on the specialized hepatic functions of these cells. The impairment of the cytochrome P450 system, along with the activation of an acute-phase response, may suggest potential detrimental consequences for human health, as altered detoxification from xenobiotics and drugs.
Collapse
Affiliation(s)
- A. Romaldini
- D3 PharmaChemistry, Istituto Italiano di Tecnologia, Genoa, Italy
| | - R. Spanò
- D3 PharmaChemistry, Istituto Italiano di Tecnologia, Genoa, Italy
| | - F. Catalano
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Genoa, Italy
| | - F. Villa
- Unit of Molecular Oncology and Angiogenesis, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - A. Poggi
- Unit of Molecular Oncology and Angiogenesis, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - S. Sabella
- D3 PharmaChemistry, Istituto Italiano di Tecnologia, Genoa, Italy
- *Correspondence: S. Sabella,
| |
Collapse
|
17
|
Shen J, Dong J, Shao F, Zhao J, Gong L, Wang H, Chen W, Zhang Y, Cai Y. Graphene oxide induces autophagy and apoptosis via ROS-dependent AMPK/mTOR/ULK-1 pathway in colorectal cancer cells. Nanomedicine (Lond) 2022; 17:591-605. [PMID: 35394351 DOI: 10.2217/nnm-2022-0030] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: To investigate the anticancer effects and action mechanism of graphene oxide (GO) in colorectal cancer (CRC). Materials & methods: Anticancer effects and mechanisms of GO in CRC were investigated both in vivo and in vitro. Results: GO significantly inhibited tumor growth both in vitro and in vivo. GO was able to enter HCT116 cells through endocytosis. GO treatment resulted in cytotoxicity, reactive oxygen species (ROS) production, apoptosis, autophagy and activation of the AMPK/mTOR/ULK1 signal pathway. However, ROS scavenger N-acetylcysteine (NAC) attenuated the above effects and restored the effects of GO on protein expressions related to apoptosis, autophagy and AMPK/mTOR/ULK1 signal pathways. Conclusion: GO exerts anticancer effects against CRC via ROS-dependent AMPK/mTOR/ULK-1 pathway-related autophagy and apoptosis.
Collapse
Affiliation(s)
- Jiamen Shen
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Jiatian Dong
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Feng Shao
- Key Laboratory of Thin Film & Microfabrication Technology (Ministry of Education), School of Electronics, Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jiaying Zhao
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Lifeng Gong
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Huipeng Wang
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Wenjie Chen
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Yafei Zhang
- Key Laboratory of Thin Film & Microfabrication Technology (Ministry of Education), School of Electronics, Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yuankun Cai
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
18
|
Life-Related Hazards of Materials Applied to Mg–S Batteries. ENERGIES 2022. [DOI: 10.3390/en15041543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nowadays, rechargeable batteries utilizing an S cathode together with an Mg anode are under substantial interest and development. The review is made from the point of view of materials engaged during the development of the Mg–S batteries, their sulfur cathodes, magnesium anodes, electrolyte systems, current collectors, and separators. Simultaneously, various hazards related to the use of such materials are discussed. It was found that the most numerous groups of hazards are posed by the material groups of cathodes and electrolytes. Such hazards vary widely in type and degree of danger and are related to human bodies, aquatic life, flammability of materials, or the release of flammable or toxic gases by the latter.
