1
|
Zhong Z, Wang X, Tan B. Porous Organic Polymers for CO 2 Capture and Catalytic Conversion. Chemistry 2024:e202404089. [PMID: 39715715 DOI: 10.1002/chem.202404089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
Overuse of fossil fuels and anthropogenic activities have led to excessive emissions of carbon dioxide, leading to global warming, and measures to reduce atmospheric carbon dioxide concentrations are needed to overcome this global challenge. Therefore, exploring an environmentally friendly strategy for capturing airborne CO2 and converting it into high-value-added chemicals offers a promising pathway toward "carbon neutrality". In recent years, porous organic polymers have attracted much attention for carbon capture and the catalytic conversion of carbon dioxide because of their high specific surface area, high chemical stability, nanoscale porosity, and structural versatility, which make them easy to functionalize. In this review, we introduce the preparation methods for various POPs, the types of POPs adsorbed during carbon dioxide capture, and the progress in the use of POPs for the photocatalytic and chemicatalytic conversion of carbon dioxide, with a special discussion on the influence of adsorption type on the efficiency of catalytic conversion. Finally, we propose a prospective direction for the subsequent development of this field.
Collapse
Affiliation(s)
- Zicheng Zhong
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037#, Hongshan District, Wuhan, 430074, P. R. China
| | - Xiaoyan Wang
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037#, Hongshan District, Wuhan, 430074, P. R. China
| | - Bien Tan
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037#, Hongshan District, Wuhan, 430074, P. R. China
| |
Collapse
|
2
|
Mondal T, Seth J, Islam MS, Dahlous KA, Islam SM. Incorporation of CO2 in efficient oxazolidinone synthesis at mild condition by covalent triazine framework designed with Ag nanoparticles. J SOLID STATE CHEM 2024; 338:124819. [DOI: 10.1016/j.jssc.2024.124819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
|
3
|
Yang Q, Liu H, Lin Y, Su D, Tang Y, Chen L. Atomically Dispersed Metal Catalysts for the Conversion of CO 2 into High-Value C 2+ Chemicals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310912. [PMID: 38762777 DOI: 10.1002/adma.202310912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/12/2024] [Indexed: 05/20/2024]
Abstract
The conversion of carbon dioxide (CO2) into value-added chemicals with two or more carbons (C2+) is a promising strategy that cannot only mitigate anthropogenic CO2 emissions but also reduce the excessive dependence on fossil feedstocks. In recent years, atomically dispersed metal catalysts (ADCs), including single-atom catalysts (SACs), dual-atom catalysts (DACs), and single-cluster catalysts (SCCs), emerged as attractive candidates for CO2 fixation reactions due to their unique properties, such as the maximum utilization of active sites, tunable electronic structure, the efficient elucidation of catalytic mechanism, etc. This review provides an overview of significant progress in the synthesis and characterization of ADCs utilized in photocatalytic, electrocatalytic, and thermocatalytic conversion of CO2 toward high-value C2+ compounds. To provide insights for designing efficient ADCs toward the C2+ chemical synthesis originating from CO2, the key factors that influence the catalytic activity and selectivity are highlighted. Finally, the relevant challenges and opportunities are discussed to inspire new ideas for the generation of CO2-based C2+ products over ADCs.
Collapse
Affiliation(s)
- Qihao Yang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hao Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Desheng Su
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Yulong Tang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Qi G, Ba D, Zhang Y, Jiang X, Chen Z, Yang M, Cao J, Dong W, Zhao J, Li D, Zhang Q. Constructing an Asymmetric Covalent Triazine Framework to Boost the Efficiency and Selectivity of Visible-Light-Driven CO 2 Photoreduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402645. [PMID: 38738739 PMCID: PMC11267385 DOI: 10.1002/advs.202402645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/06/2024] [Indexed: 05/14/2024]
Abstract
The photocatalytic reduction of CO2 represents an environmentally friendly and sustainable approach for generating valuable chemicals. In this study, a thiophene-modified highly conjugated asymmetric covalent triazine framework (As-CTF-S) is developed for this purpose. Significantly, single-component intramolecular energy transfer can enhance the photogenerated charge separation, leading to the efficient conversion of CO2 to CO during photocatalysis. As a result, without the need for additional photosensitizers or organic sacrificial agents, As-CTF-S demonstrates the highest photocatalytic ability of 353.2 µmol g-1 and achieves a selectivity of ≈99.95% within a 4 h period under visible light irradiation. This study provides molecular insights into the rational control of charge transfer pathways for high-efficiency CO2 photoreduction using single-component organic semiconductor catalysts.
