1
|
Yan J, Zhu J, Tong S, Wang Z. A nanoporous organic polymer using 1, 3-dibromoadamantane as a crosslinker for adsorption/separation of benzene and cyclohexane. Chem Commun (Camb) 2024. [PMID: 38268452 DOI: 10.1039/d3cc05456j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The development of nanoporous organic polymers with cycloaliphatic components for effective benzene (Bz) and cyclohexane (Cy) adsorption/separation poses a significant challenge. This work focuses on synthesizing NOP-Ad-1, a nanoporous organic polymer derived from a Friedel-Crafts reaction between cycloaliphatic 1,3-dibromadantane and aromatic hexaphenylbenzene. At 298 K and P/P0 = 0.95, NOP-Ad-1 can uptake 989 mg g-1 benzene and 441 mg g-1 cyclohexane. Moreover, as the benzene vapor ratio increased from 20% to 80%, the Bz/Cy selectivity of NOP-Ad-1 gradually decreased from 1.75 to 1.24. These findings highlight the potential application of NOP-Ad-1 in the adsorption/separation of Bz/Cy mixtures.
Collapse
Affiliation(s)
- Jun Yan
- School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China.
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| | - Jiangli Zhu
- School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China.
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| | - Sihan Tong
- School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China.
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| | - Zefeng Wang
- College of Ecology, Lishui University, Lishui 323000, China
- R&D Center of Green Manufacturing New Materials and Technology of Synthetic Leather Sichuan University-Lishui University, Lishui 323000, China.
| |
Collapse
|
2
|
Zhang Z, Wu Q, Xu S, Yue Z, Zhou H, Jin W. Ultra-stable fully-aromatic microporous polyamide membrane for molecular sieving of nitrogen over volatile organic compound. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132151. [PMID: 37506641 DOI: 10.1016/j.jhazmat.2023.132151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Microporous polymer membranes are promising candidates for industrial membrane-based gas separation because of their high separation performance. However, their relatively low stability due to the local rearrangement of polymer chains during usage remains a problem. Hence, we propose the construction of a fully aromatic polymer structure in a microporous polymer membrane to enhance membrane stability. Four triptycene-based microporous polyamides were synthesized via the polymerization of 2,6,14-triaminotriptycene with aromatic acyl chloride and/or aliphatic acyl chlorides. Their properties were characterized and compared by using nuclear magnetic resonance (NMR) and Brunauer-Emmett-Teller analyses. The synthesized polyamides were fabricated into composite membranes by employing a solution process; their stability was evaluated for the molecular sieving of nitrogen over volatile organic compounds such as cyclohexane. Low-field NMR and X-ray photoelectron spectroscopy were used to investigate the differences in the properties of membranes with different structures at different times. The results showed that the fully aromatic polyamide membrane made from 2,6,14-triaminotriptycene and aromatic acyl chloride displayed constant rejection (99 %) and nitrogen permeability (approximately 50 Barrer) for the molecular sieving of nitrogen over cyclohexane during 100-d experiments, indicating good stability. This approach paves the way for the industrialization of microporous polymer membranes from a theoretical perspective.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, PR China
| | - Qiao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, PR China
| | - Shilin Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, PR China
| | - Zhongyuan Yue
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, PR China
| | - Haoli Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, PR China; Zhangjiagang Institute of Nanjing Tech University, Suzhou 215699, PR China.
