1
|
Lee J, Park JI, Lee SH, Jang J, Kang IM, Park J, Zhang X, Kim DK, Bae JH. One-Stop Strategy for Obtaining Controllable Sensitivity and Feasible Self-Patterning in Silver Nanowires/Elastomer Nanocomposite-Based Stretchable Ultrathin Strain Sensors. Biomacromolecules 2023; 24:3775-3785. [PMID: 37405812 DOI: 10.1021/acs.biomac.3c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
In this study, selective photo-oxidation (SPO) is proposed as a simple, fast, and scalable one-stop strategy that enables simultaneous self-patterning and sensitivity adjustment of ultrathin stretchable strain sensors. The SPO of an elastic substrate through irradiation time-controlled ultraviolet treatment in a confined region enables precise tuning of both the surface energy and the elastic modulus. SPO induces the hydrophilization of the substrate, thereby allowing the self-patterning of silver nanowires (AgNWs). In addition, it promotes the formation of nonpermanent microcracks of AgNWs/elastomer nanocomposites under the action of strain by increasing the elastic modulus. This effect improves sensor sensitivity by suppressing the charge transport pathway. Consequently, AgNWs are directly patterned with a width of 100 μm or less on the elastic substrate, and AgNWs/elastomer-based ultrathin and stretchable strain sensors with controlled sensitivity work reliably in various operating frequencies and cyclic stretching. Sensitivity-controlled strain sensors successfully detect both small and large movements of the human hand.
Collapse
Affiliation(s)
- Jinuk Lee
- School of Electronic and Electrical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jun-Ik Park
- Semiconductor Integrated Metrology Team, Advanced Instrumentation Institute, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Daejeon 34113, Republic of Korea
| | - Sin-Hyung Lee
- School of Electronic and Electrical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jaewon Jang
- School of Electronic and Electrical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - In-Man Kang
- School of Electronic and Electrical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jaehoon Park
- Department of Electronic Engineering, Hallym University, Chuncheon 24252, Republic of Korea
| | - Xue Zhang
- College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Do-Kyung Kim
- School of Electronic and Electrical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jin-Hyuk Bae
- School of Electronic and Electrical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| |
Collapse
|
2
|
Ji H, Zhang S, Liu K, Wu T, Li S, Shen H, Xu M. Flexoelectric enhanced film for an ultrahigh tunable piezoelectric-like effect. MATERIALS HORIZONS 2022; 9:2976-2983. [PMID: 36164849 DOI: 10.1039/d2mh01089e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recent advancements in electromechanical coupling effects enable electromechanical materials in soft and stretchable formats, offering unique opportunities for biomimetic applications. However, high electromechanical performance and mechanical elasticity hardly coexist in soft materials. Flexoelectricity, an electromechanical coupling between strain gradient and electric polarization, possesses great potential of strain gradient engineering and material design in soft elastomeric materials. In this work, we report a flexoelectric enhanced elastomer-based film (FEEF) with both high electromechanical capability and stretchability. The integrated strategies with biaxial pre-stretch, crosslinking density of the elastomer along with nanoparticle size, particle filling ratio and electric field charging lead to an enhanced flexoelectricity by two orders of magnitude. Furthermore, this FEEF reveals an ultrahigh electromechanical performance by flexoelectric enhancement with its mechanical design. As a representative demonstration, an ultrahigh piezoelectric-like sensing array is fabricated for multifunctional sensing applications in strain, force and vibration, verifying an equivalent piezoelectric coefficient d33 value as high as 1.42 × 104 pC N-1, and an average d33 value of 4.23 × 103 pC N-1 at a large-scale deformation range. This proposed ultra-high piezoelectric-like effect with its approach is anticipated to provide a possibility for highly tunable piezoelectric-like effect by enhanced flexoelectricity and mechanical design in elastomeric materials.