Collapse
Affiliation(s)
- Guang‐Dong Qi
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichangHubei443002P. R. China
- Hubei Three Gorges LaboratoryYichangHubei443007P. R. China
| | - Dan Ba
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichangHubei443002P. R. China
- Hubei Three Gorges LaboratoryYichangHubei443007P. R. China
| | - Yu‐Jie Zhang
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichangHubei443002P. R. China
- Hubei Three Gorges LaboratoryYichangHubei443007P. R. China
| | - Xue‐Qing Jiang
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichangHubei443002P. R. China
- Hubei Three Gorges LaboratoryYichangHubei443007P. R. China
| | - Zihao Chen
- Department of Materials Science and EngineeringDepartment of ChemistryCenter of Super‐Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean EnergyCity University of Hong KongHong KongSAR999077P. R. China
| | - Miao‐Miao Yang
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichangHubei443002P. R. China
- Hubei Three Gorges LaboratoryYichangHubei443007P. R. China
| | - Jia‐Min Cao
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichangHubei443002P. R. China
- Hubei Three Gorges LaboratoryYichangHubei443007P. R. China
| | - Wen‐Wen Dong
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichangHubei443002P. R. China
- Hubei Three Gorges LaboratoryYichangHubei443007P. R. China
| | - Jun Zhao
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichangHubei443002P. R. China
- Hubei Three Gorges LaboratoryYichangHubei443007P. R. China
| | - Dong‐Sheng Li
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichangHubei443002P. R. China
- Hubei Three Gorges LaboratoryYichangHubei443007P. R. China
| | - Qichun Zhang
- Department of Materials Science and EngineeringDepartment of ChemistryCenter of Super‐Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean EnergyCity University of Hong KongHong KongSAR999077P. R. China
| |
Collapse
|
5
|
Singh G, Duhan N, Dhilip Kumar TJ, Nagaraja CM. Pyrene-Based Nanoporous Covalent Organic Framework for Carboxylation of C-H Bonds with CO 2 and Value-Added 2-Oxazolidinones Synthesis under Ambient Conditions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5857-5868. [PMID: 38259199 DOI: 10.1021/acsami.3c16690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The selective carbon capture and utilization (CCU) as a one-carbon (C1) feedstock offers dual advantages for mitigating the rising atmospheric CO2 content and producing fine chemicals/fuels. In this context, herein, we report the application of a porous bipyridine-functionalized, pyrene-based covalent organic framework (Pybpy-COF) for the stable anchoring of catalytic Ag(0) nanoparticles (NPs) and its catalytic investigation for fixation of CO2 to commodity chemicals at ambient conditions. Notably, Ag@Pybpy-COF showed excellent catalytic activity for the carboxylation of various terminal alkynes to corresponding alkynyl carboxylic acids/phenylpropiolic acids via C-H bond activation under atmospheric pressure conditions. Besides, carboxylative cyclization of various propargylic amines with CO2 to generate 2-oxazolidinones, an important class of antibiotics, has also been achieved under mild conditions. This significant catalytic activity of Ag@Pybpy-COF with wide functional group tolerance is rendered by the presence of highly exposed, alkynophilic Ag(0) catalytic sites decorated on the pore walls of high surface area (787 m2 g-1) Pybpy-COF. Further, density functional theory calculations unveiled the detailed mechanistic path of the Ag@Pybpy-COF-catalyzed transformation of CO2 to alkynyl carboxylic acids and 2-oxazolidinones. Moreover, the catalyst showed high recyclability for several cycles of reuse without significant loss in its catalytic activity and structural rigidity. This work demonstrates the promising application of Pybpy-COF for stable anchoring of Ag NPs for successful transformation of CO2 to valuable commodity chemicals at ambient conditions.