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, PR China
| |
Collapse
|
3
|
Guerrero Peña GDJ, Reddy KSK, Varghese AM, Prabhu A, Dabbawala AA, Polychronopoulou K, Baker MA, Anjum D, Das G, Aubry C, Hassan Ali MI, Karanikolos GN, Raj A, Elkadi M. Carbon dioxide adsorbents from flame-made diesel soot nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160140. [PMID: 36379328 DOI: 10.1016/j.scitotenv.2022.160140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/18/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Carbon dioxide (CO2) is the top contributor to global warming. On the other, soot particles formed during fuel combustion and released into the atmosphere are harmful and also contribute to global warming. It would therefore be highly advantageous to capture soot and make use of it as a feedstock to synthesize carbon-based materials for applications such as carbon dioxide adsorption. In this work, flame-made diesel soot nanoparticles were used to produce a variety of activated carbons by combined oxidative treatment with hydrogen peroxide (H2O2) and potassium hydroxide (KOH), and their performance towards CO2 adsorption was evaluated. The effect of the chemical activation of soot with H2O2 for different reaction times and with KOH on the physicochemical properties of the activated carbons was investigated and compared to fresh soot. Interestingly, hollow aggregates of carbonaceous nanoparticles of a high interplanar distance, reduced polycyclic aromatic hydrocarbons (PAH) size, shorter PAH stacks, mesoporous structure, and a high content of oxygen functionalities along with other structural defects in PAHs were obtained in the synthesized activated carbons. Among the various analysis techniques employed, Raman spectroscopy indicated that the ID/IG ratio in soot decreased after simultaneous chemical treatment, though it did not indicate any enhancement in the graphitic character since the carbonyl and carboxylic containing PAHs and monovacancies (which cause defects in PAHs) also contribute to the increase in the intensity of the graphitic band. The activated carbons possessed promising CO2 adsorption capacities, adsorption kinetics and CO2/N2 selectivity. For example, one of the activated carbons, following H2O2 treatment for 9 h and a subsequent KOH activation, exhibited a CO2 adsorption capacity of 1.78 mmol/g at 1 bar and 25 °C, representing an increase of 161 % in capacity as compared to fresh soot. Hollow aggregates of carbonaceous nanoparticles consisting of shorter PAHs with a larger number of defects led to enhanced CO2 adsorption rate and CO2/N2 selectivity on activated carbons.
Collapse
Affiliation(s)
| | - K Suresh Kumar Reddy
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Anish Mathai Varghese
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Azhagapillai Prabhu
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Aasif A Dabbawala
- Department of Mechanical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Kyriaki Polychronopoulou
- Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Mechanical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Mark A Baker
- The Surface Analysis Laboratory, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 4DL, UK
| | - Dalaver Anjum
- Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Physics, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Gobind Das
- Department of Physics, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Cyril Aubry
- Electron Microscopy Core Labs, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Mohamed I Hassan Ali
- Department of Mechanical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Georgios N Karanikolos
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and H(2) (RICH), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, University of Patras, 26500 Patras, Greece
| | - Abhijeet Raj
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi, India
| | - Mirella Elkadi
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
4
|
Yan J, Tong S, Sun H, Guo S. Highly Efficient Separation of C1−C3 Alkanes and CO2 in Carbazole-Based Nanoporous Organic Polymers. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
Shen S, Xu F, Chen X, Miao G, Li Z, Zhou X, Wang X. Facile synthesis of dptz-CuGeF6 at room temperature and its adsorption performance for separation of CO2, CH4 and N2. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Liao R, Guo Y, Yang L, Zhou H, Jin W. Solvent-induced microstructure of polyimide membrane to enhance CO2/CH4 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Yan J, Tan Y, Wei L, Liu Z, Wang Q, Sun H, Wang Z, Li D, Qian Y, Guo S. Friedel–Crafts Synthesis of Carbazole-Based Hierarchical Nanoporous Organic Polymers for Adsorption of Ethane, Carbon Dioxide, and Methane. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jun Yan
- Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| | - Yan Tan
- Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| | - Lulu Wei
- Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| | - Zhenhua Liu
- Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| | - Qilin Wang
- Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| | - Haiyu Sun
- Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| | - Zhonggang Wang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Dan Li
- Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| | - Yongqiang Qian
- Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| | - Shengwei Guo
- Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| |
Collapse
|
8
|
Song N, Wang T, Ma T, Li J, Yao H, Guan S. Microporous polyimide networks with tunable micropore size constructed through side-chain engineering of linear precursors. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Kato K, Seto N, Chida K, Yoshii T, Mizuno M, Nishihara H, Ohtani S, Ogoshi T. Synthesis of hexa-aminated trinaphtho[3.3.3]propellane and its porous polymer solids with alkane adsorption properties. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Nobuyoshi Seto
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Koki Chida
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Takeharu Yoshii
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Motohiro Mizuno
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Hirotomo Nishihara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
10
|
Lignin-inspired porous polymer networks as high-performance adsorbents for the efficient removal of malachite green dye. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Zhang B, Tan Z, Zhang Y, Liu Q, Li Q, Li G. Facile Synthesis of Microporous Ferrocenyl Polymers Photocatalyst for Degradation of Cationic Dye. Polymers (Basel) 2022; 14:polym14091900. [PMID: 35567069 PMCID: PMC9100194 DOI: 10.3390/polym14091900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/24/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022] Open
Abstract
Microporous organic polymers (MOPs) were prepared by condensation reactions from substituent-group-free carbazole and pyrrole with 1,1′-ferrocenedicarboxaldehyde without adding any catalysts. The resultant MOPs were insoluble in common solvent and characterized by FTIR, XPS, TGA and SEM. An N2 adsorption test showed that the obtained polymers PFcMOP and CFcMOP exhibited Brunauer–Emmett–Teller (BET) surface areas of 48 and 105 m2 g−1, respectively, and both polymers possessed abundant micropores. The MOPs with a nitrogen and ferrocene unit could be potentially applied in degrading dye with high efficiency.
