1
|
Jia X, Li Z, Ruan C, Lian Y. The Improved Microwave Absorption Performance of the 3D Porous (Ni@NO-C) n/NO-C Composite Absorber. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2772. [PMID: 37887922 PMCID: PMC10609328 DOI: 10.3390/nano13202772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Microwave absorbers that are lightweight and have good stability and high efficiency have attracted much attention for their applications in many contemporary fields. In this work, a 3D porous (Ni@NO-C)n/NO-C composite absorber was prepared using a wet chemistry method with Ni chains and melamine as precursors, in which NO-C (N,O-doped carbon)-encapsulated Ni particles are homogenously dispersed in the 3D porous networks of NO-C in the form of (Ni@NO-C)n chains. The special microstructure of the as-prepared material is proven to be beneficial for the improvement of its microwave absorption performance. The as-synthesized (Ni@NO-C)n/NO-C composite absorber exhibited an effective absorption bandwidth of 4.1 GHz and an extremely large reflection loss of -72.3 dB. The excellent microwave-absorbing performances can be ascribed to the cooperative consequences of dielectric loss and magnetic loss, along with the balance between attenuation capability and impedance matching.
Collapse
Affiliation(s)
- Xinmeng Jia
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China (C.R.)
| | - Zhigang Li
- Heilongjiang Institute of Atomic Energy, Harbin 150086, China;
| | - Chao Ruan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China (C.R.)
| | - Yongfu Lian
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China (C.R.)
| |
Collapse
|
2
|
Zarei H, Sobhani S, Sansano JM. First Reusable Catalyst for the Reductive Coupling Reaction of Organohalides with Aldehydes. ACS OMEGA 2023; 8:36801-36814. [PMID: 37841197 PMCID: PMC10568700 DOI: 10.1021/acsomega.3c03414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023]
Abstract
In this study, we simulate the reductive coupling (Barbier-Grignard-type) reaction of organohalides with aldehydes using a new reusable catalyst. In this regard, bimetallic alloys of NiCo encapsulated in melamine-based dendrimers (MBD) immobilized on magnetic nanoparticles symbolized as γ-Fe2O3-MBD/NiCo were designed and synthesized. The structure and properties of the catalyst were studied by a variety of techniques such as Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), energy-dispersive spectrometry (EDS) mapping, and inductively coupled plasma (ICP). The presence of NiCo nanoalloys was confirmed by XRD and XPS analysis, TEM images, and EDS mapping. Various secondary alcohols were produced in good to high yields by reductive coupling of different types of aldehydes and organohalides in the presence of HCO2K as a nonmetallic reducing agent in aqueous media catalyzed by γ-Fe2O3-MBD/NiCo. In these reactions, the high catalytic performance of γ-Fe2O3-MBD/NiCo was achieved in comparison to monometallic counterparts due to the synergistic cooperative effect of Co and Ni in the NiCo nanoalloys. Magnetic and hydrophilic properties of the catalyst facilitate the catalyst recyclability for seven runs. The reusability of γ-Fe2O3-MBD/NiCo, use of water as an environmentally friendly solvent, ease of processing, and absence of metal additives make this process an excellent choice for the reductive coupling reaction to produce secondary alcohols from aldehydes. This is the first report on these kinds of reactions using a reusable catalyst.
Collapse
Affiliation(s)
- Hamed Zarei
- Department
of Chemistry, College of Sciences, University
of Birjand, Birjand 414, Iran
| | - Sara Sobhani
- Department
of Chemistry, College of Sciences, University
of Birjand, Birjand 414, Iran
| | - José Miguel Sansano
- Departamento
de Química Orgánica, Facultad de Ciencias, Centro de
Innovación en Química Avanzada (ORFEOCINQA) and Instituto
de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| |
Collapse
|
3
|
Du B, Shi X, Zhu H, Xu J, Bai Y, Wang Q, Wang X, Zhou J. Preparation and characterization of bifunctional wolfsbane-like magnetic Fe 3O 4 nanoparticles-decorated lignin-based carbon nanofibers composites for electromagnetic wave absorption and electrochemical energy storage. Int J Biol Macromol 2023; 246:125574. [PMID: 37385319 DOI: 10.1016/j.ijbiomac.2023.125574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/02/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
Recently, with the pursuit of high-efficiency electromagnetic wave absorption (EMWA) and electrochemical energy storage (EES) materials, multifunctional lignin-based composites have attracted significant interest due to their low cost, vast availability, and sustainability. In this work, lignin-based carbon nanofibers (LCNFs) was first prepared by electrospinning, pre-oxidation and carbonization processes. Then, different content of magnetic Fe3O4 nanoparticles were deposited on the surface of LCNFs via the facile hydrothermal way to produce a series of bifunctional wolfsbane-like LCNFs/Fe3O4 composites. Among them, the synthesized optimal sample (using 12 mmol of FeCl3·6H2O named as LCNFs/Fe3O4-2) displayed excellent EMWA ability. When the minimum reflection loss (RL) value achieved -44.98 dB at 6.01 GHz with an thickness of 1.5 mm, and the effective absorption bandwidth (EAB) was up to 4.19 GHz ranging from 5.10 to 7.21 GHz. For supercapacitor electrode, the highest specific capacitance of LCNFs/Fe3O4-2 reached 538.7 F/g at the current density of 1 A/g, and the capacitance retention remained at 80.3 %. Moreover, an electric double layer capacitor of LCNFs/Fe3O4-2//LCNFs/Fe3O4-2 also showed a remarkable power density of 7755.29 W/kg, outstanding energy density of 36.62 Wh/kg and high cycle stability (96.89 % after 5000 cycles). In short, the construction of this multifunctional lignin-based composites has potential applications in electromagnetic wave (EMW) absorbers and supercapacitor electrodes.
Collapse
Affiliation(s)
- Boyu Du
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Xiaojuan Shi
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Hongwei Zhu
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Jingyu Xu
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Yating Bai
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Qingyu Wang
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering, Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Xing Wang
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Jinghui Zhou
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
4
|
Sun X, Wang Y, Kimura H, Ni C, Hou C, Wang B, Zhang Y, Yang X, Yu R, Du W, Xie X. Thermal stability of Ni3ZnC0.7: As tunable additive for biomass-derived carbon sheet composites with efficient microwave absorption. J Colloid Interface Sci 2023; 642:447-461. [PMID: 37023516 DOI: 10.1016/j.jcis.2023.03.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
With the rapidly development of radar detection technology and the increasingly complex application environment in military field and electromagnetic pollution surrounded by electron devices, increasingly demand is needed for electromagnetic wave absorbent materials with high absorption efficiency and thermal stability. Herein, a novel Ni3ZnC0.7/Ni loaded puffed-rice derived carbon (RNZC) composites are successfully prepared by vacuum filtration of metal-organic frameworks gel precursor together with layered porous-structure carbon and followed by calcination. The Ni3ZnC0.7 particles uniformly decorate on the surface and pores of puffed-rice derived carbon. The puffed-rice derived carbon@Ni3ZnC0.7/Ni-400 mg (RNZC-4) sample displayed the best electromagnetic wave absorption (EMA) performances among the samples with different Ni3ZnC0.7 loading. The minimum reflection loss (RLmin) of the RNZC-4 composite reaches -39.9 dB at 8.6 GHz, while widest effective absorption bandwidth (EAB) of RNZC-4 for RL < -10 dB can reach 9.9 GHz (8.1-18 GHz, 1.49 mm). High porosity and large specific surface area promote the multiple reflection-absorption effect of the incident electromagnetic waves. The Ni3ZnC0.7 nanoparticles provide a large number of interfaces and dipole factors. Analysis reveals that the RNZC-4 remained general stability under 400 °C with formation of a small amount of NiO and ZnO phases. Surprisingly, at such high temperature, the absorbing properties of the material are improved rather than decreased. Obviously, the material still maintains good electromagnetic wave performance at high temperature, and implies that the absorber shows good performance stability. Therefore, our preparations exhibit potential applications under extreme conditions and a new insight for the design and application of bimetallic carbides.
Collapse
|
5
|
Du B, Zhu H, Xu J, Bai Y, Wang Q, Wang X, Zhou J. N-S co-doping lignin-based carbon magnetic nanoparticles as high performance supercapacitor and electromagnetic wave absorber. Int J Biol Macromol 2023:125032. [PMID: 37245752 DOI: 10.1016/j.ijbiomac.2023.125032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/06/2023] [Accepted: 05/20/2023] [Indexed: 05/30/2023]
Abstract
Recently, multifunctional lignin-based materials are gaining more and more attention due to their great potential for low-cost and sustainability. In this work, to obtain both an excellent supercapacitor electrode and an outstanding electromagnetic wave (EMW) absorber, a series of multifunctional nitrogen-sulphur (N-S) co-doped lignin-based carbon magnetic nanoparticles (LCMNPs) had been successfully prepared through Mannich reaction at different carbonization temperature. As compared with the directly carbonized lignin carbon (LC), LCMNPs had more nano-size structure and higher specific surface area. Meanwhile, with the increase of carbonization temperature, the graphitization of the LCMNPs could also be effectively improved. Therefore, LCMNPs-800 displayed the best performance advantages. For the electric double layer capacitor (EDLC), the optimal specific capacitance of LCMNPs-800 reached 154.2 F/g, and the capacitance retention after 5000 cycles was as high as 98.14 %. When the power density was 2204.76 W/kg, the energy density achieved 33.81 Wh/kg. In addition, N-S co-doped LCMNPs also exhibited strong electromagnetic wave absorption (EMWA) ability, whose the minimum reflection loss (RL) value of LCMNPs-800 was realized -46.61 dB at 6.01 GHz with an thickness of 4.0 mm, and the effective absorption bandwidth (EAB) was up to 2.11 GHz ranging from 5.10 to 7.21 GHz, which could cover the C-band. Overall, this green and sustainable approach is a promising strategy for the preparation of high-performance multifunctional lignin-based materials.