Collapse
|
19
|
Ashrafizadeh M, Saebfar H, Gholami MH, Hushmandi K, Zabolian A, Bikarannejad P, Hashemi M, Daneshi S, Mirzaei S, Sharifi E, Kumar AP, Khan H, Heydari Sheikh Hossein H, Vosough M, Rabiee N, Thakur Kumar V, Makvandi P, Mishra YK, Tay FR, Wang Y, Zarrabi A, Orive G, Mostafavi E. Doxorubicin-loaded graphene oxide nanocomposites in cancer medicine: Stimuli-responsive carriers, co-delivery and suppressing resistance. Expert Opin Drug Deliv 2022; 19:355-382. [PMID: 35152815 DOI: 10.1080/17425247.2022.2041598] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The application of doxorubicin (DOX) in cancer therapy has been limited due to its drug resistance and poor internalization. Graphene oxide (GO) nanostructures have the capacity for DOX delivery while promoting its cytotoxicity in cancer. AREAS COVERED The favorable characteristics of GO nanocomposites, preparation method, and application in cancer therapy are described. Then, DOX resistance in cancer is discussed. The GO-mediated photothermal therapy and DOX delivery for cancer suppression are described. Preparation of stimuli-responsive GO nanocomposites, surface functionalization, hybrid nanoparticles, and theranostic applications are emphasized in DOX chemotherapy. EXPERT OPINION Graphene oxide nanoparticle-based photothermal therapy maximizes the anti-cancer activity of DOX against cancer cells. Apart from DOX delivery, GO nanomaterials are capable of loading anti-cancer agents and genetic tools to minimize drug resistance and enhance the cytolytic impact of DOX in cancer eradication. To enhance DOX accumulation in cancer cells, stimuli-responsive (redox-, light-, enzyme- and pH-sensitive) GO nanoparticles have been developed for DOX delivery. Further development of targeted delivery of DOX-loaded GO nanomaterials against cancer cells may be achieved by surface modification of polymers such as polyethylene glycol, hyaluronic acid, and chitosan. Doxorubicin-loaded GO nanoparticles have demonstrated theranostic potential for simultaneous diagnosis and therapy. Hybridization of GO with other nanocarriers such as silica and gold nanoparticles further broadens their potential anti-cancer therapy applications.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Hamidreza Saebfar
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hossein Gholami
- DVM. Graduated, Faculty of Veterinary Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | - Pooria Bikarannejad
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, 6517838736 Hamadan, Iran
| | - Alan Prem Kumar
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.,Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | | | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran.,School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Vijay Thakur Kumar
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.,School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interface, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, 6400 Sønderborg, Denmark
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, USA
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer 34396, Istanbul, Turkey
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Vitoria-Gasteiz, Spain.,University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHUFundación Eduardo Anitua). Vitoria-Gasteiz, Spain.,Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.,Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
20
|
Zhang R, Ren Y, Zhang Q, Huang W, Bai H, Zeng X. Water-soluble pillar[5]arene-modified graphdiyne functional material and its application towards ultrasensitive and robust electrochemical methylamphetamine determination. NEW J CHEM 2022. [DOI: 10.1039/d2nj03668a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Schematic illustration of the application of the novel material WP5–GDY/GCE for the electrochemical sensing of methylamphetamine (MA).
Collapse
Affiliation(s)
- Ruilin Zhang
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Yanming Ren
- Judicial Expertise Centre of Kunming Medical University, Kunming 650500, China
| | - Qianyao Zhang
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Wenxin Huang
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Huiping Bai
- School of Materials and Energy, Key Laboratory of Micro/Nano Materials and Technology, Yunnan University, Kunming 650091, China
| | - Xiaofeng Zeng
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
21
|
Li X, Guo M, Chen C. Graphdiyne: from Preparation to Biomedical Applications. Chem Res Chin Univ 2021; 37:1176-1194. [PMID: 34720525 PMCID: PMC8536907 DOI: 10.1007/s40242-021-1343-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/21/2021] [Indexed: 01/15/2023]
Abstract
Graphdiyne(GDY) is a kind of two-dimensional carbon nanomaterial with specific configurations of sp and sp 2 carbon atoms. The key progress in the preparation and application of GDY is bringing carbon materials to a brand-new level. Here, the various properties and structures of GDY are introduced, including the existing strategies for the preparation and modification of GDY. In particular, GDY has gradually emerged in the field of life sciences with its unique properties and performance, therefore, the development of biomedical applications of GDY is further summarized. Finally, the challenges of GDY toward future biomedical applications are discussed.
Collapse
Affiliation(s)
- Xiaodan Li
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190 P. R. China
| | - Mengyu Guo
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190 P. R. China
| | - Chunying Chen
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190 P. R. China
| |
Collapse
|
22
|
Peng G, Duan T, Guo M, Xue Y, Chen C, Li Y, Leifer K, Fadeel B. Biodegradation of graphdiyne oxide in classically activated (M1) macrophages modulates cytokine production. NANOSCALE 2021; 13:13072-13084. [PMID: 34477791 DOI: 10.1039/d1nr02473f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Graphdiyne oxide (GDYO) is a carbon-based nanomaterial possessing sp2 and sp-hybridized carbon atoms with many promising applications. However, its biocompatibility and potential biodegradability remain poorly understood. Using human primary monocyte-derived macrophages as a model we show here that GDYO elicited little or no cytotoxicity toward classically activated (M1) and alternatively activated (M2) macrophages. Moreover, GDYO reprogrammed M2 macrophages towards M1 macrophages, as evidenced by the elevation of specific cell surface markers and cytokines and the induction of NOS2 expression. We could also show inducible nitric oxide synthase (iNOS)-dependent biodegradation of GDYO in M1 macrophages, and this was corroborated in an acellular system using the peroxynitrite donor, SIN-1. Furthermore, GDYO elicited the production of pro-inflammatory cytokines in a biodegradation-dependent manner. Our findings shed new light on the reciprocal interactions between GDYO and human macrophages. This is relevant for biomedical applications of GDYO such as the re-education of tumor-associated macrophages or TAMs.