Collapse
Affiliation(s)
| | | | | | | | | | - Gen Li
- Correspondence: (Q.L.); (G.L.)
| |
Collapse
|
12
|
Wang C, Yan J, Ma Z, Wang Z. Highly efficient separation of ethylene/ethane in microenvironment-modulated microporous polymers. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Yan J, Liu Z, Sun H, Tong S, Guo S. A facile one-pot preparation of porphyrin-based microporous organic polymers for adsorption of carbon dioxide, ethane, and methane. NEW J CHEM 2022. [DOI: 10.1039/d2nj03749a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Achieving a cost-effective preparation of 3D porphyrin-based microporous organic polymers (PMOPs) for the adsorption and separation of carbon dioxide (CO2), ethane (C2H6), and methane (CH4) remains difficult.
Collapse
Affiliation(s)
- Jun Yan
- Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| | - Zhenghua Liu
- Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| | - Haiyu Sun
- Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| | - Sihan Tong
- Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| | - Shengwei Guo
- Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| |
Collapse
|
14
|
Liu X, Du J, Ye Y, Liu Y, Wang S, Meng X, Song X, Liang Z, Yan W. Boosting selective C2H2/CH4, C2H4/CH4 and CO2/CH4 adsorption performance via 1,2,3-triazole functionalized triazine-based porous organic polymers. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.09.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
15
|
Lv D, Liu Z, Xu F, Wu H, Yuan W, Yan J, Xi H, Chen X, Xia Q. A Ni-based metal-organic framework with super-high C3H8 uptake for adsorptive separation of light alkanes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Xia Y, Di T, Meng Z, Zhu T, Lei Y, Chen S, Li T, Li L. Versatile One-Pot Construction Strategy for the Preparation of Porous Organic Polymers via Domino Polymerization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yunxia Xia
- College of Materials and Fujian Provincial Key Laboratory of Materials Genome, Xiamen University, Xiamen 361005, P. R. China
| | - Tuo Di
- College of Materials and Fujian Provincial Key Laboratory of Materials Genome, Xiamen University, Xiamen 361005, P. R. China
| | - Zhaohui Meng
- College of Materials and Fujian Provincial Key Laboratory of Materials Genome, Xiamen University, Xiamen 361005, P. R. China
| | - Tingting Zhu
- College of Materials and Fujian Provincial Key Laboratory of Materials Genome, Xiamen University, Xiamen 361005, P. R. China
| | - Yujie Lei
- College of Materials and Fujian Provincial Key Laboratory of Materials Genome, Xiamen University, Xiamen 361005, P. R. China
| | - Sheng Chen
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Tiesheng Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lei Li
- College of Materials and Fujian Provincial Key Laboratory of Materials Genome, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
17
|
Qian BB, Song PC, Nie HX, Zhang B, Zheng JY, Yu MH, Chang Z. Two porous Ni-MOFs based on 2,4,6-tris(pyridin-4-yl)-1,3,5-triazine showing solvent determined structures and distinctive sorption properties toward CO 2 and alkanes. Dalton Trans 2021; 50:5244-5250. [PMID: 33881082 DOI: 10.1039/d1dt00136a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By regulating the solvent used for synthesis, two porous Ni-MOFs, namely {[Ni3(BTC)2(TPT)2/3(H2O)4.08(MeOH)0.92]·2DMF·0.5H2O·0.5MeOH}n (1) and {[Ni3(BTC)2(TPT)2(H2O)6]·6DMF}n (2) (H3BTC = 1,3,5-benzenetricarboxylic acid, TPT = 2,4,6-tris(pyridin-4-yl)-1,3,5-triazine, DMF = N,N-dimethylformamide, and MeOH = methanol) were obtained. Compound 1 reveals a rigid 3D framework, while compound 2 shows a flexible 3-fold interpenetrated framework. Compound 1 exhibits a selective adsorption of CO2 due to the sieving effect of the rigid framework containing two types of cages with small apertures. Noteworthily, the flexible compound 2 displays an obviously guest-induced structural transformation. The desolvated compound 2 reveals a much higher capacity toward CO2 and n-C4H10 than those of N2 CH4, C2H6 and C3H8.