Collapse
Affiliation(s)
- Boyu Du
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Hongwei Zhu
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Jingyu Xu
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Yating Bai
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Qingyu Wang
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering, Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Xing Wang
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Jinghui Zhou
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
6
|
Wang X, Qi P, Zhang L, Zhao Y, Luo H, Zhang D. Engineering Metal Alloy Nanocrystals Anchored on N‐Doped Nanoporous Carbon for Li‐O
2
Batteries. ChemistrySelect 2022. [DOI: 10.1002/slct.202200870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaomin Wang
- School of Chemistry and Chemical Engineering Hefei University of Technology Hefei 230009 China
| | - Pan Qi
- School of Chemistry and Chemical Engineering Hefei University of Technology Hefei 230009 China
| | - Lihao Zhang
- School of Chemistry and Chemical Engineering Hefei University of Technology Hefei 230009 China
| | - Yajun Zhao
- School of Chemistry and Chemical Engineering Hefei University of Technology Hefei 230009 China
| | - Hao Luo
- School of Chemistry and Chemical Engineering Hefei University of Technology Hefei 230009 China
| | - Dawei Zhang
- School of Chemistry and Chemical Engineering Hefei University of Technology Hefei 230009 China
| |
Collapse
|
7
|
Choudhary N, Kumar V, Mobin SM. Bimetallic CoNi Nanoflowers for Catalytic Transfer Hydrogenation of Terminal Alkynes. ChemistrySelect 2022. [DOI: 10.1002/slct.202202501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Neha Choudhary
- Department of Chemistry Indian Institute of Technology Indore Simrol Indore Khandwa Road 453552 India
| | - Viresh Kumar
- Department of Chemistry Indian Institute of Technology Indore Simrol Indore Khandwa Road 453552 India
| | - Shaikh M. Mobin
- Department of Chemistry Indian Institute of Technology Indore Simrol Indore Khandwa Road 453552 India
- Department of Biosciences and Bio-Medical Engineering Indian Institute of Technology Indore Simrol Khandwa Road, Indore 453552 India
- Center for Electric Vehicle and Intelligent Transport Systems Indian Institute of Technology Indore Simrol Indore Khandwa Road 453552 India
| |
Collapse
|
8
|
Zeng Z, Xu D, Li M, Liu Z, Xu R, Liu D. Confined transformation of trifunctional Co2(OH)2CO3 nanosheet assemblies into hollow porous Co@N-doped carbon spheres for efficient microwave absorption. J Colloid Interface Sci 2022; 622:625-636. [DOI: 10.1016/j.jcis.2022.04.142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 02/06/2023]
|
9
|
High aspect-ratio sycamore biomass microtube constructed permittivity adjustable ultralight microwave absorbent. J Colloid Interface Sci 2022; 622:719-727. [DOI: 10.1016/j.jcis.2022.04.128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/19/2022]
|
10
|
Zheng J, He W, Hang T, Sun Z, Li Z, Jiang S, Li X, E S, Chen Y. Flower-like bimetal-organic framework derived composites with tunable structures for high-efficiency electromagnetic wave absorption. J Colloid Interface Sci 2022; 628:261-270. [PMID: 35998452 DOI: 10.1016/j.jcis.2022.08.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
Recently, high-performance functional composites for electromagnetic wave absorption (EWA) with tunable nano/micro-structures have attracted extensive attention. Herein, the flower-like electrically conductive and magnetic cobalt-nickel@carbon (CoNi@C) composites derived from bimetallic metal-organic frameworks (MOFs) were fabricated via solvothermal method and pyrolysis. By adjusting the ratios of different precursors, different morphological features of composites were formed. When the molar ratio of Co and Ni was 1:2, the CoNi@C composites exhibited the optimal minimum reflection loss (RLmin) of -56.89 dB at 6.7 GHz with an effective absorption bandwidth of 4.7 GHz, due to the coordinated dielectric and magnetic loss caused by the electromagnetic properties of each component as well as the interactions between the unique three-dimensional (3D) interfaces of flower-like structures that promoted the absorption and dissipation of composites for microwaves. The composites are expected to become promising candidates as high-efficiency absorbers in the electromagnetic protection field.
Collapse
Affiliation(s)
- Jiajia Zheng
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Weiwei He
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Tianyi Hang
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Zhaoxu Sun
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Zhihui Li
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiping Li
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Shiju E
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Yiming Chen
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
11
|
Liu L, Liu X, Li Z, Tian R, Wang H. Constructing reduced graphene oxide and polypyrrole coatings on glass fiber to enhance its absorbing performance. J Appl Polym Sci 2022. [DOI: 10.1002/app.53027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Ling Liu
- Qinghai Provincial Key Laboratory of New Light Alloys Qinghai Provincial Engineering Research Center of High‐Performance Light Metal Alloys and Forming, Qinghai University Xining China
| | - Xin Liu
- Qinghai Provincial Key Laboratory of New Light Alloys Qinghai Provincial Engineering Research Center of High‐Performance Light Metal Alloys and Forming, Qinghai University Xining China
| | - Zhaojun Li
- Qinghai Provincial Key Laboratory of New Light Alloys Qinghai Provincial Engineering Research Center of High‐Performance Light Metal Alloys and Forming, Qinghai University Xining China
| | - Rui Tian
- Qinghai Provincial Key Laboratory of New Light Alloys Qinghai Provincial Engineering Research Center of High‐Performance Light Metal Alloys and Forming, Qinghai University Xining China
| | - Hongyu Wang
- Qinghai Provincial Key Laboratory of New Light Alloys Qinghai Provincial Engineering Research Center of High‐Performance Light Metal Alloys and Forming, Qinghai University Xining China
| |
Collapse
|
12
|
Chand K, Zhang X, Chen Y. Recent Progress in MXene and Graphene based Nanocomposites for Microwave Absorption and EMI Shielding. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
13
|
Wang L, Zhu S, Zhu J. Constructing ordered macropores in hollow Co/C polyhedral nanocages shell toward superior microwave absorbing performance. J Colloid Interface Sci 2022; 624:423-432. [PMID: 35667204 DOI: 10.1016/j.jcis.2022.05.158] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 12/29/2022]
Abstract
Rational design of porous carbon architecture is essential for superior microwave absorbing performance. Herein, we report a new type of hollow porous Co/C polyhedral nanocages with ordered macropores of ∼60 nm (HP-Co/C) as microwave absorber, which were readily manufactured by epitaxial growth of ZIF-67/SiO2 nanolayers on the surfaces of polyhedral ZIF-8 nanoparticle, and followed by simple calcination in Ar atmosphere and subsequent removal of SiO2 with HF. The ordered macropores can effectively tune the electromagnetic parameters of HP-Co/C, affording the obtained HP-Co/C composites strong attenuation capability and excellent impedance matching characteristics for electromagnetic wave (EMW) absorption. As a result, the reflection loss (RL) and effective absorption bandwidth (EAB) of HP-Co/C prepared under pyrolysis temperature of 600 °C can reach up to -66.5 dB and 8.96 GHz, respectively, at filler fraction of only 15 wt%. Together, this study offers a new design philosophy to make lightweight and broadband microwave absorbent and can be extended to other types of microwave absorbers, significantly enriching the categories of the efficient microwave absorbing materials.
Collapse
Affiliation(s)
- Lei Wang
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Shuheng Zhu
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - JianFeng Zhu
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
14
|
Huang W, Qiu Q, Yang X, Zuo S, Bai J, Zhang H, Pei K, Che R. Ultrahigh Density of Atomic CoFe-Electron Synergy in Noncontinuous Carbon Matrix for Highly Efficient Magnetic Wave Adsorption. NANO-MICRO LETTERS 2022; 14:96. [PMID: 35384519 PMCID: PMC8986902 DOI: 10.1007/s40820-022-00830-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/28/2022] [Indexed: 05/19/2023]
Abstract
Improving the atom utilization of metals and clarifying the M-M' interaction is both greatly significant in assembling high-performance ultra-light electromagnetic wave-absorbing materials. Herein, a high-temperature explosion strategy has been successfully applied to assemble the hierarchical porous carbon sponge with Co-Fe decoration via the pyrolysis of the energetic metal organic framework. The as-constructed hybrid displays a superior reflection loss (RL) value of - 57.7 dB and a specific RL value of - 192 dB mg-1 mm-1 at 12.08 GHz with a layer thickness of 2.0 mm (loading of 15 wt%). The off-axis electron hologram characterizes the highly distributed numerous polarized nanodomain variable capacitors, demonstrating the dipole and interfacial polarization along the edges of the nanopores. More importantly, the X-ray absorption spectroscopy analysis verifies the mutual interaction between the metal cluster and carbon matrix and the electronic coupling responsible for the greatly improved electromagnetic wave absorption.
Collapse
Affiliation(s)
- Wenhuan Huang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China.
| | - Qiang Qiu
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Xiufang Yang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Shouwei Zuo
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Jianan Bai
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Huabin Zhang
- KAUST Catalysis Center, King Abdullah University of Science and Technology, 23955-6900, Thuwal, Kingdom of Saudi Arabia.
| | - Ke Pei
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, People's Republic of China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
15
|
Wang Y, Pang Z, Xu H, Li C, Zhou W, Jiang X, Yu L. High-performance electromagnetic wave absorption of NiCoFe/N-doped carbon composites with a Prussian blue analog (PBA) core at 2-18 GHz. J Colloid Interface Sci 2022; 620:107-118. [PMID: 35421747 DOI: 10.1016/j.jcis.2022.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 11/25/2022]
Abstract
Structure design and assembly control are the two key factors in designing new microwave absorbing materials and improving their electromagnetic wave absorption (EMWA) performance; however, balancing the coordination between these factors remains a great challenge. In this manuscript, a coprecipitation method and an in-situ polymerization method were used to construct nitrogen-carbon-doped popcorn-like porous nanocomposites (NiCoFe/NC). The metallic particles were encapsulated in approximately 10 layers of graphite carbon shells, and a NiCoFe/NC core-shell structure was formed. The EMWA properties of the NiCoFe/NC composites were adjusted by varying the divinylbenzene (DVB) to acrylonitrile (AN) content. The optimized NiCoFe/NC composite showed a minimum reflection loss of -57.5 dB and a maximum effective absorption bandwidth (EAB) of 5.44 GHz. The excellent EMWA properties of the NiCoFe/NC composites can be attributed to the synergistic effect among the core-shell structure, popcorn-like structure, magnetic metal, carbon and nitrogen. This effect leads to enhanced impedance matching, interface polarization, dipole polarization, multiple reflection and scattering in the composites. In this paper, an effective strategy for the preparation of high-performance magnetic/dielectric composites is provided by carefully designing a new microstructure.