Collapse
Affiliation(s)
- Guotao Peng
- Nanosafety & Nanomedicine Laboratory (NNL), Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ritter M, Bresgen N, Kerschbaum HH. From Pinocytosis to Methuosis-Fluid Consumption as a Risk Factor for Cell Death. Front Cell Dev Biol 2021; 9:651982. [PMID: 34249909 PMCID: PMC8261248 DOI: 10.3389/fcell.2021.651982] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
The volumes of a cell [cell volume (CV)] and its organelles are adjusted by osmoregulatory processes. During pinocytosis, extracellular fluid volume equivalent to its CV is incorporated within an hour and membrane area equivalent to the cell's surface within 30 min. Since neither fluid uptake nor membrane consumption leads to swelling or shrinkage, cells must be equipped with potent volume regulatory mechanisms. Normally, cells respond to outwardly or inwardly directed osmotic gradients by a volume decrease and increase, respectively, i.e., they shrink or swell but then try to recover their CV. However, when a cell death (CD) pathway is triggered, CV persistently decreases in isotonic conditions in apoptosis and it increases in necrosis. One type of CD associated with cell swelling is due to a dysfunctional pinocytosis. Methuosis, a non-apoptotic CD phenotype, occurs when cells accumulate too much fluid by macropinocytosis. In contrast to functional pinocytosis, in methuosis, macropinosomes neither recycle nor fuse with lysosomes but with each other to form giant vacuoles, which finally cause rupture of the plasma membrane (PM). Understanding methuosis longs for the understanding of the ionic mechanisms of cell volume regulation (CVR) and vesicular volume regulation (VVR). In nascent macropinosomes, ion channels and transporters are derived from the PM. Along trafficking from the PM to the perinuclear area, the equipment of channels and transporters of the vesicle membrane changes by retrieval, addition, and recycling from and back to the PM, causing profound changes in vesicular ion concentrations, acidification, and-most importantly-shrinkage of the macropinosome, which is indispensable for its proper targeting and cargo processing. In this review, we discuss ion and water transport mechanisms with respect to CVR and VVR and with special emphasis on pinocytosis and methuosis. We describe various aspects of the complex mutual interplay between extracellular and intracellular ions and ion gradients, the PM and vesicular membrane, phosphoinositides, monomeric G proteins and their targets, as well as the submembranous cytoskeleton. Our aim is to highlight important cellular mechanisms, components, and processes that may lead to methuotic CD upon their derangement.
Collapse
Affiliation(s)
- Markus Ritter
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
- Institute for Physiology and Pathophysiology, Paracelsus Medical University, Nuremberg, Germany
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis und Rehabilitation, Salzburg, Austria
- Kathmandu University School of Medical Sciences, Dhulikhel, Nepal
| | - Nikolaus Bresgen
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | |
Collapse
|
24
|
Dang X, Zhao H. Graphdiyne: A promising 2D all-carbon nanomaterial for sensing and biosensing. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
25
|
The transport of Idarubicin therapeutic agent using a novel graphene sheet as a drug delivery platform through a biomembrane. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Wang H, Xiao J, Li C, Li X, Deng K. A Photoelectrochemical Immunosensor for Prostate Specific Antigen Detection Based on Graphdiyne Oxide Conjugated with Horseradish Peroxidase. ELECTROANAL 2020. [DOI: 10.1002/elan.202060296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hao Wang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule Ministry of Education Hunan University of Science and Technology Xiangtan 411201 China
| | - Jing Xiao
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan 411201 China
| | - Chunxiang Li
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan 411201 China
| | - Xiaofang Li
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule Ministry of Education Hunan University of Science and Technology Xiangtan 411201 China
| | - Keqin Deng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule Ministry of Education Hunan University of Science and Technology Xiangtan 411201 China
| |
Collapse
|
27
|
Zhu Z, Bai Q, Li S, Li S, Liu M, Du F, Sui N, Yu WW. Antibacterial Activity of Graphdiyne and Graphdiyne Oxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001440. [PMID: 32715643 DOI: 10.1002/smll.202001440] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/04/2020] [Indexed: 05/27/2023]
Abstract
From manufacture to disposal, the interaction of graphdiyne based nanomaterials with living organisms is inevitable and crucial. However, the cytotoxic properties of this novel carbon nanomaterial are rarely investigated, and the mechanisms behind their cytotoxicity are totally unknown. In this study, the antibacterial activity of graphdiyne (GDY) and graphdiyne oxide (GDYO) is reported. GDY is capable of inhibiting broad-spectrum bacterial growth while exerting moderate cytotoxicity on mammalian cells. In comparison, GDYO exhibits lower antibacterial activity than that of GDY. Then an alterable, synergetic antibacterial mechanism of GDY, involving wrapping bacterial membrane, membrane insertion and disruption, and reactive oxygen species generation is demonstrated, while the differential gene expression analysis indicates that GDY could only alter the bacterial metabolism slightly and the oxidative stress route may be a minor bactericidal factor. The investigation of the antibacterial behaviors of GDY based nanomaterials may provide useful guidelines for the future design and application of this novel molecular allotrope of carbon.