Collapse
Affiliation(s)
- Hui Ji
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shuwen Zhang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Kaiyuan Liu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Tonghui Wu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shuaijun Li
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hao Shen
- Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Minglong Xu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
3
|
Uzabakiriho PC, Wang M, Ma C, Zhao G. Stretchable, breathable, and highly sensitive capacitive and self-powered electronic skin based on core-shell nanofibers. NANOSCALE 2022; 14:6600-6611. [PMID: 35421886 DOI: 10.1039/d2nr00444e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fiber-based nanostructures are greatly desired for the improvement of wearable/flexible electronics, which are expected to be stretchable, conformable, flexible, and long-term. Herein, an ultra-stretchable, breathable, and highly sensitive flexible capacitive tactile sensor and triboelectric effect core-shell nanofibers are proposed. In particular, core-shell ionic TPU/PVDF-HFP nanofibers are effectively prepared by an electrospinning approach. The core-shell ionic TPU/PVDF-HFP nanofibers exhibit high performance as a capacitive flexible sensor with high sensitivity (0.718 kPa-1) in a low linear pressure range (0-1.2 kPa), an ultralow detection limit (7 Pa), a rapid response and recovery time, and excellent stability. Moreover, we assembled a self-powered pressure sensor, which has a sensitivity of 0.071 V kPa-1 in the high linear pressure range of 90 kPa to 400 kPa. The increase in the inductive charges of the nanofiber layer allows it to work as an energy harvester with a high power density (1.6 W m-2) that can light up 100 LEDs instantly. These remarkable results allow the capacitive flexible devices to be applied in various applications, such as spatial pressure mapping, bending angle detection, soft grabbing, and physiological signal monitoring.
Collapse
Affiliation(s)
- Pierre Claver Uzabakiriho
- Department of Electronic Science and Technology, University of Science and Technology of China, Road JinZhai 96, Hefei 230027, P. R. China.
| | - Meng Wang
- Department of Electronic Science and Technology, University of Science and Technology of China, Road JinZhai 96, Hefei 230027, P. R. China.
| | - Chao Ma
- Department of Electronic Science and Technology, University of Science and Technology of China, Road JinZhai 96, Hefei 230027, P. R. China.
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Road JinZhai 96, Hefei 230027, P. R. China.
| |
Collapse
|
4
|
Flexible and Transparent Polymer-Based Optical Humidity Sensor. SENSORS 2021; 21:s21113674. [PMID: 34070545 PMCID: PMC8198816 DOI: 10.3390/s21113674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022]
Abstract
Thin spin-coated polymer films of amphiphilic copolymer obtained by partial acetalization of poly (vinyl alcohol) are used as humidity-sensitive media. They are deposited on polymer substrate (PET) in order to obtain a flexible humidity sensor. Pre-metallization of substrate is implemented for increasing the optical contrast of the sensor, thus improving the sensitivity. The morphology of the sensors is studied by surface profiling, while the transparency of the sensor is controlled by transmittance measurements. The sensing behavior is evaluated through monitoring of transmittance values at different levels of relative humidity gradually changing in the range 5-95% and the influence of up to 1000 bending deformations is estimated by determining the hysteresis and sensitivity of the flexible sensor after each set of deformations. The successful development of a flexible sensor for optical monitoring of humidity in a wide humidity range is demonstrated and discussed.
Collapse
|
5
|
Invisible Silver Nanomesh Skin Electrode via Mechanical Press Welding. NANOMATERIALS 2020; 10:nano10040633. [PMID: 32231110 PMCID: PMC7222014 DOI: 10.3390/nano10040633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 12/28/2022]
Abstract
Silver nanowire (AgNW) has been studied as an important material for next-generation wearable devices due to its high flexibility, high electrical conductivity and high optical transmittance. However, the inherently high surface roughness of AgNWs and low adhesion to the substrate still need to be resolved for various device applications. In this study, an embedded two-dimensional (2D) Ag nanomesh was fabricated by mechanical press welding of AgNW networks with a three-dimensional (3D) fabric shape into a nanomesh shape, and by embedding the Ag nanomesh in a flexible substrate. The effect of the embedded AgNWs on the physical and electrical properties of a flexible transparent electrode was investigated. By forming embedded nanomesh-type AgNWs from AgNW networks, improvements in physical and electrical properties, such as a 43% decrease in haziness, 63% decrease in sheet resistance, and 26% increase in flexibility, as well as improved adhesion to the substrate and low surface roughness, were observed.