Collapse
Affiliation(s)
- Yanjian Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Zhibin Pang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Hao Xu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Cuiping Li
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, PR China
| | - Wenjun Zhou
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Xiaohui Jiang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, PR China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266100, PR China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, PR China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266100, PR China.
| |
Collapse
|
16
|
Li Q, Zhao X, Zhang Z, Xun X, Zhao B, Xu L, Kang Z, Liao Q, Zhang Y. Architecture Design and Interface Engineering of Self-assembly VS 4/rGO Heterostructures for Ultrathin Absorbent. NANO-MICRO LETTERS 2022; 14:67. [PMID: 35211806 PMCID: PMC8873340 DOI: 10.1007/s40820-022-00809-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/18/2022] [Indexed: 05/03/2023]
Abstract
The employment of microwave absorbents is highly desirable to address the increasing threats of electromagnetic pollution. Importantly, developing ultrathin absorbent is acknowledged as a linchpin in the design of lightweight and flexible electronic devices, but there are remaining unprecedented challenges. Herein, the self-assembly VS4/rGO heterostructure is constructed to be engineered as ultrathin microwave absorbent through the strategies of architecture design and interface engineering. The microarchitecture and heterointerface of VS4/rGO heterostructure can be regulated by the generation of VS4 nanorods anchored on rGO, which can effectively modulate the impedance matching and attenuation constant. The maximum reflection loss of 2VS4/rGO40 heterostructure can reach - 43.5 dB at 14 GHz with the impedance matching and attenuation constant approaching 0.98 and 187, respectively. The effective absorption bandwidth of 4.8 GHz can be achieved with an ultrathin thickness of 1.4 mm. The far-reaching comprehension of the heterointerface on microwave absorption performance is explicitly unveiled by experimental results and theoretical calculations. Microarchitecture and heterointerface synergistically inspire multi-dimensional advantages to enhance dipole polarization, interfacial polarization, and multiple reflections and scatterings of microwaves. Overall, the strategies of architecture design and interface engineering pave the way for achieving ultrathin and enhanced microwave absorption materials.
Collapse
Affiliation(s)
- Qi Li
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Xuan Zhao
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Zheng Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Xiaochen Xun
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Bin Zhao
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Liangxu Xu
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Zhuo Kang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Qingliang Liao
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| |
Collapse
|
17
|
Meng Y, Lu S, Wu Y, Sun M, Lu H, Zi Z, Sun S, Tang H. Enhanced Electromagnetic Wave Absorbing Material CoO/MWCNTs Prepared by Pyrolysis of Zeolitic Imidazolate Framework. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024421150188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Meng Y, Li G, Tang H, Lu X, Lu S, Lu H, Ma Y, Xie C, Wu Y, Zi Z. Bimetallic ZIF-derived conductive network of Co–Zn@NPC@MWCNT nanocomposites for efficient electromagnetic wave absorption in the whole X-band. Dalton Trans 2022; 51:17466-17480. [DOI: 10.1039/d2dt02388a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bimetallic ZIFs-derived Co-Zn@NPC@MWCNTs nanocomposites are successfully fabricated, which possess double absorption peaks of −76.18 dB and −33.09 dB with a thickness of 3.187 mm. The composites exhibit a bandwidth of 6.56 GHz with 3.0 mm thickness.
Collapse
Affiliation(s)
- Ying Meng
- Universities Joint Key Laboratory of Photoelectric Detection Science and Technology in Anhui Province, Hefei Normal University, Hefei, 230601, China
| | - Guang Li
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Hao Tang
- Universities Joint Key Laboratory of Photoelectric Detection Science and Technology in Anhui Province, Hefei Normal University, Hefei, 230601, China
| | - Xiudong Lu
- Universities Joint Key Laboratory of Photoelectric Detection Science and Technology in Anhui Province, Hefei Normal University, Hefei, 230601, China
| | - Shibin Lu
- Anhui Province Key Laboratory of Simulation and Design for Electronic Information System, Hefei Normal University, Hefei, 230601, China
| | - Haisheng Lu
- Universities Joint Key Laboratory of Photoelectric Detection Science and Technology in Anhui Province, Hefei Normal University, Hefei, 230601, China
| | - Yuan Ma
- Universities Joint Key Laboratory of Photoelectric Detection Science and Technology in Anhui Province, Hefei Normal University, Hefei, 230601, China
| | - Changzheng Xie
- Universities Joint Key Laboratory of Photoelectric Detection Science and Technology in Anhui Province, Hefei Normal University, Hefei, 230601, China
| | - Yaodong Wu
- Universities Joint Key Laboratory of Photoelectric Detection Science and Technology in Anhui Province, Hefei Normal University, Hefei, 230601, China
| | - Zhenfa Zi
- Universities Joint Key Laboratory of Photoelectric Detection Science and Technology in Anhui Province, Hefei Normal University, Hefei, 230601, China
| |
Collapse
|
19
|
Cheng R, Wang Y, Di X, Lu Z, Wang P, Ma M, Ye J. Construction of MOF-derived plum-like NiCo@C composite with enhanced multi-polarization for high-efficiency microwave absorption. J Colloid Interface Sci 2021; 609:224-234. [PMID: 34896826 DOI: 10.1016/j.jcis.2021.11.197] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022]
Abstract
Nowadays, facing the inevitable electromagnetic (EM) pollution caused by many electronic products, it is urgent to develop high-performance microwave absorbing materials. In particular, the bimetallic carbon-based composites derived from MOFs exhibit excellent microwave absorption potential due to their simple preparation, low cost, adjustable morphology and magnetoelectric synergy mechanism. In this work, we successfully prepared plum-like NiCo@C composite by simple solvothermal method and carbonization treatment, which displays strong absorption (-55.4 dB) and wide effective absorption band (EAB, 7.2 GHz) when the loading is 20 wt%. The plum-like structure greatly enriches the non-uniform interface and the structural anisotropy contributes to the dissipation of electromagnetic waves. At the same time, the band hybridization and magnetic coupling of NiCo@C contribute to the coordination of EM characteristics. Overall, this work proves the feasibility of NiCo@C hierarchical composite in the field of microwave absorbing, and provides insight for the development of high-performance absorbers.
Collapse
Affiliation(s)
- Runrun Cheng
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Yan Wang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China.
| | - Xiaochuang Di
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Zhao Lu
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Ping Wang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Mingliang Ma
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Jinrui Ye
- Institute of Science and Technology of Beihang University, Beijing 100191, PR China
| |
Collapse
|
20
|
Zhao H, Wang F, Cui L, Xu X, Han X, Du Y. Composition Optimization and Microstructure Design in MOFs-Derived Magnetic Carbon-Based Microwave Absorbers: A Review. NANO-MICRO LETTERS 2021; 13:208. [PMID: 34633562 PMCID: PMC8505592 DOI: 10.1007/s40820-021-00734-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/08/2021] [Indexed: 05/19/2023]
Abstract
Magnetic carbon-based composites are the most attractive candidates for electromagnetic (EM) absorption because they can terminate the propagation of surplus EM waves in space by interacting with both electric and magnetic branches. Metal-organic frameworks (MOFs) have demonstrated their great potential as sacrificing precursors of magnetic metals/carbon composites, because they provide a good platform to achieve high dispersion of magnetic nanoparticles in carbon matrix. Nevertheless, the chemical composition and microstructure of these composites are always highly dependent on their precursors and cannot promise an optimal EM state favorable for EM absorption, which more or less discount the superiority of MOFs-derived strategy. It is hence of great importance to develop some accompanied methods that can regulate EM properties of MOFs-derived magnetic carbon-based composites effectively. This review comprehensively introduces recent advancements on EM absorption enhancement in MOFs-derived magnetic carbon-based composites and some available strategies therein. In addition, some challenges and prospects are also proposed to indicate the pending issues on performance breakthrough and mechanism exploration in the related field.
Collapse
Affiliation(s)
- Honghong Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Fengyuan Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Liru Cui
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Xianzhu Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Xijiang Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| | - Yunchen Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| |
Collapse
|
21
|
Cui Y, Liu Z, Li X, Ren J, Wang Y, Zhang Q, Zhang B. MOF-derived yolk-shell Co@ZnO/Ni@NC nanocage: Structure control and electromagnetic wave absorption performance. J Colloid Interface Sci 2021; 600:99-110. [DOI: 10.1016/j.jcis.2021.05.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022]
|
22
|
Mahbub MAA, Adios CG, Xu M, Prakoso B, LeBeau JM, Sumboja A. Red Bean Pod Derived Heterostructure Carbon Decorated with Hollow Mixed Transition Metals as a Bifunctional Catalyst in Zn-Air Batteries. Chem Asian J 2021; 16:2559-2567. [PMID: 34382330 DOI: 10.1002/asia.202100702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/27/2021] [Indexed: 12/27/2022]
Abstract
Design and synthesis of low-cost and efficient bifunctional catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in Zn-air batteries are essential and challenging. We report a facile method to synthesize heterostructure carbon consisting of graphitic and amorphous carbon derived from the agricultural waste of red bean pods. The heterostructure carbon possesses a large surface area of 625.5 m2 g-1 , showing ORR onset potential of 0.89 V vs. RHE and OER overpotential of 470 mV at 5 mA cm-2 . Introducing hollow FeCo nanoparticles and nitrogen dopant improves the bifunctional catalytic activity of the carbon, delivering ORR onset potential of 0.93 V vs. RHE and OER overpotential of 360 mV. Electron energy-loss spectroscopy (EELS) O K-edge map suggests the presence of localized oxygen on the FeCo nanoparticles, suggesting the oxidation of the nanoparticles. Zn-air battery with these carbon-based catalysts exhibits a peak power density as high as 116.2 mW cm-2 and stable cycling performance over 210 discharge/charge cycles. This work contributes to the advancement of bifunctional oxygen electrocatalysts while converting agricultural waste into value-added material.