Collapse
Affiliation(s)
- Gulshan Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Nidhi Duhan
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - T J Dhilip Kumar
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - C M Nagaraja
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| |
Collapse
|
6
|
Wei RJ, Xie M, Xia RQ, Chen J, Hu HJ, Ning GH, Li D. Gold(I)-Organic Frameworks as Catalysts for Carboxylation of Alkynes with CO 2. J Am Chem Soc 2023; 145:22720-22727. [PMID: 37791919 DOI: 10.1021/jacs.3c08262] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Construction of gold-based metal-organic frameworks (Au-MOFs) would bring the merits of gold chemistry into MOFs. However, it still remains challenging because gold cations are easily reduced to metallic gold under solvothermal conditions. Herein, we present the first example of Au-MOFs prepared from the networking of cyclic trinuclear gold(I) complexes by formal transimination reaction in a rapid (<15 min) and scalable (up to 1 g) fashion under ambient condition. The Au-MOFs feature uniform porosity, high crystallinity, and superior chemical stability toward base (i.e., 20 M NaOH). With open Au(I) sites in the skeleton, the Au-MOFs as heterogeneous catalysts delivered good performance and substrate tolerance for the carboxylation reactions of alkynes with CO2. This work demonstrates a facile approach to reticularly synthesize Au-MOFs by combining the coordination and dynamic covalent chemistry.
Collapse
Affiliation(s)
- Rong-Jia Wei
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Mo Xie
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Ri-Qin Xia
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Jun Chen
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Hua-Juan Hu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Guo-Hong Ning
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Dan Li
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| |
Collapse
|
7
|
Zhang L, Gao EQ. Catalytic C(sp)-H carboxylation with CO2. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
8
|
Francis Kurisingal J, Kim H, Hyeak Choe J, Seop Hong C. Covalent organic framework-based catalysts for efficient CO2 utilization reactions. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Green carboxylation of CO2 triggered by well-dispersed silver nanoparticles immobilized by melamine-based porous organic polymers. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Mollart C, Holcroft S, Peach MJG, Rowling A, Trewin A. Artificial synthesis of covalent triazine frameworks for local structure and property determination. Phys Chem Chem Phys 2022; 24:20025-20029. [PMID: 35975691 DOI: 10.1039/d2cp02430f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we show an 'artificial synthesis' method for covalent triazine framework (CTF) materials, enabling localised structural features to be incorporated that result directly from the acid-catalysed synthetic protocol that would otherwise not be captured. This advancement will enable prediction and design of new CTF materials with targeted properties.
Collapse
Affiliation(s)
- Catherine Mollart
- Department of Chemistry, Lancaster University, Lancaster, UK LA1 4YB, UK.
| | - Sarah Holcroft
- Department of Chemistry, Lancaster University, Lancaster, UK LA1 4YB, UK.
| | - Michael J G Peach
- Department of Chemistry, Lancaster University, Lancaster, UK LA1 4YB, UK.
| | - Adam Rowling
- Department of Chemistry, Lancaster University, Lancaster, UK LA1 4YB, UK.
| | - Abbie Trewin
- Department of Chemistry, Lancaster University, Lancaster, UK LA1 4YB, UK.