Collapse
|
6
|
Chen S, Sun L, Zhou X, Guo Y, Song J, Qian S, Liu Z, Guan Q, Meade Jeffries E, Liu W, Wang Y, He C, You Z. Mechanically and biologically skin-like elastomers for bio-integrated electronics. Nat Commun 2020; 11:1107. [PMID: 32107380 PMCID: PMC7046662 DOI: 10.1038/s41467-020-14446-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/30/2019] [Indexed: 01/02/2023] Open
Abstract
The bio-integrated electronics industry is booming and becoming more integrated with biological tissues. To successfully integrate with the soft tissues of the body (eg. skin), the material must possess many of the same properties including compliance, toughness, elasticity, and tear resistance. In this work, we prepare mechanically and biologically skin-like materials (PSeD-U elastomers) by designing a unique physical and covalent hybrid crosslinking structure. The introduction of an optimal amount of hydrogen bonds significantly strengthens the resultant elastomers with 11 times the toughness and 3 times the strength of covalent crosslinked PSeD elastomers, while maintaining a low modulus. Besides, the PSeD-U elastomers show nonlinear mechanical behavior similar to skins. Furthermore, PSeD-U elastomers demonstrate the cytocompatibility and biodegradability to achieve better integration with tissues. Finally, piezocapacitive pressure sensors are fabricated with high pressure sensitivity and rapid response to demonstrate the potential use of PSeD-U elastomers in bio-integrated electronics.
Collapse
Affiliation(s)
- Shuo Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Lijie Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Xiaojun Zhou
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Yifan Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Jianchun Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Sihao Qian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Zenghe Liu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Qingbao Guan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | | | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, PR China
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Chuanglong He
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China.
| |
Collapse
|
7
|
Song D, Li X, Li XP, Jia X, Min P, Yu ZZ. Hollow-structured MXene-PDMS composites as flexible, wearable and highly bendable sensors with wide working range. J Colloid Interface Sci 2019; 555:751-758. [PMID: 31419625 DOI: 10.1016/j.jcis.2019.08.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 11/27/2022]
Abstract
Although versatile piezoresistive pressure sensors show a great potential as human motion detection and wearable smart devices, it is still an issue to widen their working range and enhance their sensitivity. Herein, hollow-structured MXene-polydimethylsiloxane composites (MPCs) are fabricated by utilizing nickel foam as the three-dimensional substrate for dip-coating of MXene sheets followed by infiltrating of polydimethylsiloxane and etching of the nickel foam substrate. The resultant MPC performs a wide working range with bending angles of 0° to 180°, an excellent long-term reliability up to 1000 cycles under the bending angles of 15°, 30° and 150°, and a stable durability with a bending angle of 30° in a frequency range from 0.05 to 2 Hz as a bendable piezoresistive pressure sensor, which is attributed to the formation of dense conduction paths due to the interconnection of MXene sheets during the deformation of MPC. The sensor also exhibits an extremely low detection limit of 10 mg for pressure detection. Interestingly, the slippage of adjacent MXene sheets is beneficial for monitoring slight vibration of equipments and detecting subtle human motions. Thus, the MPC sensor could be applied for stereo sound and ultrasonic vibration monitoring, swallowing, facial muscle movement, and various intense motion detections, demonstrating its great potential as wearable smart devices.