Collapse
Affiliation(s)
- Muhammad Adib Abdillah Mahbub
- Material Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 4013, Indonesia
| | - Celfi Gustine Adios
- Material Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 4013, Indonesia
| | - Michael Xu
- Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Bagas Prakoso
- Mekanisasi Perikanan, Politeknik Kelautan dan Perikanan Sorong, Jl. Kapitan Pattimura, Sorong, 98411, Indonesia
| | - James M LeBeau
- Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Afriyanti Sumboja
- Material Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 4013, Indonesia
| |
Collapse
|
23
|
Design and synthesis of NiCo/Co4S3@C hybrid material with tunable and efficient electromagnetic absorption. J Colloid Interface Sci 2021; 583:321-330. [DOI: 10.1016/j.jcis.2020.09.054] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 11/24/2022]
|
24
|
Zhang N, Wang Y, Chen P, Chen W. A rational route towards dual wave-transparent type of carbonyl iron@SiO2@heterogeneous state polypyrrole@paraffin composites for electromagnetic wave absorption application. J Colloid Interface Sci 2021; 581:84-95. [DOI: 10.1016/j.jcis.2020.07.087] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 02/04/2023]
|
25
|
Ma M, Bi Y, Tong Z, Liu Y, Lyu P, Wang R, Ma Y, Wu G, Liao Z, Chen Y. Recent progress of MOF-derived porous carbon materials for microwave absorption. RSC Adv 2021; 11:16572-16591. [PMID: 35479149 PMCID: PMC9032547 DOI: 10.1039/d1ra01880a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/26/2021] [Indexed: 11/21/2022] Open
Abstract
Microwave absorbing materials (MAM) have attracted considerable attention over the years in stealth and information technologies. Metal–organic framework (MOF) with a unique microstructure and electronic state has become an attractive focus as self-sacrificing precursors of microwave absorbers. The MOF-derived porous carbon (PC) materials exhibit a high absorbing performance due to the stable three-dimensional structure and homogeneous distribution of metal particles. MOF-derived PC materials are promising for ideal MAM via tuning of the structure and composition, resulting in appropriate impedance matching and the synergistic effect between magnetic and dielectric loss. In this review, the MOF-derived PC materials and their basic absorption mechanisms (dielectric loss, magnetic loss and impedance matching) are introduced, as well as the characters of various MOF-derived PC materials. In addition, this review provides a comprehensive introduction and tabulates the recent progress based on the classification of the MOF-derived metallic state, such as pure PC (without reduced metals), mono-metal/PC, multi-metal/PC, metal oxides/PC and other derived PC composites. Finally, the challenges faced by MOF-derived PC materials are overviewed, and their further development is mentioned. MOF-derived PC materials with unique characteristic have been widely concerned as microwave absorbers over the years.![]()
Collapse
Affiliation(s)
- Mingliang Ma
- School of Civil Engineering
- Qingdao University of Technology
- Qingdao 266033
- People's Republic of China
| | - Yuxin Bi
- School of Civil Engineering
- Qingdao University of Technology
- Qingdao 266033
- People's Republic of China
| | - Zhouyu Tong
- School of Civil Engineering
- Qingdao University of Technology
- Qingdao 266033
- People's Republic of China
| | - Yanyan Liu
- School of Civil Engineering
- Qingdao University of Technology
- Qingdao 266033
- People's Republic of China
| | - Ping Lyu
- School of Civil Engineering
- Qingdao University of Technology
- Qingdao 266033
- People's Republic of China
| | - Rongzhen Wang
- School of Civil Engineering
- Qingdao University of Technology
- Qingdao 266033
- People's Republic of China
| | - Yong Ma
- School of Material Science and Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- People's Republic of China
| | - Guanglei Wu
- Institute of Materials for Energy and Environment
- State Key Laboratory of Bio-fibers and Eco-textiles
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
| | - Zijian Liao
- School of Civil Engineering
- Qingdao University of Technology
- Qingdao 266033
- People's Republic of China
| | - Yan Chen
- School of Civil Engineering
- Qingdao University of Technology
- Qingdao 266033
- People's Republic of China
| |
Collapse
|
26
|
Qi Q, Hu J, Zhang Y, Li W, Huang B, Zhang C. Two‐Dimensional Metal–Organic Frameworks‐Based Electrocatalysts for Oxygen Evolution and Oxygen Reduction Reactions. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/aesr.202000067] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Qianglong Qi
- Faculty of Science Kunming University of Science and Technology Kunming 650093 China
| | - Jue Hu
- Faculty of Science Kunming University of Science and Technology Kunming 650093 China
| | - Yingjie Zhang
- The Engineering Laboratory of Advanced Battery and Materials of Yunnan Province Faculty of Metallurgical and Energy Engineering Kunming University of Science and Technology Kunming 650093 China
| | - Wei Li
- Faculty of Science Kunming University of Science and Technology Kunming 650093 China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom, Kowloon Hong Kong SAR 999077 China
| | - Chengxu Zhang
- The Engineering Laboratory of Advanced Battery and Materials of Yunnan Province Faculty of Metallurgical and Energy Engineering Kunming University of Science and Technology Kunming 650093 China
| |
Collapse
|
27
|
Bao W, Chen C, Si Z. Development of sulfide, nitrogen co-doping hollow carbon with wideband electromagnetic absorption capability. RSC Adv 2020; 10:22570-22577. [PMID: 35514566 PMCID: PMC9054573 DOI: 10.1039/d0ra03921g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/30/2020] [Indexed: 11/21/2022] Open
Abstract
Exploration of an economic, easy-producing method to develop high-performance electromagnetic absorber has been a global research interest, owing to the increasingly electromagnetic pollution and interference. In this work, sulfide, nitrogen co-doping carbon (NS-HCS) has been successfully prepared by an in situ copolymer and subsequent calcination reaction. The morphologies and phase compositions of these as-prepared samples are analyzed via the transmission electron microscopy (TEM), element mappings, X-ray diffraction (XRD) and X-ray photoelectron spectrum (XPS). The result confirms the hollow shaped structure of amorphous carbon is constructed with various types of N, S based covalent bonds. The dotted N and S elements are contribution for the conductive loss and dipole polarization relaxation behavior. The minimum reflection loss value of -34 dB, and effective bandwidth reaches 6.8 GHz with only 1.6 mm. The as-prepared wideband electromagnetic absorber will pave a simple and effective method to obtain lightweight, broadband and thin thickness electromagnetic absorption materials.
Collapse
Affiliation(s)
- Wenli Bao
- School of Materials Science and Engineering, Changchun University of Science and Technology No. 7989, Weixing Road Changchun 130022 PR China .,Criminal Investigation Department, Jilin Police College Changchun 130117 PR China
| | - Cong Chen
- School of Materials Science and Engineering, Changchun University of Science and Technology No. 7989, Weixing Road Changchun 130022 PR China .,School of Physics and Electronic Information Engineering, Qinghai Nationalities University Xining 810007 PR China
| | - Zhenjun Si
- School of Materials Science and Engineering, Changchun University of Science and Technology No. 7989, Weixing Road Changchun 130022 PR China
| |
Collapse
|
28
|
Bao W, Chen C, Si Z. An Easy Method of Synthesis Co xO y@C Composite with Enhanced Microwave Absorption Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E902. [PMID: 32397150 PMCID: PMC7279402 DOI: 10.3390/nano10050902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 11/21/2022]
Abstract
Design of interface-controllable magnetic composite towards the wideband microwave absorber is greatly significance, however, it still remains challenging. Herein, we designed a spherical-like hybrids, using the Co3O4 and amorphous carbon as the core and shell, respectively. Then, the existed Co3O4 core could be totally reduced by the carbon shell, thus in CoxOy core (composed by Co and Co3O4). Of particular note, the ratios of Co and Co3O4 can be linearly tuned, suggesting the controlled interfaces, which greatly influences the interface loss behavior and electromagnetic absorption performance. The results revealed that the minimum reflection loss value (RLmin) of -39.4 dB could be achieved for the optimal CoxOy@C sample under a thin thickness of 1.4 mm. More importantly, the frequency region with RL < -10 dB was estimated to be 4.3 GHz, ranging from 13.7 to 18.0 GHz. The superior wideband microwave absorption performance was primarily attributed to the multiple interfacial polarization and matched impedance matching ability.