| |
Collapse
|
11
|
Dai W, Li Q, Long J, Mao P, Xu Y, Yang L, Zou J, Luo X. Hierarchically mesoporous imidazole-functionalized covalent triazine framework: An efficient metal- and halogen-free heterogeneous catalyst towards the cycloaddition of CO2 with epoxides. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Li S, Deng L, Wu G, Zhang Y, Pan X, Li M, Li S. Preparation of a New Metal-Organic Framework/Porous Anodic Alumina Composite Membrane, Structural Characterization, and CO2 Adsorption. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222080266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Zhang Z, Shi J, Zhu T, Zhang L, Wei W. Nitrogen-doped mesoporous carbon single crystal-based Ag nanoparticles for boosting mild CO 2 conversion with terminal alkynes. J Colloid Interface Sci 2022; 627:81-89. [PMID: 35841711 DOI: 10.1016/j.jcis.2022.07.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
Fabrication of efficient heterogeneous catalysts with high turnover frequency (TOF) is intriguing for rapid and scalable CO2 conversion under mild conditions, but it still faces some challenges due to use of some bulky and irregular supports causing inaccessible inner pores and insufficient utilization of active sites. Herein, using a unique nitrogen-doped mesoporous single-crystal carbon (named IRFC) as a host for loading Ag nanoparticles for the first time, a series of Ag/IRFC catalysts with high TOF (8.7-22.3 h-1) were facilely prepared by a novel "impregnation and in-situ reduction" strategy. The neat morphology and high porosity of IRFC with abundant N species, providing homogeneous surface, adequate space and anchoring sites for Ag immobilization, greatly facilitated the formation of highly-distributed ultrasmall Ag nanoparticles (2.3 nm). Meanwhile, smooth and short diffusion pathways were inherited from the ordered mesopores and small particle sizes of IRFC. Owing to these unparalleled structural features, the Ag/IRFC catalysts exhibited excellent catalytic activity, stability, and generality for mild CO2 conversion even under diluted conditions. This work not only presents a novel catalyst for mild CO2 conversion, but also brings some inspirations to designing highly efficient catalysts using well-shaped supporting nanomaterials for direct utilization of low-concentration CO2, such as flue gas.
Collapse
Affiliation(s)
- Zhongzheng Zhang
- Yulin University, Yulin 719000, Shanxi Province, China; CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201203, China.
| | - Jialin Shi
- Yulin University, Yulin 719000, Shanxi Province, China
| | - Tianyang Zhu
- Yulin University, Yulin 719000, Shanxi Province, China
| | - Lina Zhang
- Yulin University, Yulin 719000, Shanxi Province, China.
| | - Wei Wei
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201203, China; School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China.
| |
Collapse
|
14
|
Qiao Y, Lv N, Xue X, Zhou T, Che G, Xu G, Wang F, Wu Y, Xu Z. Highly Efficient Iodine Capture and CO
2
Adsorption using a Triazine‐Based Conjugated Microporous Polymers. ChemistrySelect 2022. [DOI: 10.1002/slct.202200234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yu Qiao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University) Ministry of Education Changchun 130103 P. R. China
- College of Chemistry Jilin Normal University Siping 136000 PR China
| | - Na Lv
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University) Ministry of Education Changchun 130103 P. R. China
- College of Chemistry Jilin Normal University Siping 136000 PR China
| | - Xiangxin Xue
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University) Ministry of Education Changchun 130103 P. R. China
- College of Chemistry Jilin Normal University Siping 136000 PR China
| | - Tianyu Zhou
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University) Ministry of Education Changchun 130103 P. R. China
- College of Environmental Science and Engineering Jilin Normal University Siping 136000 PR China
| | - Guangbo Che
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University) Ministry of Education Changchun 130103 P. R. China
| | - Guangjuan Xu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University) Ministry of Education Changchun 130103 P. R. China
- College of Chemistry Jilin Normal University Siping 136000 PR China
| | - Fujun Wang
- Asset Management Division Jilin Normal University Siping 136000 PR China
| | - Yuanyuan Wu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University) Ministry of Education Changchun 130103 P. R. China
- College of Chemistry Jilin Normal University Siping 136000 PR China
| | - Zhanlin Xu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University) Ministry of Education Changchun 130103 P. R. China
- College of Chemistry Jilin Normal University Siping 136000 PR China
| |
Collapse
|
15
|
Giri A, Patra A. Porous Organic Polymers: Promising Testbed for Heterogeneous Reactive Oxygen Species Mediated Photocatalysis and Nonredox CO 2 Fixation. CHEM REC 2022; 22:e202200071. [PMID: 35675959 DOI: 10.1002/tcr.202200071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 11/07/2022]
Abstract
Catalysts play a pivotal role in achieving the global need for food and energy. In this context, porous organic polymers (POPs) with high surface area, robust architecture, tunable pore size, and chemical functionalities have emerged as promising testbeds for heterogeneous catalysis. Amorphous POPs having functionalized interconnected hierarchical porous structures activate a diverse range of substrates through covalent/non-covalent interactions or act as a host matrix to encapsulate catalytically active metal centers. On the other hand, conjugated POPs have been explored for photoinduced chemical transformations. In this personal account, we have delineated the evolution of various POPs and the specific role of pores and pore functionalities in heterogeneous catalysis. Subsequently, we retrospect our journey over the last ten years towards designing and fabricating amorphous POPs for heterogeneous catalysis, specifically photocatalytic reactive oxygen species (ROS)-mediated organic transformations and nonredox chemical fixation of CO2 . We have also outlined some of the future avenues of POPs and POP-based hybrid materials for diverse catalytic applications.