Collapse
Affiliation(s)
- Zhiling Zhu
- College of Materials Science and Technology, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, China
| | - Qiang Bai
- College of Materials Science and Technology, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, China
| | - Shuo Li
- College of Materials Science and Technology, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, China
| | - Siheng Li
- Department of Chemistry, University of Houston, Houston, TX, 77204, USA
| | - Manhong Liu
- College of Materials Science and Technology, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, China
| | - Fanglin Du
- College of Materials Science and Technology, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, China
| | - Ning Sui
- College of Materials Science and Technology, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, China
| | - William W Yu
- College of Materials Science and Technology, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, China
- Department of Chemistry and Physics, Louisiana State University, Shreveport, LA, 71115, USA
| |
Collapse
|
28
|
Cao W, He L, Cao W, Huang X, Jia K, Dai J. Recent progress of graphene oxide as a potential vaccine carrier and adjuvant. Acta Biomater 2020; 112:14-28. [PMID: 32531395 DOI: 10.1016/j.actbio.2020.06.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/28/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023]
Abstract
Vaccine is one of the most effective strategies for preventing and controlling infectious diseases and some noninfectious diseases, especially cancers. Adjuvants and carriers have been appropriately added to the vaccine formulation to improve the immunogenicity of the antigen and induce long-lasting immunity. However, there is an urgent need to develop new all-purpose adjuvants because some adjuvants approved for human use have limited functionality. Graphene oxide (GO), widely employed for the delivery of biomolecules, excels in loading and delivering antigen and shows the potentiality of activating the immune system. However, GO aggregates in biological liquid and induces cell death, and it also exhibits poor biosolubility and biocompatibility. To address these limitations, various surface modification protocols have been employed to integrate aqueous compatible substances with GO to effectively improve its biocompatibility. More importantly, these modifications render functionalized-GO with superior properties as both carriers and adjuvants. Herein, the recent progress of physicochemical properties and surface modification strategies of GO for its application as both carriers and adjuvants is reviewed. STATEMENT OF SIGNIFICANCE: Due to its unique physicochemical properties, graphene oxide is widely employed in medicine for purposes of photothermal treatment of cancer, drug delivery, antibacterial therapy, and medical imaging. Our work describes the surface modification of graphene oxide and for the first time summarizes that functionalized graphene oxide serves as a vaccine carrier and shows significant adjuvant activity in activating cellular and humoral immunity. In the future, it is expected to be introduced into vaccine research to improve the efficacy of vaccines.