Collapse
Affiliation(s)
- Wenli Bao
- School of Materials Science and Engineering, Changchun University of Science and Technology, No. 7989, Weixing Road, Changchun 130022, China;
| | - Cong Chen
- School of Materials Science and Engineering, Changchun University of Science and Technology, No. 7989, Weixing Road, Changchun 130022, China;
- School of Physics and Electronic Information Engineering, Qinghai Nationalities University, Xining 810007, China
| | - Zhenjun Si
- School of Materials Science and Engineering, Changchun University of Science and Technology, No. 7989, Weixing Road, Changchun 130022, China;
| |
Collapse
|
29
|
Oh S, Lee S, Oh M. Zeolitic Imidazolate Framework-Based Composite Incorporated with Well-Dispersed CoNi Nanoparticles for Efficient Catalytic Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18625-18633. [PMID: 32237723 DOI: 10.1021/acsami.0c03756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Incorporation of metal nanocatalysts within a well-defined porous support is of great importance for stabilizing unstable metal nanocatalysts, so that they display an effective and long-lasting catalytic activity. In particular, metal-organic frameworks (MOFs) with a wide range of structures serve as excellent porous supports for stabilizing unstable nanocatalysts. In addition, the development of inexpensive metal nanocatalysts is necessary to replace expensive noble metal nanocatalysts. Herein, we report on a simple method for the preparation of porous MOF-based or carbon-based composites incorporated with catalytically active CoNi alloy nanoparticles. CoNi alloy nanoparticles were produced from the concurrent reduction of Co and Ni ions existing within a zeolitic imidazolate framework (ZIF)-based precursor material during the thermal treatment. In particular, a part of the highly porous ZIF was preserved during the thermal treatment at 400 °C, which eventually resulted in a composite of ZIF and CoNi (CoNi@ZIF). The resulting CoNi@ZIF showed excellent catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol. The synergy between the highly porous ZIF support and the well-dispersed CoNi nanoparticles within CoNi@ZIF provided an outstanding catalytic performance, even with inexpensive transition-metal nanocatalysts. Moreover, the catalytic activity of CoNi@ZIF was well conserved even after five consecutive reactions.
Collapse
Affiliation(s)
- Sojin Oh
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sujeong Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Moonhyun Oh
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
30
|
Xu X, Ran F, Fan Z, Cheng Z, Lv T, Shao L, Liu Y. Bimetallic Metal-Organic Framework-Derived Pomegranate-like Nanoclusters Coupled with CoNi-Doped Graphene for Strong Wideband Microwave Absorption. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17870-17880. [PMID: 32207289 DOI: 10.1021/acsami.0c01572] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Metal-organic frameworks (MOFs) featuring high porosity and tunable structure make them become promising candidates to fabricate carbon-based microwave absorption (MA) materials to meet the requirements of electronic reliability and defense security. However, it is challenging to rationally design a well-organized micro-nanostructure to simultaneously achieve strong and wideband MA performance. Herein, a three-dimensional (3D) hierarchical nanoarchitecture (CoNi@NC/rGO-600) comprising pomegranate-like CoNi@NC nanoclusters and ultrasmall CoNi-decorated graphene has been successfully fabricated to broaden the absorption bandwidth and enhance the absorption intensity. The results confirm that the bimetallic MOF CoNi-BTC-derived pomegranate-like CoNi@NC nanoclusters with porous carbon shell as "peel" and sub-5 nm CoNi nanoparticles as "seeds" favor multiple polarization, magnetic loss, and impedance matching. Moreover, the interconnected 3D CoNi-doped graphene acts not only as a bridge to connect pomegranate-like CoNi@NC nanoclusters but also as a conductive network to supply multiple electron transportation paths. Consequently, the optimized CoNi@NC/rGO-600 exhibits extraordinary MA performance in terms of wide bandwidth (6.7 GHz) and strong absorption (-68.0 dB). As an effective strategy, this work provides a new insight into fabricating hierarchical composite structures for advancing MA performances and other applications.
Collapse
Affiliation(s)
- Xueqing Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P.R. China
| | - Feitian Ran
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P.R. China
| | - Zhimin Fan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P.R. China
| | - Zhongjun Cheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P.R. China
| | - Tong Lv
- Aerospace Institute of Advanced Material & Processing Technology, Beijing 100074, P.R. China
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P.R. China
| | - Yuyan Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
31
|
Wang Y, Zhang Y, Li C, Wang M, Cui H, Yi W, Song F, Sun X, Fu Q. Temperature‐responsive Solid Acid Catalyst for Cellulose Hydrolysis to HMF. ChemistrySelect 2020. [DOI: 10.1002/slct.202000099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yong Wang
- School of Chemistry and Chemical EngineeringShandong University of Technology Zibo 255049 P. R. China
| | - Yuan Zhang
- School of Chemistry and Chemical EngineeringShandong University of Technology Zibo 255049 P. R. China
| | - Chunxiao Li
- School of Chemistry and Chemical EngineeringShandong University of Technology Zibo 255049 P. R. China
| | - Ming Wang
- School of Chemistry and Chemical EngineeringShandong University of Technology Zibo 255049 P. R. China
| | - Hongyou Cui
- School of Chemistry and Chemical EngineeringShandong University of Technology Zibo 255049 P. R. China
| | - Weiming Yi
- School of Agricultural Engineering and Food ScienceShandong University of Technology Zibo 255049 P. R. China
| | - Feng Song
- School of Chemistry and Chemical EngineeringShandong University of Technology Zibo 255049 P. R. China
| | - Xiuyu Sun
- School of Chemistry and Chemical EngineeringShandong University of Technology Zibo 255049 P. R. China
| | - Qiang Fu
- School of Chemistry and Chemical EngineeringShandong University of Technology Zibo 255049 P. R. China
| |
Collapse
|
32
|
Cao MS, Wang XX, Zhang M, Cao WQ, Fang XY, Yuan J. Variable-Temperature Electron Transport and Dipole Polarization Turning Flexible Multifunctional Microsensor beyond Electrical and Optical Energy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907156. [PMID: 31995267 DOI: 10.1002/adma.201907156] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/13/2019] [Indexed: 05/21/2023]
Abstract
Humans are undergoing a fateful transformation focusing on artificial intelligence, quantum information technology, virtual reality, etc., which is inseparable from intelligent nano-micro devices. However, the booming of "Big Data" brings about an even greater challenge by growing electromagnetic radiation. Herein, an innovative flexible multifunctional microsensor is proposed, opening up a new horizon for intelligent devices. It integrates "non-crosstalk" multiple perception and green electromagnetic interference shielding only in one pixel, with satisfactory sensitivity and fast information feedback. Importantly, beneficial by deep insight into the variable-temperature electromagnetic response, the microsensor tactfully transforms the urgent threat of electromagnetic radiation into "wealth," further integrating self-power. This result will refresh researchers' realization of next-generation devices, ushering in a new direction for aerospace engineering, remote sensing, communications, medical treatment, biomimetic robot, prosthetics, etc.
Collapse
Affiliation(s)
- Mao-Sheng Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xi-Xi Wang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Min Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Wen-Qiang Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiao-Yong Fang
- School of Science, Yanshan University, Qinhuangdao, 066004, China
| | - Jie Yuan
- School of Information Engineering, Minzu University of China, Beijing, 100081, China
| |
Collapse
|
33
|
Guo D, Yuan H, Wang X, Zhu C, Chen Y. Urchin-like Amorphous Nitrogen-Doped Carbon Nanotubes Encapsulated with Transition-Metal-Alloy@Graphene Core@Shell Nanoparticles for Microwave Energy Attenuation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9628-9636. [PMID: 32020801 DOI: 10.1021/acsami.9b20412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Herein, we report three-dimensional (3D) urchin-like amorphous nitrogen-doped CNT (NCNT) arrays with embedded cobalt-nickel@graphene core@shell nanoparticles (NPs) in the inner parts of NCNTs (CoNi@G@NCNTs) for highly efficient absorption toward microwave (MW). The CoNi NPs are covered with about seven layers of graphene shell, resulting in the formation of CoNi@G core-shell structures. In the meanwhile, the CoNi@G core-shell NPs are further encapsulated within NCNTs. Benefitting from the multiple scattering of the unique 3D structure toward MW, cooperative effect between magnetic loss and dielectric loss, and additional interfacial polarizations, the 3D urchin-like CoNi@G@NCNTs exhibit excellent MW energy attenuation ability with a broad absorption bandwidth of 5.2 GHz with a matching thickness of merely 1.7 mm, outperforming most reported absorbers. Furthermore, the chemical stability of the 3D urchin-like CoNi@G@NCNTs is improved greatly due to the presence of the graphene coating layers and outmost NCNTs, facilitating their practical applications. Our results highlight a novel strategy for fabrication of 3D nanostructures as high-performance MW-absorbing materials.
Collapse
Affiliation(s)
- Dong Guo
- Key Laboratory of In-Fiber Integrated Optics, Ministry of Education and College of Science , Harbin Engineering University , Harbin 150001 , China
| | - Haoran Yuan
- Key Laboratory of In-Fiber Integrated Optics, Ministry of Education and College of Science , Harbin Engineering University , Harbin 150001 , China
| | - Xianchao Wang
- Key Laboratory of In-Fiber Integrated Optics, Ministry of Education and College of Science , Harbin Engineering University , Harbin 150001 , China
| | - Chunling Zhu
- College of Chemistry and Chemical Engineering , Harbin Engineering University , Harbin 150001 , China
| | - Yujin Chen
- Key Laboratory of In-Fiber Integrated Optics, Ministry of Education and College of Science , Harbin Engineering University , Harbin 150001 , China
| |
Collapse
|
34
|
Li Y, Duan Y, Wang C. Enhanced Microwave Absorption and Electromagnetic Properties of Si-Modified rGO@Fe 3O 4/PVDF- co-HFP Composites. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E933. [PMID: 32093139 PMCID: PMC7079640 DOI: 10.3390/ma13040933] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 01/19/2023]
Abstract
Graphene has been regarded as one of the most promising two-dimensional nanomaterials. Even so, graphene was still faced with several key issues such as impedance mismatching and narrow bandwidth, which have hindered the practical applications of graphene-based nanocomposites in the field of microwave absorption materials. Herein, a series of Si-modified rGO@Fe3O4 composites were investigated and fabricated by a simple method. On one hand, the degree of defects in graphene carbon could be tuned by different silane coupling reagents, which were beneficial to enhancing the dielectric loss. On the other hand, the spherical Fe3O4 nanoparticles provided the magnetic loss resonance, which contributed to controlling the impedance matching. Subsequently, the electromagnetic absorption (EMA) properties of Si-modified rGO@Fe3O4 composites with poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) were investigated in this work. As a result, the Si(2)-rGO@Fe3O4/PVDF-co-HFP composite exhibited the excellent EMA performance in the range of 2-18 GHz. The maximum reflection loss (RLmax) reached -32.1 dB at 3.68 GHz at the thickness of 7 mm and the effective absorption frequency bandwidth for reflection loss (RL) below -10 dB was 4.8 GHz at the thickness of 2 mm. Furthermore, the enhanced absorption mechanism revealed that the high-efficiency absorption performance of Si(2)-rGO@Fe3O4/PVDF-co-HFP composite was attributed to the interference absorption (quarter-wave matching model) and the synergistic effects between Si(2)-rGO@Fe3O4 and PVDF-co-HFP. This work provides a potential strategy for the fabrication of the high-performance EMA materials.