Collapse
Affiliation(s)
- Arkaprabha Giri
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, 462066, Madhya Pradesh, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, 462066, Madhya Pradesh, India
| |
Collapse
|
16
|
Chen H, Suo X, Yang Z, Dai S. Graphitic Aza-Fused π-Conjugated Networks: Construction, Engineering, and Task-Specific Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107947. [PMID: 34739143 DOI: 10.1002/adma.202107947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/01/2021] [Indexed: 06/13/2023]
Abstract
2D π-conjugated networks linked by aza-fused units represent a pivotal category of graphitic materials with stacked nanosheet architectures. Extensive efforts have been directed at their fabrication and application since the discovery of covalent triazine frameworks (CTFs). Besides the triazine cores, tricycloquinazoline and hexaazatriphenylene linkages are further introduced to tailor the structures and properties. Diverse related materials have been developed rapidly, and a thorough outlook is necessitated to unveil the structure-property-application relationships across multiple subcategories, which is pivotal to guide the design and fabrication toward enhanced task-specific performance. Herein, the structure types and development of related materials including CTFs, covalent quinazoline networks, and hexaazatriphenylene networks, are introduced. Advanced synthetic strategies coupled with characterization techniques provide powerful tools to engineer the properties and tune the associated behaviors in corresponding applications. Case studies in the areas of gas adsorption, membrane-based separation, thermo-/electro-/photocatalysis, and energy storage are then addressed, focusing on the correlation between structure/property engineering and optimization of the corresponding performance, particularly the preferred features and strategies in each specific field. In the last section, the underlying challenges and opportunities in construction and application of this emerging and promising material category are discussed.
Collapse
Affiliation(s)
- Hao Chen
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xian Suo
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sheng Dai
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
17
|
Hasija V, Patial S, Raizada P, Aslam Parwaz Khan A, Asiri AM, Van Le Q, Nguyen VH, Singh P. Covalent organic frameworks promoted single metal atom catalysis: Strategies and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214298] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Construction of a (NNN)Ru-Incorporated Porous Organic Polymer with High Catalytic Activity for β-Alkylation of Secondary Alcohols with Primary Alcohols. Polymers (Basel) 2022; 14:polym14020231. [PMID: 35054638 PMCID: PMC8780954 DOI: 10.3390/polym14020231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Solid supports functionalized with molecular metal catalysts combine many of the advantages of heterogeneous and homogeneous catalysis. A (NNN)Ru-incorporated porous organic polymer (POP-bp/bbpRuCl3) exhibited high catalytic efficiency and broad functional group tolerance in the C–C cross-coupling of secondary and primary alcohols to give β-alkylated secondary alcohols. This catalyst demonstrated excellent durability during successive recycling without leaching of Ru which is ascribed to the strong binding of the pincer ligands to the metal ions.