Collapse
Affiliation(s)
- Bin-Bin Qian
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Peng-Chao Song
- Yantai Engineering & Technology College, Yantai, 264006, China
| | - Hong-Xiang Nie
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Bo Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Jin-Yu Zheng
- State Key Laboratory of Catalytic Materials and Reaction Engineering, SINOPEC Research Institute of Petroleum Processing, Beijing 100083, China
| | - Mei-Hui Yu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Ze Chang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| |
Collapse
|
18
|
Bae J, Lee CY, Jeong NC. Weak Coordination Bond of Chloromethane: A Unique Way to Activate Metal Node Within an Unstable Metal–Organic Framework
DUT
‐34. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12268] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jinhee Bae
- Department of Emerging Materials Science, DGIST Daegu 42988 Korea
| | - Chang Yeon Lee
- Department of Energy and Chemical Engineering Incheon National University Incheon 22012 Korea
| | - Nak Cheon Jeong
- Department of Emerging Materials Science, DGIST Daegu 42988 Korea
| |
Collapse
|
19
|
Chen J, Jiang L, Li C, Fu W, Xia Q, Wang Y, Huang Y. Facile synthesis of highly porous hyper‐cross‐linked polymer for light hydrocarbon separation. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jinghu Chen
- Department of Environmental Science and Engineering University of Shanghai for Science and Technology Shanghai China
| | - Lingchang Jiang
- College of Biological, Chemical Science and Engineering Jiaxing University Jiaxing China
| | - Chengyun Li
- Department of Environmental Science and Engineering University of Shanghai for Science and Technology Shanghai China
| | - Wenying Fu
- Department of Environmental Science and Engineering University of Shanghai for Science and Technology Shanghai China
| | - Qineng Xia
- College of Biological, Chemical Science and Engineering Jiaxing University Jiaxing China
| | - Yangang Wang
- College of Biological, Chemical Science and Engineering Jiaxing University Jiaxing China
| | - Yuandong Huang
- Department of Environmental Science and Engineering University of Shanghai for Science and Technology Shanghai China
| |
Collapse
|
20
|
Kummali MM, Cole D, Gautam S. Effect of Pore Connectivity on the Behavior of Fluids Confined in Sub-Nanometer Pores: Ethane and CO 2 Confined in ZSM-22. MEMBRANES 2021; 11:membranes11020113. [PMID: 33562777 PMCID: PMC7915720 DOI: 10.3390/membranes11020113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 11/16/2022]
Abstract
The behavior of fluids under nano-confinement varies from that in bulk due to an interplay of several factors including pore connectivity. In this work, we use molecular dynamics simulations to study the behavior of two fluids—ethane and CO2 confined in ZSM-22, a zeolite with channel-like pores of diameter 0.55 nm isolated from each other. By comparing the behavior of the two fluids in ZSM-22 with that reported earlier in ZSM-5, a zeolite with pores of similar shape and size connected to each other via sinusoidal pores running perpendicular to them, we reveal the important role of pore connectivity. Further, by artificially imposing pore connectivity in ZSM-22 via inserting a 2-dimensional slab-like inter-crystalline space of thickness 0.5 nm, we also studied the effect of the dimensionality and geometry of pore connectivity. While the translational motion of both ethane and CO2 in ZSM-22 is suppressed as a result of connecting the pores by perpendicular quasi-one-dimensional pores of similar dimensions, the effect of connecting the pores by inserting the inter-crystalline space is different on the translational motion of the two fluids. For ethane, pores connected via inter-crystalline space facilitate translational motion but suppress rotational motion, whereas in the case of CO2, both types of motion are suppressed by pore connection due to the strong interaction of CO2 with the surface of the substrate.