Collapse
Affiliation(s)
- Dekui Song
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China; State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaofeng Li
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiao-Peng Li
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xueqin Jia
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peng Min
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhong-Zhen Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
8
|
Bae CW, Toi PT, Kim BY, Lee WI, Lee HB, Hanif A, Lee EH, Lee NE. Fully Stretchable Capillary Microfluidics-Integrated Nanoporous Gold Electrochemical Sensor for Wearable Continuous Glucose Monitoring. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14567-14575. [PMID: 30942999 DOI: 10.1021/acsami.9b00848] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Biosensor systems for wearable continuous monitoring are desired to be developed into conformal patch platforms. However, developing such patches is very challenging owing to the difficulty of imparting materials and components with both high stretchability and high performance. Herein, we report a fully stretchable microfluidics-integrated glucose sensor patch comprised of an omnidirectionally stretchable nanoporous gold (NPG) electrochemical biosensor and a stretchable passive microfluidic device. A highly electrocatalytic NPG electrode was formed on a stress-absorbing 3D micropatterned polydimethylsiloxane (PDMS) substrate to confer mechanical stretchability, high sensitivity, and durability in non-enzymatic glucose detection. A thin, stretchable, and tough microfluidic device was made by embedding stretchable cotton fabric as a capillary into a thin polyurethane nanofiber-reinforced PDMS channel, enabling collection and passive, accurate delivery of sweat from skin to the electrode surface, with excellent replacement capability. The integrated glucose sensor patch demonstrated excellent ability to continuously and accurately monitor the sweat glucose level.
Collapse
|
9
|
Abstract
Flexible sensors have the potential to be seamlessly applied to soft and irregularly shaped surfaces such as the human skin or textile fabrics. This benefits conformability dependant applications including smart tattoos, artificial skins and soft robotics. Consequently, materials and structures for innovative flexible sensors, as well as their integration into systems, continue to be in the spotlight of research. This review outlines the current state of flexible sensor technologies and the impact of material developments on this field. Special attention is given to strain, temperature, chemical, light and electropotential sensors, as well as their respective applications.
Collapse
|
10
|
Morales-Narváez E, Merkoçi A. Graphene Oxide as an Optical Biosensing Platform: A Progress Report. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805043. [PMID: 30549101 DOI: 10.1002/adma.201805043] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/22/2018] [Indexed: 05/27/2023]
Abstract
A few years ago, crucial graphene oxide (GO) features such as the carbon/oxygen ratio, number of layers, and lateral size were scarcely investigated and, thus, their impact on the overall optical biosensing performance was almost unknown. Nowadays valuable insights about these features are well documented in the literature, whereas others remain controversial. Moreover, most of the biosensing systems based on GO were amenable to operating as colloidal suspensions. Currently, the literature reports conceptually new approaches obviating the need of GO colloidal suspensions, enabling the integration of GO onto a solid phase and leading to their application in new biosensing devices. Furthermore, most GO-based biosensing devices exploit photoluminescent signals. However, further progress is also achieved in powerful label-free optical techniques exploiting GO in biosensing, particularly using optical fibers, surface plasmon resonance, and surface enhanced Raman scattering. Herein, a critical overview on these topics is offered, highlighting the key role of the physicochemical properties of GO. New challenges and opportunities in this exciting field are also highlighted.
Collapse
Affiliation(s)
- Eden Morales-Narváez
- Biophotonic Nanosensors Laboratory, Centro de Investigaciones en Óptica, A. C., Loma del Bosque 115, Lomas del Campestre, León, Guanajuato, 37150, México
| | - Arben Merkoçi
- Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| |
Collapse
|
11
|
Ray TR, Choi J, Bandodkar AJ, Krishnan S, Gutruf P, Tian L, Ghaffari R, Rogers JA. Bio-Integrated Wearable Systems: A Comprehensive Review. Chem Rev 2019; 119:5461-5533. [PMID: 30689360 DOI: 10.1021/acs.chemrev.8b00573] [Citation(s) in RCA: 444] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bio-integrated wearable systems can measure a broad range of biophysical, biochemical, and environmental signals to provide critical insights into overall health status and to quantify human performance. Recent advances in material science, chemical analysis techniques, device designs, and assembly methods form the foundations for a uniquely differentiated type of wearable technology, characterized by noninvasive, intimate integration with the soft, curved, time-dynamic surfaces of the body. This review summarizes the latest advances in this emerging field of "bio-integrated" technologies in a comprehensive manner that connects fundamental developments in chemistry, material science, and engineering with sensing technologies that have the potential for widespread deployment and societal benefit in human health care. An introduction to the chemistries and materials for the active components of these systems contextualizes essential design considerations for sensors and associated platforms that appear in following sections. The subsequent content highlights the most advanced biosensors, classified according to their ability to capture biophysical, biochemical, and environmental information. Additional sections feature schemes for electrically powering these sensors and strategies for achieving fully integrated, wireless systems. The review concludes with an overview of key remaining challenges and a summary of opportunities where advances in materials chemistry will be critically important for continued progress.