Collapse
|
29
|
Guo J, Guo M, Wang F, Jin W, Chen C, Liu H, Li Y. Graphdiyne:Structure of Fluorescent Quantum Dots. Angew Chem Int Ed Engl 2020; 59:16712-16716. [DOI: 10.1002/anie.202006891] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/10/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Jie Guo
- CAS Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Mengyu Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Fuhui Wang
- CAS Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Weiyue Jin
- CAS Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Huibiao Liu
- CAS Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yuliang Li
- CAS Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
30
|
Guo J, Guo M, Wang F, Jin W, Chen C, Liu H, Li Y. Graphdiyne:Structure of Fluorescent Quantum Dots. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jie Guo
- CAS Key Laboratory of Organic SolidsBeijing National Laboratory for Molecular Sciences (BNLMS)CAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Mengyu Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Fuhui Wang
- CAS Key Laboratory of Organic SolidsBeijing National Laboratory for Molecular Sciences (BNLMS)CAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Weiyue Jin
- CAS Key Laboratory of Organic SolidsBeijing National Laboratory for Molecular Sciences (BNLMS)CAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Huibiao Liu
- CAS Key Laboratory of Organic SolidsBeijing National Laboratory for Molecular Sciences (BNLMS)CAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yuliang Li
- CAS Key Laboratory of Organic SolidsBeijing National Laboratory for Molecular Sciences (BNLMS)CAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
31
|
Yuan K, de la Asunción-Nadal V, Li Y, Jurado-Sánchez B, Escarpa A. Graphdiyne Micromotors in Living Biomedia. Chemistry 2020; 26:8471-8477. [PMID: 32293079 DOI: 10.1002/chem.202001754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Indexed: 12/19/2022]
Abstract
Graphdiyne (GDY), a new kind of two-dimensional (2D) material, was combined with micromotor technology for "on-the-fly" operations in complex biomedia. Microtubular structures were prepared by template deposition on membrane templates, resulting in functional structures rich in sp and sp2 carbons with highly conjugated π networks. This resulted in a highly increased surface area for a higher loading of anticancer drugs or enhanced quenching ability over other 2D based micromotors, such as graphene oxide (GO) or smooth tubular micromotors. High biocompatibility with almost 100 % cell viability was observed in cytotoxicity assays with moving micromotors in the presence of HeLa cells. On a first example, GDY micromotors loaded with doxorubicin (DOX) were used for pH responsive release and HeLa cancer cells killing. The use of affinity peptide engineered GDY micromotors was also illustrated for highly sensitive and selective fluorescent OFF-ON detection of cholera toxin B through specific recognition of the subunit B region of the target toxin. The new developments illustrated here offer considerable promise for the use of GDY as part of micromotors in living biosystems.
Collapse
Affiliation(s)
- Kaisong Yuan
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28871 Madrid (Spain), University of Alcala, 28807, Madrid, Spain.,Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, P. R. China
| | - Victor de la Asunción-Nadal
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28871 Madrid (Spain), University of Alcala, 28807, Madrid, Spain
| | - Yuliang Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS, Key Laboratory of Organic Solids, Institute of Chemistry, CAS, Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28871 Madrid (Spain), University of Alcala, 28807, Madrid, Spain.,Chemical Research Institute "Andres M. del Rio", University of Alcala, 28807, Madrid, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28871 Madrid (Spain), University of Alcala, 28807, Madrid, Spain.,Chemical Research Institute "Andres M. del Rio", University of Alcala, 28807, Madrid, Spain
| |
Collapse
|
32
|
Tan X, Xu J, Huang T, Wang S, Yuan M, Zhao G. Graphdiyne bearing pillar[5]arene-reduced Au nanoparticles for enhanced catalytic performance towards the reduction of 4-nitrophenol and methylene blue. RSC Adv 2019; 9:38372-38380. [PMID: 35540210 PMCID: PMC9075914 DOI: 10.1039/c9ra07347g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/09/2019] [Indexed: 12/18/2022] Open
Abstract
Graphdiyne (GD), a novel two dimensional (2D) carbon material, has earned a lot of attention in recent years. Constructing a novel hybrid nanomaterial based on GD, macrocyclic host and Au nanoparticles is an effective strategy for heterogeneous catalysis applications. While tremendous advancements in the preparation of two dimensional (2D) materials anchoring Au nanoparticles have been made, it is an urgent requirement to explore a green, efficient and facile approach for obtaining small-sized Au nanoparticles. The use of the 2D material graphdiyne (GD) presents more-promising candidates for constructing excellent sites for loading metal nanoparticles. In this study, a novel 2D heterogeneous hybrid nanomaterial (P5A-Au-GD) based on GD and pillar[5]arene (P5A)-reduced Au nanoparticles (P5A-Au) was successfully prepared. In this strategy, the P5A can reduce HAuCl4 with the aid of NaOH in the dispersion of GD. Accordingly, the generated P5A-Au can immediately interact with GD to form the P5A-Au-GD hybrid nanomaterial without any harsh reduced materials or other energies. The Au nanoparticles with average diameter of 2-3 nm are homogeneously dispersed on the surface of GD. The heterogeneous 2D catalyst of P5A-Au-GD shows high catalytic performances in the reduction of 4-nitrophenol and methylene blue by comparing commercial Pd/C catalyst. Meanwhile, the unique 2D heterogeneous hybrid material P5A-Au-GD exhibits durable recyclability and stability during the catalytic reaction. Considering the outstanding merits of the heterogeneous 2D catalyst of P5A-Au-GD as well as the simple and green preparation, this study might not only present enormous opportunities for the stabilized, high-performance and sustainable catalysts but also be applied in other frontier studies of sustainable functionalized nanocomposites and advanced materials.