Collapse
Affiliation(s)
| | - Yugang Duan
- State Key Lab for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710054, China; (Y.L.); (C.W.)
| | | |
Collapse
|
35
|
Qu X, Zhou Y, Li X, Javid M, Huang F, Zhang X, Dong X, Zhang Z. Nitrogen-doped graphene layer-encapsulated NiFe bimetallic nanoparticles synthesized by an arc discharge method for a highly efficient microwave absorber. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01577a] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NiFe@NC nanocomposites exhibit excellent microwave absorption benefiting from their core@shell structures and synergistic effects of dielectric/magnetic losses.
Collapse
Affiliation(s)
- Xinghao Qu
- Key Laboratory of Materials Modification by Laser
- Ion and Electron Beams
- School of Materials Science and Engineering
- Dalian University of Technology
- Dalian 116023
| | - Yuanliang Zhou
- Key Laboratory of Materials Modification by Laser
- Ion and Electron Beams
- School of Materials Science and Engineering
- Dalian University of Technology
- Dalian 116023
| | - Xiyang Li
- Key Laboratory of Materials Modification by Laser
- Ion and Electron Beams
- School of Materials Science and Engineering
- Dalian University of Technology
- Dalian 116023
| | - Muhammad Javid
- Key Laboratory of Materials Modification by Laser
- Ion and Electron Beams
- School of Materials Science and Engineering
- Dalian University of Technology
- Dalian 116023
| | - Feirong Huang
- Key Laboratory of Materials Modification by Laser
- Ion and Electron Beams
- School of Materials Science and Engineering
- Dalian University of Technology
- Dalian 116023
| | - Xuefeng Zhang
- Institute of Advanced Magnetic Materials
- Hangzhou DianZi University
- Hangzhou
- China
| | - Xinglong Dong
- Key Laboratory of Materials Modification by Laser
- Ion and Electron Beams
- School of Materials Science and Engineering
- Dalian University of Technology
- Dalian 116023
| | - Zhidong Zhang
- Shenyang National Laboratory for Materials Science
- Institute of Metal Research
- Chinese Academy of Sciences
- Shenyang
- China
| |
Collapse
|
36
|
Wang Y, Wang J, Zhang Y, Song F, Xie Y, Wang M, Cui H, Yi W. N-Doped Carbon Materials as Heterogeneous Catalysts for High Efficiency Isomerization Glucose to Fructose in Aqueous Media. Catal Letters 2019. [DOI: 10.1007/s10562-019-03020-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Wang R, He M, Zhou Y, Nie S, Wang Y, Liu W, He Q, Wu W, Bu X, Yang X. Self-Assembled 3D Flower-like Composites of Heterobimetallic Phosphides and Carbon for Temperature-Tailored Electromagnetic Wave Absorption. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38361-38371. [PMID: 31549802 DOI: 10.1021/acsami.9b14873] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Bimetallic cobalt-nickel phosphides as a microwave absorber with a well-defined 3D hierarchical flower-like architecture featuring the ultrathin 2D subunits are very unusual and rarely reported. Herein, for the first time, we successfully prepared 3D flower-like CoNi-P/C composites with 2D nanosheet subunits via a one-pot solvothermal self-assembled strategy followed by a one-step carbonization-phosphorization process. Interestingly, the chemical composition and electromagnetic (EM) wave absorption performance of composites are highly influenced by the calcination temperature. As the calcination temperature increases from 300 to 500 °C, the crystal pattern transformed from CoP with nickel ions uniformly intercalating into the lattice to the CoNiP structure. Comparing with CoNi-P/C-400 and CoNi-P/C-500, the CoNi-P/C-300 sample exhibited an optimal reflection loss (RL) value of -65.5 dB at 12.56 GHz with a thickness of 2.1 mm and an ultralow filler loading of 15 wt %. Furthermore, the fundamental EM wave absorption mechanism was proposed. The synergetic effects of dramatical attenuation ability and well-matched impedance endue CoNi-P/C-300 with superior microwave absorption performance. This work may be enlightening in promoting the development of heterobimetallic phosphides in the wave-absorbing field due to their intrinsic magnetism, higher electrical conductivity, as well as eco-friendly traits.
Collapse
Affiliation(s)
- Ruili Wang
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering , Guangxi University , Nanning 530004 , China
| | - Man He
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Yuming Zhou
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Shuangxi Nie
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering , Guangxi University , Nanning 530004 , China
| | - Yongjuan Wang
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Wenqi Liu
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Qiang He
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Wenting Wu
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Xiaohai Bu
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Xiaoming Yang
- Zhejiang Ouren New Materials Co., LTD , Jiashan, Jiaxing 314103 , China
| |
Collapse
|
38
|
Zhang X, Qiao J, Zhao J, Xu D, Wang F, Liu C, Jiang Y, Wu L, Cui P, Lv L, Wang Q, Liu W, Wang Z, Liu J. High-Efficiency Electromagnetic Wave Absorption of Cobalt-Decorated NH 2-UIO-66-Derived Porous ZrO 2/C. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35959-35968. [PMID: 31525942 DOI: 10.1021/acsami.9b10168] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Broadband absorbers derived from metal-organic frameworks are highly desirable in the electromagnetic (EM) wave absorption field. Herein, a strategy for cobalt-decorated porous ZrO2/C hybrid octahedrons by pyrolysis of Co(NO3)2-impregnated NH2-UIO-66 was developed. The hybridization of Co nanoparticles with ZrO2/C results in remarkable EM wave absorption performance with a minimum reflection loss (RL) of -57.2 dB at 15.8 GHz, corresponding to a matching thickness of 3.3 mm. The maximum effective absorption bandwidth (RL ≤ -10 dB) reaches 11.9 GHz (6.1-18 GHz), covering 74.4% of the whole measured bandwidth. The textural properties of nanocomposites have been thoroughly characterized by powder X-ray diffraction, electron microscopy, X-ray photoelectron spectroscopy, and nitrogen adsorption-desorption isotherms. The corresponding results show that the face-centered cubic-phased ∼50 nm Co nanoparticles are evenly distributed on the surface of porous ZrO2/C hybrid octahedrons. The excellent performance of Co/ZrO2/C can be ascribed to the strong interface polarization and the suitable impedance matching, originating from the synergistic effect among the components.
Collapse
Affiliation(s)
- Xue Zhang
- School of Materials Science and Engineering , Shandong University , Jinan 250061 , P. R. China
| | - Jing Qiao
- School of Materials Science and Engineering , Shandong University , Jinan 250061 , P. R. China
| | - Jinbo Zhao
- School of Materials Science and Engineering , Qilu University of Technology , Jinan 250353 , P. R. China
| | | | - Fenglong Wang
- School of Materials Science and Engineering , Shandong University , Jinan 250061 , P. R. China
| | - Chang Liu
- School of Materials Science and Engineering , Shandong University , Jinan 250061 , P. R. China
| | - Yanyan Jiang
- School of Materials Science and Engineering , Shandong University , Jinan 250061 , P. R. China
| | - Lili Wu
- School of Materials Science and Engineering , Shandong University , Jinan 250061 , P. R. China
| | | | - Longfei Lv
- School of Materials Science and Engineering , Shandong University , Jinan 250061 , P. R. China
| | - Qi Wang
- School of Materials Science and Engineering , Shandong University , Jinan 250061 , P. R. China
| | | | - Zhou Wang
- School of Materials Science and Engineering , Shandong University , Jinan 250061 , P. R. China
| | - Jiurong Liu
- School of Materials Science and Engineering , Shandong University , Jinan 250061 , P. R. China
| |
Collapse
|
39
|
Mederos-Henry F, Mahin J, Pichon BP, Dîrtu MM, Garcia Y, Delcorte A, Bailly C, Huynen I, Hermans S. Highly Efficient Wideband Microwave Absorbers Based on Zero-Valent Fe@ γ-Fe 2O 3 and Fe/Co/Ni Carbon-Protected Alloy Nanoparticles Supported on Reduced Graphene Oxide. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1196. [PMID: 31450701 PMCID: PMC6780371 DOI: 10.3390/nano9091196] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 11/16/2022]
Abstract
Electronic systems and telecommunication devices based on low-power microwaves, ranging from 2 to 40 GHz, have massively developed in the last decades. Their extensive use has contributed to the emergence of diverse electromagnetic interference (EMI) phenomena. Consequently, EMI shielding has become a ubiquitous necessity and, in certain countries, a legal requirement. Broadband absorption is considered the only convincing EMI shielding solution when the complete disappearance of the unwanted microwave is required. In this study, a new type of microwave absorber materials (MAMs) based on reduced graphene oxide (rGO) decorated with zero-valent Fe@γ-Fe2O3 and Fe/Co/Ni carbon-protected alloy nanoparticles (NPs) were synthesized using the Pechini sol-gel method. Synthetic parameters were varied to determine their influence on the deposited NPs size and spatial distribution. The deposited superparamagnetic nanoparticles were found to induce a ferromagnetic resonance (FMR) absorption process in all cases. Furthermore, a direct relationship between the nanocomposites' natural FMR frequency and their composition-dependent saturation magnetization (Ms) was established. Finally, the microwave absorption efficiency (0.4 MHz to 20 GHz) of these new materials was found to range from 60% to 100%, depending on the nature of the metallic particles grafted onto rGO.