Collapse
Affiliation(s)
- Tyler R Ray
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Jungil Choi
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Amay J Bandodkar
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Siddharth Krishnan
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Philipp Gutruf
- Department of Biomedical Engineering University of Arizona Tucson , Arizona 85721 , United States
| | - Limei Tian
- Department of Biomedical Engineering , Texas A&M University , College Station , Texas 77843 , United States
| | - Roozbeh Ghaffari
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - John A Rogers
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| |
Collapse
|
12
|
Jiang Y, Liu Z, Wang C, Chen X. Heterogeneous Strain Distribution of Elastomer Substrates To Enhance the Sensitivity of Stretchable Strain Sensors. Acc Chem Res 2019; 52:82-90. [PMID: 30586278 DOI: 10.1021/acs.accounts.8b00499] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Stretchable strain sensors, which convert mechanical stimuli into electrical signals, largely fuel the growth of wearable bioelectronics due to the ubiquitous, health-related strain in biological systems. In contrast to rigid conventional strain sensors, stretchable strain sensors present advantages of conformality and stretchability, solving the mechanical mismatch between electronics and the human body. However, the great challenge of stretchable strain sensors lies in achieving high sensitivity, which is required for both signal fidelity and cost considerations. Recent advances to solve this sensitivity challenge have focused on material optimization, in search of the optimum combination of conductive active materials and elastomer substrates among a myriad of artificial or natural materials. However, high sensitivity with a gauge factor larger than 50 remains a grand challenge, especially within large-strain regions. Here we present heterogeneous strain distribution of elastomer substrates as a powerful strategy to significantly enhance the sensitivity of stretchable strain sensors. The theoretical foundation of this strategy is mathematically proven on the basis of Ohm's law in electrics and mechanics of materials. First, the extent of the sensitivity enhancement is proved to be determined by the local strain in resistance-testing segments of heterogeneous strain sensors. Next, the local strain is proved to be quantitatively decided by material properties such as section area and Young's modulus. Thus, the necessary and sufficient condition to achieve high sensitivity in heterogeneous strain sensors is that the Young's modulus reciprocal or section area reciprocal in the resistance-testing segment is larger than the mean value. This provides a theoretical design guideline to achieve high sensitivity via heterogeneous strain distribution. On the basis of this guideline, we systematically summarize concrete instances of heterogeneity-induced sensitivity improvement in stretchable strain sensors, in sequence of increasing dimensionality. A typical example of a one-dimensional heterogeneous strain sensor is a structured fiber with microbeads, where the varied section area along the fiber axis results in heterogeneous strain and sensitivity improvement. Two-dimensional heterogeneous sensors in the form of thin films contain thickness gradient sensors and auxetic mechanical metamaterial sensors. The former exhibit heterogeneous section area via the self-pinning method, while the latter show heterogeneity in both the strain direction and amplitude, leading to a 24-fold improvement in sensitivity. Three-dimensional strain sensors include rationally structured sensors for out-of-plane force detection and asymmetric active materials in electronic whiskers. The resultant enhanced sensitivity in these heterogeneous strain sensors is beneficial for applications such as continuous health monitoring, biomedical diagnostics, and replacement prosthetics, taking advantage of augmented detection accuracy and declined device cost. Finally, we discuss possible future work in exploiting heterogeneous strain distributions, involving extended methodology to achieve heterogeneity, employing suppressed strain for stretchable electrodes, cyclic durability for long-term applications, and multifunctional system-level integration. We believe that this strategy of using heterogeneous strain distribution to enhance sensitivity can strongly promote the development of stretchable strain sensors for both practical and theoretical requirements.
Collapse
Affiliation(s)
- Ying Jiang
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Zhiyuan Liu
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Changxian Wang
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|