Collapse
Affiliation(s)
| | - David Cole
- School of Earth Sciences, The Ohio State University, 125 South Oval Mall, Columbus, OH 43210, USA;
| | - Siddharth Gautam
- School of Earth Sciences, The Ohio State University, 125 South Oval Mall, Columbus, OH 43210, USA;
- Correspondence:
| |
Collapse
|
21
|
Zhang C, Gao X, Qin J, Guo Q, Zhou H, Jin W. Microporous polyimide VOC-rejective membrane for the separation of nitrogen/VOC mixture. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123817. [PMID: 33254806 DOI: 10.1016/j.jhazmat.2020.123817] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 06/12/2023]
Abstract
The treatment of VOCs (volatile organic compounds) in waste streams is very important. Herein, we propose to use a network microporous polyimide (PI) membrane for the molecular sieving of nitrogen over VOC molecules to control their emission. 2,6,14-triaminotriptycene (Trip) was reacted with aromatic dianhydride monomers, such as 3,3',4,4'-benzophenone tetracarboxylic dianhydride (BTDA), to synthesize ultramicroporous polyimides, which readily form composite membranes via solution coating. The properties of the PIs were characterized by X-ray photoelectron spectroscopy (XPS), Brunner-Emmet-Teller (BET) analysis, etc., which validated the formation of a network structure and ultramicroporosity in these polyimides. Therefore, the outstanding separation performance for the separation of nitrogen over VOCs, such as cyclohexane, by molecular sieving was obtained by using these membranes; a rejection higher than 99 % was realized with a permeability of approximately 2000∼2600 Barrer under a temperature of 25 °C and feed concentration of 30,000 ± 2000 ppm. Finally, the stability of the Trip-BTDA-PI membrane over time was studied.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road(S), Nanjing 211816, PR China
| | - Xue Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road(S), Nanjing 211816, PR China
| | - Jinchao Qin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road(S), Nanjing 211816, PR China
| | - Qingkai Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road(S), Nanjing 211816, PR China
| | - Haoli Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road(S), Nanjing 211816, PR China.
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road(S), Nanjing 211816, PR China
| |
Collapse
|
22
|
Narzary BB, Baker BC, Yadav N, D'Elia V, Faul CFJ. Crosslinked porous polyimides: structure, properties and applications. Polym Chem 2021. [DOI: 10.1039/d1py00997d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Porous polyimides (pPIs) represent a fascinating class of porous organic polymers (POPs). Here the properties and functions of amorphous and crystalline pPIs are reviewed, and applications contributing to solutions to global challenges highlighted.
Collapse
Affiliation(s)
| | | | - Neha Yadav
- School of Molecular Science and Engineering, VISTEC, Thailand
| | - Valerio D'Elia
- School of Molecular Science and Engineering, VISTEC, Thailand
| | | |
Collapse
|
23
|
Rajendran N, Husain A, Makhseed S. Probing the performance of imide linked micro-porous polymers for enhanced CO 2 gas adsorption applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj01885j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microporous polyimides were synthesized and utilized for CO2 gas adsorption.
Collapse
Affiliation(s)
- Narendran Rajendran
- Department of Chemistry, Faculty of Science, Kuwait University, P. O. Box 5969, 13060 Safat, Kuwait
| | - Ali Husain
- Department of Chemistry, Faculty of Science, Kuwait University, P. O. Box 5969, 13060 Safat, Kuwait
| | - Saad Makhseed
- Department of Chemistry, Faculty of Science, Kuwait University, P. O. Box 5969, 13060 Safat, Kuwait
| |
Collapse
|
24
|
Gautam S, Cole D. CO 2 Adsorption in Metal-Organic Framework Mg-MOF-74: Effects of Inter-Crystalline Space. NANOMATERIALS 2020; 10:nano10112274. [PMID: 33213010 PMCID: PMC7698540 DOI: 10.3390/nano10112274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 12/28/2022]
Abstract
Metal-Organic Frameworks (MOF) have been identified as highly efficient nanoporous adsorbents for CO2 storage. In particular, Mg-MOF-74 has been shown to promise exceptionally high CO2 sorption. Although several studies have reported adsorption isotherms of CO2 in Mg-MOF-74, the effect of inter-crystalline spacing in Mg-MOF-74 on the sorption of CO2 has not been addressed. These effects have been shown to be profound for a quadrupolar molecule like CO2 in the case of silicalite (Phys. Chem. Chem. Phys. 22 (2020) 13951). Here, we report the effects of inter-crystalline spacing on the adsorption of CO2 in Mg-MOF-74, studied using grand canonical Monte Carlo (GCMC) simulations. The inter-crystalline spacing is found to enhance adsorption at the crystallite surfaces. Larger inter-crystalline spacing up to twice the kinetic diameter of CO2 results in higher adsorption and larger crystallite sizes suppress adsorption. Magnitudes of the inter-crystalline space relative to the kinetic diameter of the adsorbed fluid and the surface to volume ratio of the adsorbent crystallites are found to be important factors determining the adsorption amounts. The results of this study suggest that the ideal Mg-MOF-74 sample for CO2 storage applications should have smaller crystallites separated from each other with an inter-crystalline space of approximately twice the kinetic diameter of CO2.