Collapse
Affiliation(s)
- Francisco Mederos-Henry
- Institute of Condensed Matter and Nanosciences (IMCN), Division of Molecules, Solids and Reactivity (MOST), Place Louis Pasteur 1, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Julien Mahin
- Institute of Condensed Matter and Nanosciences (IMCN), Division of Molecules, Solids and Reactivity (MOST), Place Louis Pasteur 1, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, West Cambridge Site, Cambridge CB3 0AS, UK
| | - Benoit P Pichon
- Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS, Université de Strasbourg, UMR 7504, F-67000 Strasbourg, France
| | - Marinela M Dîrtu
- Institute of Condensed Matter and Nanosciences (IMCN), Division of Molecules, Solids and Reactivity (MOST), Place Louis Pasteur 1, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
- Faculty of Electrical Engineering and Computer Science & MANSiD Research Center, Stefan cel Mare University, 720229 Suceava, Romania
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences (IMCN), Division of Molecules, Solids and Reactivity (MOST), Place Louis Pasteur 1, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Arnaud Delcorte
- Institute of Condensed Matter and Nanosciences (IMCN), Division of Bio and Soft Matter (BSMA), Croix du Sud 1, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Christian Bailly
- Institute of Condensed Matter and Nanosciences (IMCN), Division of Bio and Soft Matter (BSMA), Croix du Sud 1, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Isabelle Huynen
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Place du Levant 3, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Sophie Hermans
- Institute of Condensed Matter and Nanosciences (IMCN), Division of Molecules, Solids and Reactivity (MOST), Place Louis Pasteur 1, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
40
|
Yin Z, Sun Y, Jiang Y, Yan F, Zhu C, Chen Y. Hierarchical Cobalt-Doped Molybdenum-Nickel Nitride Nanowires as Multifunctional Electrocatalysts. ACS APPLIED MATERIALS & INTERFACES 2019; 11:27751-27759. [PMID: 31305065 DOI: 10.1021/acsami.9b06543] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Herein, we demonstrate hierarchically porous Co-doped MoNi nitride nanowires for multifunctional electrocatalysts. After the Co incorporation for water electrolysis and zinc-air systems, the active surface area is enhanced, whereas the charge-transfer and mass-transfer resistances are reduced significantly. Due to the dual modulation in the electric conductivity and active surface area induced by the Co-doping, the hierarchically porous trimetal nitrides show high activity and good stability for the hydrogen evolution reaction, oxygen evolution reaction, and oxygen reduction reaction. The two-electrode electrolyzer assembled by the bifunctional electrocatalysts can deliver 10 mA cm-2 at a voltage of merely 1.57 V, compared to the best reported electrocatalysts. Meanwhile, two all-solid-state zinc-air batteries in series can power more than 50 red light-emitting diodes and the two-electrode electrolyzer catalyzed by the multifunctional electrocatalysts with excellent operation stability.
Collapse
|
41
|
Liu P, Gao S, Wang Y, Huang Y, Wang Y, Luo J. Core-Shell CoNi@Graphitic Carbon Decorated on B,N-Codoped Hollow Carbon Polyhedrons toward Lightweight and High-Efficiency Microwave Attenuation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25624-25635. [PMID: 31268285 DOI: 10.1021/acsami.9b08525] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Lightweight and high-efficiency microwave attenuation are two major challenges in the exploration of carbon-based absorbers, which can be achieved simultaneously by manipulating their chemical composition, microstructure, or impedance matching. In this work, core-shell CoNi@graphitic carbon decorated on B,N-codoped hollow carbon polyhedrons has been constructed by a facile pyrolysis process using metal-organic frameworks as precursors. The B,N-codoped hollow carbon polyhedrons, originated from the calcination of Co-Ni-ZIF-67, are composed of carbon nanocages and BN domains, and CoNi alloy is encapsulated by graphitic carbon layers. With a filling loading of 30 wt %, the absorber exhibits a maximum RL of -62.8 dB at 7.2 GHz with 3 mm and the effective absorption bandwidth below -10 dB remarkably reaches as strong as 8 GHz when the thickness is only 2 mm. The outstanding microwave absorption performance stems from the hollow carbon polyhedrons and carbon nanocages with interior cavities, the synergistic coupling effect between the abundant B-C-N heteroatoms, the strong dipolar/interfacial polarizations, the multiple scatterings, and the improved impedance matching. This study demonstrates that the codoped strategy provides a new way for the rational design of carbon-based absorbers with lightweight and superior microwave attenuation.
Collapse
Affiliation(s)
- Panbo Liu
- MOE Key Laboratory of Material Physics and Chemistry under Extrodinary Conditions, School of Science , Northwestern Polytechnical University , Xi'an 710129 , China
| | - Sai Gao
- MOE Key Laboratory of Material Physics and Chemistry under Extrodinary Conditions, School of Science , Northwestern Polytechnical University , Xi'an 710129 , China
| | - Yang Wang
- MOE Key Laboratory of Material Physics and Chemistry under Extrodinary Conditions, School of Science , Northwestern Polytechnical University , Xi'an 710129 , China
| | - Ying Huang
- MOE Key Laboratory of Material Physics and Chemistry under Extrodinary Conditions, School of Science , Northwestern Polytechnical University , Xi'an 710129 , China
| | - Yan Wang
- School of Materials and Chemical Engineering , Xi'an Technological University , Xi'an 710021 , China
| | - Juhua Luo
- School of Material Science and Engineering , Yancheng Institute of Technology , Yancheng 224051 , China
| |
Collapse
|
42
|
Cheng X, Zhou X, Wang S, Liu Z, Liu Q, Zhang Y, Liu Q, Li B. Fabrication of NiO/NiCo 2O 4 Mixtures as Excellent Microwave Absorbers. NANOSCALE RESEARCH LETTERS 2019; 14:155. [PMID: 31065819 PMCID: PMC6505032 DOI: 10.1186/s11671-019-2988-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
The NiO/NiCo2O4 mixtures with unique yolk-shell structure were synthesized by a simple hydrothermal route and subsequent thermal treatment. The elemental distribution, composition, and microstructure of the samples were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and scanning electron microscope (SEM), respectively. The microwave absorption property was investigated by using vector network analysis (VNA). The results indicated that the excellent electromagnetic wave absorption property of the NiO/NiCo2O4 mixtures was achieved due to the unique yolk-shell structure. In detail, the maximum reflection loss (RL) value of the sample reached up to - 37.0 dB at 12.2 GHz and the absorption bandwidth with RL below - 10 dB was 4.0 GHz with a 2.0-mm-thick absorber. In addition, the NiO/NiCo2O4 mixtures prepared at high temperature, exhibited excellent thermal stability. Possible mechanisms were investigated for improving the microwave absorption properties of the samples.
Collapse
Affiliation(s)
- Xiankun Cheng
- School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000 People’s Republic of China
| | - Xiangbo Zhou
- School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000 People’s Republic of China
| | - Shipeng Wang
- School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000 People’s Republic of China
| | - Zhongliang Liu
- School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000 People’s Republic of China
| | - Qinzhuang Liu
- School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000 People’s Republic of China
| | - Yongxing Zhang
- School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000 People’s Republic of China
| | - Qiangchun Liu
- School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000 People’s Republic of China
| | - Bing Li
- School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000 People’s Republic of China
| |
Collapse
|
43
|
Xu X, Ran F, Fan Z, Lai H, Cheng Z, Lv T, Shao L, Liu Y. Cactus-Inspired Bimetallic Metal-Organic Framework-Derived 1D-2D Hierarchical Co/N-Decorated Carbon Architecture toward Enhanced Electromagnetic Wave Absorbing Performance. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13564-13573. [PMID: 30882206 DOI: 10.1021/acsami.9b00356] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Metal-organic framework (MOF)-derived magnetic metal/carbon nanocomposites have shown tremendous potential for lightweight electromagnetic wave (EMW) absorption. However, it is a challenge but highly significant to design and construct mixed-dimensional hierarchical architectures with synergistically integrated characteristics from individual MOFs for advancing the EMW absorption performance. Inspired by the structure of cactus, a novel hierarchical one-dimensional (1D)-two-dimensional (2D) mixed-dimensional Co/N-decorated carbon architecture comprising carbon nanotubes grafted on carbon flakes (abbreviated as CoNC/CNTs) has been fabricated by the pyrolysis of bimetallic CoZn-ZIF-L. The CoNC/CNTs integrate the advantages of 1D nanotubes for the extra polarization of EMW and 2D nanoflakes with an interconnected porous structure for multiple reflection losses of EMW and optimization of impedance matching. The resultant CoNC/CNTs demonstrate excellent EMW absorbing performance. For the optimal EMW absorbing material of CoNC/CNT-3/1, minimum reflection loss reaches -44.6 dB at 5.20 GHz with a low filler loading of 15 wt %. Moreover, the largest effective bandwidth range achieves 4.5 GHz with a thickness of 1.5 mm and a filled ratio of 20 wt %. These findings indicate that such a mixed 1D-2D hierarchical architecture synergistically enhances EMW absorbing performance. This work sheds light on the rational design of a mixed-dimensional carbon architecture derived from MOFs for desirable functionalities.