Collapse
Affiliation(s)
- Xiaoping Tan
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University Fuling 408100 China
| | - Jianhua Xu
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University Fuling 408100 China
| | - Ting Huang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University Fuling 408100 China
| | - Sheng Wang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University Fuling 408100 China
| | - Maojie Yuan
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University Fuling 408100 China
| | - Genfu Zhao
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University Fuling 408100 China
| |
Collapse
|
33
|
Liu J, Chen C, Zhao Y. Progress and Prospects of Graphdiyne-Based Materials in Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804386. [PMID: 30773721 DOI: 10.1002/adma.201804386] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/26/2018] [Indexed: 06/09/2023]
Abstract
Graphdiyne is a new member of the family of carbon-based nanomaterials that possess two types of carbon atoms, sp- and sp2 -hybridized carbon atoms. As a novel 2D carbon-based nanomaterial with unique planar structure, such as uniformly distributed nanopores and large conjugated structure, graphdiyne has shown many fascinating properties in mechanics, electronics, and optics since it was first experimentally synthesized in 2010. Up to now, graphdiyne and its derivatives have been reported to be successfully applied in many areas, such as catalysis, energy, environment, and biomedicine, due to these excellent properties. Herein, the current research progress of graphdiyne-based materials in biomedical fields is summarized, including biosensing, biological protection, cancer therapy, tissue engineering, etc. The advantages of graphdiyne and its derivatives are presented and compared with other carbon-based materials. Considering the potential biomedical and clinical applications of graphdiyne-based materials, the toxicity and biocompatibility are also discussed based on current studies. Finally, future perspectives and possible biomedical applications of graphdiyne-based materials are also discussed.
Collapse
Affiliation(s)
- Jiaming Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
34
|
Zhang Y, Liu W, Li Y, Yang YW, Dong A, Li Y. 2D Graphdiyne Oxide Serves as a Superior New Generation of Antibacterial Agents. iScience 2019; 19:662-675. [PMID: 31472341 PMCID: PMC6728613 DOI: 10.1016/j.isci.2019.08.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/01/2019] [Accepted: 08/12/2019] [Indexed: 11/17/2022] Open
Abstract
Graphdiyne (GDY) as an emerging 2D carbon-network nanomaterial possesses many fascinating properties that lead to numerous exciting applications, but the use of GDY and its derivatives in the antibacterial field has not yet been discovered. In this study, we first report on the use and evaluation of GDY and graphdiyne oxide (GDYO) as antibacterial agents and propose the antibacterial mechanisms of GDY-based nanomaterials. GDYO has been synthesized via the surface oxidation of GDY, and the antibacterial activity of GDYO has been compared with that of GDY through a series of antibacterial tests. Surprisingly, surface oxidation endowed inert GDY with superior antibacterial capability against two representative bacterial models: Escherichia coli and Staphylococcus aureus. Antibacterial mechanism experiments disclose that the antibacterial function of GDYO is a result of reactive oxygen species-dependent oxidation stress when a dispersed GDYO suspension has a direct contact with bacteria especially under visible light irradiation.
Collapse
Affiliation(s)
- Yana Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 University West Street, Hohhot 010021, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education,Inner Mongolia University, 235 University West Street, Hohhot 010021, China
| | - Wenxin Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 University West Street, Hohhot 010021, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education,Inner Mongolia University, 235 University West Street, Hohhot 010021, China
| | - Yongjun Li
- Laboratory of Organic Solids and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing 100190, China.
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P.R. China; California NanoSystems Institute and Department of Chemistry & Biochemistry, University of California, Los Angeles, CA 90095, USA.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 University West Street, Hohhot 010021, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education,Inner Mongolia University, 235 University West Street, Hohhot 010021, China.
| | - Yuliang Li
- Laboratory of Organic Solids and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing 100190, China
| |
Collapse
|
35
|
Near-infrared light-responsive electrochemical protein imprinting biosensor based on a shape memory conducting hydrogel. Biosens Bioelectron 2019; 131:156-162. [DOI: 10.1016/j.bios.2019.02.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 11/23/2022]
|