Collapse
|
25
|
Song N, Ma T, Wang T, Li Z, Yao H, Guan S. Microporous polyimides with high surface area and CO 2 selectivity fabricated from cross-linkable linear polyimides. J Colloid Interface Sci 2020; 573:328-335. [PMID: 32298926 DOI: 10.1016/j.jcis.2020.03.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 11/16/2022]
Abstract
Linear polyimides of intrinsic microporosity have been intensively investigated for gas separation due to their microporous structure and high surface area. The microporous structure in the linear polyimides of intrinsic microporosity comes from their contorted structure. Therefore, most linear polyimides without contorted structure do not have micropores. In this work, the microporous polyimides are constructed through the condensation of a cross-linkable dianhydride monomer with two novel nitrogen-rich diamine monomers and post crosslinking reaction. The linear polyimide precursors without contorted structure have the same main-chain structure. The introduction of crosslinked structure endow the crosslinked polyimides (PI-CLs) with microporous structure. The microporous structure in PI-CLs can be tuned by changing the substituents of the linear polyimide precursors. The PI-CLs have competitive CO2 uptake capacity (7.3-9.4 wt%) at 273 K and 1 bar. Particularly, the crosslinked polyimide containing trifluoromethyl groups (CF3-PI-CL) shows high CO2/N2 and CO2/CH4 selectivity (72 and 22) at 273 K, which are among the best results for reported porous materials. This work reveals that the introduction of crosslinked structure and changing substituents is an efficient method for constructing microporous polyimides with abundant micropores and excellent CO2 selective adsorption capacity. This method also has great potential for fabricating high-performance microporous polymers based on other linear polymers without rigid contorted structure.
Collapse
Affiliation(s)
- Ningning Song
- Key Laboratory of High Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Tengning Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Tianjiao Wang
- Key Laboratory of High Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zhenghua Li
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Hongyan Yao
- Key Laboratory of High Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Shaowei Guan
- Key Laboratory of High Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, PR China
| |
Collapse
|
26
|
Li G, Wang Z. Micro- and Ultramicroporous Polyaminals for Highly Efficient Adsorption/Separation of C 1-C 3 Hydrocarbons and CO 2 in Natural Gas. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24488-24497. [PMID: 32406666 DOI: 10.1021/acsami.0c04378] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This paper presents a series of micro- and ultramicroporous polyaminals with BET surface areas up to 1304 m2 g-1, which are prepared from two triazine-based tetraamines and three dialdehydes or monoaldehyde through the A4 + B2 or A4 + B1 aminalization reaction. It is interesting to find that the para-substituted monomers are favorable to force the linking struts apart in the network to generate micropores (1.22 nm), whereas the meta-substituted monomers make the pores in the network squeezed by the twisted linking struts, resulting in the formation of ultramicropores (0.52 nm). Besides, the adsorption behaviors of the major components of natural gas, such as propane (C3H8), ethane (C2H6), methane (CH4), and carbon dioxide (CO2), are significantly different, strongly depending on the polarizabilities, critical temperatures, molecular sizes of gases, porosity parameters of polymers, and the interaction between gases and the polymer skeleton. At 298 K/1 bar, the polymers show high uptake for C3H8 (114.5 cm3 g-1) and C2H6 (84.2 cm3 g-1). Moreover, the adsorption selectivities of C3H8/CH4, C2H6/CH4, C3H8/C2H6, C3H8/CO2, C2H6/CO2, and CO2/CH4 also reach 296.3, 23.1, 9.0, 22.1, 4.1, and 5.0, respectively, exhibiting promising applications in adsorption/separation of C1-C3 hydrocarbons and stripping CO2 gas from natural gas under the ambient condition.