Collapse
Affiliation(s)
- Xueqing Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , Heilongjiang 150001 , P. R. China
| | - Feitian Ran
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , Heilongjiang 150001 , P. R. China
| | - Zhimin Fan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , Heilongjiang 150001 , P. R. China
| | - Hua Lai
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , Heilongjiang 150001 , P. R. China
| | - Zhongjun Cheng
- Natural Science Research Center, Academy of Fundamental and Interdisciplinary National Key Laboratory of Science and Technology on Advanced Composites in Special Environments , Harbin Institute of Technology , Harbin , Heilongjiang 150090 , P. R. China
| | - Tong Lv
- Aerospace Institute of Advanced Material & Processing Technology , Beijing 100074 , P. R. China
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , Heilongjiang 150001 , P. R. China
| | - Yuyan Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , Heilongjiang 150001 , P. R. China
| |
Collapse
|
44
|
Wei W, Liu X, Lu W, Zhang H, He J, Wang H, Hou Y. Light-weight Gadolinium Hydroxide@polypyrrole Rare-Earth Nanocomposites with Tunable and Broadband Electromagnetic Wave Absorption. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12752-12760. [PMID: 30848117 DOI: 10.1021/acsami.8b21516] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Light-weight and highly efficient nanocomposite absorbing materials are gaining tremendous interest in recent years. Because of the unique electronic structure characteristics, nanoscale rare-earth materials are of great significance in the development of advanced functional materials. Herein, gadolinium hydroxide/polypyrrole (Gd(OH)3@PPy) nanocomposites were synthesized by a facial chemical solution route. The composites could achieve an absorbing performance of -51.4 dB at 16.2 GHz with a bandwidth of 4.8 GHz, covering the entire Ku band at a thickness of only 2.2 mm. Furthermore, the absorption intensity and bandwidth can be effectively tuned by adjusting the concentration of Gd(OH)3 in the composite. Because of the improvement of impedance matching, dual-loss mechanism, and the synergistic effect of rare-earth hydroxides and conductive polymers, light-weight gadolinium hydroxide@polypyrrole composites are considered as promising candidates for strong and broadband electromagnetic wave absorption.
Collapse
Affiliation(s)
| | | | | | | | - Jun He
- Institute of Functional Materials , Central Iron & Steel Research Institute , Beijing 100081 , P. R. China
| | | | - Yanglong Hou
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKLMMD), Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Department of Materials Science and Engineering, College of Engineering , Peking University , Beijing 100871 , China
| |
Collapse
|
45
|
Sun Y, Zhang J, Zong Y, Deng X, Zhao H, Feng J, He M, Li X, Peng Y, Zheng X. Crystalline-Amorphous Permalloy@Iron Oxide Core-Shell Nanoparticles Decorated on Graphene as High-Efficiency, Lightweight, and Hydrophobic Microwave Absorbents. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6374-6383. [PMID: 30673262 DOI: 10.1021/acsami.8b18875] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The exploration of high-efficiency microwave absorption materials with lightweight and hydrophobic features is highly expected to reduce or eliminate the electromagnetic pollution. Graphene-based nanocomposites are universally acknowledged as promising candidates for absorbing microwaves due to their remarkable dielectric properties and lightweight characteristic. However, the hydrophilicity of graphene may reduce their stability and restrict the applications in moist environment. Herein, a well-designed heterostructure composed of crystalline permalloy core and amorphous iron oxide shell was uniformly adhered on oleylamine-modified graphene nanosheets by a one-pot thermal decomposition method. Compared with the recognized hydrophilic graphene-based hybrid materials, the permalloy@iron oxide/graphene nanocomposites show excellent hydrophobic and water-resistant features with a water contact angle of 136.5°. Besides, the nanocomposites show high-efficiency microwave absorption performance, benefiting from the tunneling effect, polarization, interface interaction, impedance matching condition, and synergistic effect between core-shell permalloy@iron oxide nanoparticles and graphene nanosheets. A broad effective absorption bandwidth with reflection loss (RL) value exceeding -10 dB can be obtained from 4.25 to 18 GHz, covering about 86% measured frequency range when the absorber thickness is 2.0-5.0 mm. Also, the microwave absorption performance of nanocomposites can be tuned by changing the amount of graphene. More importantly, a greatly improved microwave absorption effectiveness of -71.1 dB can be achieved for the nanocomposites in comparison with the bare permalloy@iron oxide nanoparticles (-5.6 dB) and oleylamine-modified GO nanosheets (-3.56 dB). The lightweight and hydrophobic permalloy@iron oxide/graphene nanocomposites with high-efficiency microwave absorption performance are highly promising to improve the environmental adaptability of electric devices, especially in the wet environment.
Collapse
Affiliation(s)
- Yong Sun
- School of Physics , Northwest University , Xi'an 710069 , China
| | - Junwei Zhang
- Key Laboratory of Magnetism and Magnetic Materials of the Ministry of Education , Lanzhou University , Lanzhou 730000 , China
| | - Yan Zong
- School of Physics , Northwest University , Xi'an 710069 , China
| | - Xia Deng
- Key Laboratory of Magnetism and Magnetic Materials of the Ministry of Education , Lanzhou University , Lanzhou 730000 , China
| | - Hongyang Zhao
- School of Science , Xi'an Jiaotong University , Xi'an , Shaanxi 710054 , China
| | - Juan Feng
- School of Physics , Northwest University , Xi'an 710069 , China
| | - Mi He
- School of Physics , Northwest University , Xi'an 710069 , China
| | - Xinghua Li
- School of Physics , Northwest University , Xi'an 710069 , China
| | - Yong Peng
- Key Laboratory of Magnetism and Magnetic Materials of the Ministry of Education , Lanzhou University , Lanzhou 730000 , China
| | - Xinliang Zheng
- School of Physics , Northwest University , Xi'an 710069 , China
| |
Collapse
|
46
|
Zeng S, Wang M, Feng W, Zhu L, Teng Z, Zhang H, Peng S. Cobalt nanoparticles encapsulated in a nitrogen and oxygen dual-doped carbon matrix as high-performance microwave absorbers. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00535h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Co@NOC composites showed impressive microwave absorption properties owing to multiple dielectric and magnetic loss mechanisms.
Collapse
Affiliation(s)
- Sifan Zeng
- Innovation Research Team for Advanced Ceramics
- Institute of Nuclear Physics and Chemistry
- China Academy of Engineering Physics
- Mianyang
- China
| | - Mengyu Wang
- Department of Precision Machinery and Precision Instrumentation
- University of Science and Technology of China
- Hefei
- China
| | - Wanlin Feng
- Innovation Research Team for Advanced Ceramics
- Institute of Nuclear Physics and Chemistry
- China Academy of Engineering Physics
- Mianyang
- China
| | - Lini Zhu
- Innovation Research Team for Advanced Ceramics
- Institute of Nuclear Physics and Chemistry
- China Academy of Engineering Physics
- Mianyang
- China
| | - Zhen Teng
- Innovation Research Team for Advanced Ceramics
- Institute of Nuclear Physics and Chemistry
- China Academy of Engineering Physics
- Mianyang
- China
| | - Haibin Zhang
- Innovation Research Team for Advanced Ceramics
- Institute of Nuclear Physics and Chemistry
- China Academy of Engineering Physics
- Mianyang
- China
| | - Shuming Peng
- Innovation Research Team for Advanced Ceramics
- Institute of Nuclear Physics and Chemistry
- China Academy of Engineering Physics
- Mianyang
- China
| |
Collapse
|
47
|
Xu Y, Huang Z, Wang B, Liang Z, Zhang C, Wang Y, Zhang W, Zheng H, Cao R. A two-dimensional multi-shelled metal–organic framework and its derived bimetallic N-doped porous carbon for electrocatalytic oxygen reduction. Chem Commun (Camb) 2019; 55:14805-14808. [DOI: 10.1039/c9cc08250f] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report a multi-shelled two-dimensional metal–organic framework (MOF), which is transferred to a Co/Ni-embedded bimetallic N-doped porous carbon.
Collapse
Affiliation(s)
- Yang Xu
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
| | - Zhehao Huang
- Department of Materials and Environmental Chemistry
- Stockholm University
- SE-10691 Stockholm
- Sweden
| | - Bin Wang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
| | - Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
| | - Chaochao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
| | - Yanzhi Wang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
| |
Collapse
|
48
|
Zhao H, Cheng Y, Zhang Y, Zhang Z, Zhou L, Zhang B. Core–shell hybrid nanowires with Co nanoparticles wrapped in N-doped porous carbon for lightweight microwave absorption. Dalton Trans 2019; 48:15263-15271. [DOI: 10.1039/c9dt03447a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One-dimensional core–shell structured nanowires with Co nanoparticles wrapped in N doped porous carbon were designed as a lightweight, thin and high-performance electromagnetic absorber.
Collapse
Affiliation(s)
- Huanqin Zhao
- School of Electronic Science and Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
- College of Materials Science and Technology
| | - Yan Cheng
- College of Materials Science and Technology
- Nanjing University of Aeronautics and Astronautics
- Nanjing 210016
- China
| | - Yanan Zhang
- School of Electronic Science and Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Zhu Zhang
- College of Materials Science and Technology
- Nanjing University of Aeronautics and Astronautics
- Nanjing 210016
- China
| | - Lei Zhou
- School of Electronic Science and Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Baoshan Zhang
- School of Electronic Science and Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| |
Collapse
|
49
|
Zhao B, Zhang X, Deng J, Bai Z, Liang L, Li Y, Zhang R. A novel sponge-like 2D Ni/derivative heterostructure to strengthen microwave absorption performance. Phys Chem Chem Phys 2018; 20:28623-28633. [DOI: 10.1039/c8cp06047a] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One of the major hurdles of Ni-based microwave absorbing materials is the preparation of two-dimensional (2D) Ni flakes that can improve magnetic anisotropy to tune complex permeability.
Collapse
Affiliation(s)
- Biao Zhao
- Henan Key Laboratory of Aeronautical Materials and Application Technology
- School of Materials Science and Engineering
- Zhengzhou University of Aeronautics
- Zhengzhou
- China
| | - Xi Zhang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization
- Faculty of Land Resource Engineering
- Kunming University of Science and Technology
- Kunming 650093
- China
| | - Jiushuai Deng
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization
- Faculty of Land Resource Engineering
- Kunming University of Science and Technology
- Kunming 650093
- China
| | - Zhongyi Bai
- Henan Key Laboratory of Aeronautical Materials and Application Technology
- School of Materials Science and Engineering
- Zhengzhou University of Aeronautics
- Zhengzhou
- China
| | - Luyang Liang
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Yang Li
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Rui Zhang
- Henan Key Laboratory of Aeronautical Materials and Application Technology
- School of Materials Science and Engineering
- Zhengzhou University of Aeronautics
- Zhengzhou
- China
| |
Collapse
|