Collapse
Affiliation(s)
- Gen Li
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhonggang Wang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
27
|
Zhang S, Taylor MK, Jiang L, Ren H, Zhu G. Light Hydrocarbon Separations Using Porous Organic Framework Materials. Chemistry 2020; 26:3205-3221. [DOI: 10.1002/chem.201904455] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/29/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Shuhao Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University Changchun 130012 P. R. China
| | - Mercedes K. Taylor
- Center for Integrated NanotechnologiesSandia National Laboratories Albuquerque, New Mexico 87185 USA
| | - Lingchang Jiang
- College of Biological, Chemical Science and EngineeringJiaxing University Jiaxing Zhejiang 314001 P. R. China
| | - Hao Ren
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University Changchun 130012 P. R. China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate Science of the Ministry of EducationFaculty of ChemistryNortheast Normal University Changchun 130024 P. R. China
| |
Collapse
|
28
|
Wen W, Shuttleworth PS, Yue H, Fernández-Blázquez JP, Guo J. Exceptionally Stable Microporous Organic Frameworks with Rigid Building Units for Efficient Small Gas Adsorption and Separation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7548-7556. [PMID: 31967780 DOI: 10.1021/acsami.9b20771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Three microporous organic frameworks (hereafter denoted as MPOF-Ads) based on a rigid adamantane core have been successfully synthesized via Sonogashira-Hagihara polycondensation coupling in high yields, 83.7-94.6%. The obtained amorphous MPOF-Ads networks have high Brunauer-Emmett-Teller surface areas (up to 737.3 m2 g-1), narrow pore size distribution (0.95-1.06 nm), and superior thermal (the initial decomposition temperature T5% under an N2 atmosphere can reach 410 °C) and chemical stability (no apparent degradation in common organic solvents or strong acid/base solutions after 7 days). At 273 K and 1.0 bar, these MPOF-Ads networks present good uptake capacities for small gas molecules (13.9 wt % CO2 and 1.66 wt % CH4) for which the presence of high surface area, predominant microporosity, and narrow pore size distribution are beneficial. In addition, the as-prepared MPOF-Ads networks possess moderate isosteric heats for CO2 (Qst = 19.5-30.3 kJ mol-1) and show desired CO2/N2 and CO2/CH4 selectivity (36.3-38.4 and 4.1-4.3 based on Henry's law and 17.88-24.92 and 4.24-5.70 based on ideal adsorbed solution theory, respectively). With the demonstrated properties, the synthesized MPOF-Ads networks display potential for small gas storage and separation that can be used in harsh environments because of their superior physical and chemical stability.
Collapse
Affiliation(s)
- Weiqiu Wen
- School of Chemical Engineering & Light Industry , Guangdong University of Technology , Guangzhou 510006 , China
| | - Peter S Shuttleworth
- Department of Polymer Physics, Elastomers and Energy , Institute of Polymer Science and Technology, CSIC , 28006 Madrid , Spain
| | - Hangbo Yue
- School of Chemical Engineering & Light Industry , Guangdong University of Technology , Guangzhou 510006 , China
| | | | - Jianwei Guo
- School of Chemical Engineering & Light Industry , Guangdong University of Technology , Guangzhou 510006 , China
| |
Collapse
|
29
|
Wang T, Yao H, Song N, Yang Y, Shi K, Guan S. Construction of Microporous Polyimides with Tunable Pore Size and High CO2 Selectivity Based on Cross-Linkable Linear Polyimides. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06141] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tianjiao Wang
- Key Laboratory of High Performance Plastics, Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hongyan Yao
- Key Laboratory of High Performance Plastics, Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ningning Song
- Key Laboratory of High Performance Plastics, Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yanchao Yang
- Key Laboratory of High Performance Plastics, Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Kaixiang Shi
- Key Laboratory of High Performance Plastics, Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shaowei Guan
- Key Laboratory of High Performance Plastics, Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
30
|
Zhang S, Li X, Gong W, Sun T, Wang Z, Ning G. Pillar[5]arene-Derived Microporous Polyaminal Networks with Enhanced Uptake Performance for CO2 and Iodine. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05871] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shiyue Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xiaohan Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Weitao Gong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, Dalian, Liaoning Province 116024, P. R. China
| | - Tianjun Sun
- Dalian National Laboratory for Clean Energy, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Marine Engineering College of Dalian Maritime University, Dalian 116023, P. R. China
| | - Zhonggang Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guiling Ning
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, Dalian, Liaoning Province 116024, P. R. China
| |
Collapse
|
31
|
Shi K, Yao H, Zhang S, Wei Y, Xu W, Song N, Zhu S, Tian Y, Zou Y, Guan S. Porous Structure, Carbon Dioxide Capture, and Separation in Cross-Linked Porphyrin-Based Polyimides Networks. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02589] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kaixiang Shi
- Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Jilin University, Qianjin Street 2699, Changchun 130012, People’s Republic of China
| | - Hongyan Yao
- Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Jilin University, Qianjin Street 2699, Changchun 130012, People’s Republic of China
| | - Shuai Zhang
- Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Jilin University, Qianjin Street 2699, Changchun 130012, People’s Republic of China
| | - Yanfeng Wei
- DWI - Leibniz-Institut für Interaktive Materialien e.V, Forckenbeckstraße 50, D-52056 Aachen, Germany
| | - Wenhan Xu
- Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Jilin University, Qianjin Street 2699, Changchun 130012, People’s Republic of China
| | - Ningning Song
- Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Jilin University, Qianjin Street 2699, Changchun 130012, People’s Republic of China
| | - Shiyang Zhu
- Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Jilin University, Qianjin Street 2699, Changchun 130012, People’s Republic of China
| | - Ye Tian
- Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Jilin University, Qianjin Street 2699, Changchun 130012, People’s Republic of China
| | - Yongcun Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Shaowei Guan
- Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Jilin University, Qianjin Street 2699, Changchun 130012, People’s Republic of China
| |
Collapse
|
32
|
Kong X, Li S, Strømme M, Xu C. Synthesis of Porous Organic Polymers with Tunable Amine Loadings for CO 2 Capture: Balanced Physisorption and Chemisorption. NANOMATERIALS 2019; 9:nano9071020. [PMID: 31319470 PMCID: PMC6669882 DOI: 10.3390/nano9071020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 11/18/2022]
Abstract
The cross-coupling reaction of 1,3,5-triethynylbenzene with terephthaloyl chloride gives a novel ynone-linked porous organic polymer. Tethering alkyl amine species on the polymer induces chemisorption of CO2 as revealed by the studies of ex situ infrared spectroscopy. By tuning the amine loading content on the polymer, relatively high CO2 adsorption capacities, high CO2-over-N2 selectivity, and moderate isosteric heat (Qst) of adsorption of CO2 can be achieved. Such amine-modified polymers with balanced physisorption and chemisorption of CO2 are ideal sorbents for post-combustion capture of CO2 offering both high separation and high energy efficiencies.
Collapse
Affiliation(s)
- Xueying Kong
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211800, China
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, SE-75121 Uppsala, Sweden
| | - Shangsiying Li
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211800, China
| | - Maria Strømme
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, SE-75121 Uppsala, Sweden
| | - Chao Xu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211800, China.
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, SE-75121 Uppsala, Sweden.
| |
Collapse
|
33
|
|
34
|
Zhang B, Yan J, Li G, Wang Z. Cost-effective preparation of microporous polymers from formamide derivatives and adsorption of CO2 under dry and humid conditions. Polym Chem 2019. [DOI: 10.1039/c9py00465c] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nitrogen-rich microporous polymers are prepared via a catalyst-free polymerization reaction using formamide derivatives as monomers, which exhibit outstandingly high CO2/N2 selectivity up to 151 and 173 at 273 K under dry and humid conditions, respectively.
Collapse
Affiliation(s)
- Biao Zhang
- Department of Polymer Science and Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian
- China
| | - Jun Yan
- Department of Polymer Science and Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian
- China
| | - Gen Li
- Department of Polymer Science and Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian
- China
| | - Zhonggang Wang
- Department of Polymer Science and Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian
- China
| |
Collapse
|
35
|
Song N, Wang T, Yao H, Ma T, Shi K, Tian Y, Zou Y, Zhu S, Zhang Y, Guan S. Construction and carbon dioxide capture of microporous polymer networks with high surface area based on cross-linkable linear polyimides. Polym Chem 2019. [DOI: 10.1039/c9py00100j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microporous polyimide networks with high surface area and excellent CO2 adsorption performance have been constructed based on cross-linkable linear polyimides through crosslinking reaction.
Collapse
|
36
|
Zhou H, Jin W. Membranes with Intrinsic Micro-Porosity: Structure, Solubility, and Applications. MEMBRANES 2018; 9:E3. [PMID: 30587806 PMCID: PMC6359670 DOI: 10.3390/membranes9010003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 11/28/2022]
Abstract
Microporous polymer membranes have been widely studied because of their excellent separation performance. Among them, polymers of intrinsic micro-porosity (PIMs) have been regarded as a potential next-generation membrane material for their ultra-permeable characteristics and their solution-processing ability. Therefore, many reviews have been reported on gas separation and monomers for the preparation of PIMs. This review aims to provide an overview of the structure-solubility property. Different structures such as non-network and network macromolecular structure made of different monomers have been reviewed. Then their solubility with different structures and different separation applications such as nanofiltration, pervaporation, and gas/vapor separation are summarized. Lastly, we also provide our perspectives on the challenges and future directions of the microporous polymer membrane for the structure-property relationship, anti-physical aging, and more.
Collapse
Affiliation(s)
- Haoli Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, China.
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, China.
| |
Collapse
|