Collapse
|
19
|
Chatterjee R, Bhaumik A. Carboxylation of Alkenes and Alkynes Using CO2 as a Reagent: An Overview. CURR ORG CHEM 2022. [DOI: 10.2174/1385272825666211206090621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
CO2 fixation reactions are of paramount interest both from economical and environmental perspectives. As an abundant, non-toxic, and renewable C1 feedstock, CO2 can be
utilized for the synthesis of fuels and commodity chemicals under elevated reaction conditions. The major challenge in the CO2 utilization reactions is its chemical inertness due to
high thermodynamic stability and kinetic barrier. The carboxylation of unsaturated hydrocarbons with CO2 is an important transformation as it forms high-value reaction products having
industrial as well as medicinal importance. This mini-review is mainly focused on the recent
developments in the homogeneously and heterogeneously catalyzed carboxylation of alkenes
and alkynes by using carbon dioxide as a reagent. We have highlighted various types of carboxylation reactions of alkenes and alkynes involving different catalytic systems, which
comprise mainly C-H bond activation, hydrocarboxylation, carbocarboxylation, heterocarboxylation, and ring-closing
carboxylation, including visible-light assisted synthesis processes. The mechanistic pathways of these carboxylation
reactions have been described. Moreover, challenges and future perspectives of these carboxylation reactions are discussed.
Collapse
Affiliation(s)
- Rupak Chatterjee
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S C. Mullick Road, Jadavpur, Kolkata
700 032, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S C. Mullick Road, Jadavpur, Kolkata
700 032, India
| |
Collapse
|
20
|
Xi SC, Guo HN, Yang CY, Wang R, Wang DY, Dong B. A bisimidazolium-based cationic covalent triazine framework for CO2 capture and dye adsorption. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
Li C, Yu G. Controllable Synthesis and Performance Modulation of 2D Covalent-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100918. [PMID: 34288393 DOI: 10.1002/smll.202100918] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/29/2021] [Indexed: 06/13/2023]
Abstract
Covalent-organic frameworks (COFs) are especially interesting and unique as their highly ordered topological structures entirely built from plentiful π-conjugated units through covalent bonds. Arranging tailorable organic building blocks into periodically reticular skeleton bestows predictable lattices and various properties upon COFs in respect of topology diagrams, pore size, properties of channel wall interfaces, etc. Indeed, these peculiar features in terms of crystallinity, conjugation degree, and topology diagrams fundamentally decide the applications of COFs including heterogeneous catalysis, energy conversion, proton conduction, light emission, and optoelectronic devices. Additionally, this research field has attracted widespread attention and is of importance with a major breakthrough in recent year. However, this research field is running with the lack of summaries about tailorable construction of 2D COFs for targeted functionalities. This review first covers some crucial polymeric strategies of preparing COFs, containing boron ester condensation, amine-aldehyde condensation, Knoevenagel condensation, trimerization reaction, Suzuki CC coupling reaction, and hybrid polycondensation. Subsequently, a summary is made of some representative building blocks, and then underlines how the electronic and molecular structures of building blocks can strongly influence the functional performance of COFs. Finally, conclusion and perspectives on 2D COFs for further study are proposed.
Collapse
Affiliation(s)
- Chenyu Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
22
|
Du J, Ouyang H, Tan B. Porous Organic Polymers for Catalytic Conversion of Carbon Dioxide. Chem Asian J 2021; 16:3833-3850. [PMID: 34605613 DOI: 10.1002/asia.202100991] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/01/2021] [Indexed: 01/07/2023]
Abstract
To overcome the challenges of global warming and environmental pollution, it is necessary to reduce the concentration of carbon dioxide (CO2 ) in the atmosphere, which is mainly accumulated in the air through the burning of fossil fuels. Therefore, the development of environmentally friendly strategies to capture carbon dioxide and convert it into value-added products offers a promising way forward for reducing carbon dioxide concentration in the atmosphere. In this context, POPs (porous organic polymers) have shown great potential as CO2 selective adsorbents due to their high specific surface area, chemical stability, nanoscale porosity and structural diversity, as well as POPs based heterogeneous catalysts for CO2 conversion. This review provides a concise account of preparation methods of various POPs, challenges and current development trends of POPs in photocatalytic CO2 reduction, electrocatalytic CO2 reduction and chemical CO2 conversion.
Collapse
Affiliation(s)
- Jing Du
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037#, Hongshan District, Wuhan, 430074, P. R. China
| | - Huang Ouyang
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037#, Hongshan District, Wuhan, 430074, P. R. China
| | - Bien Tan
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037#, Hongshan District, Wuhan, 430074, P. R. China
| |
Collapse
|
23
|
Sarkar C, Shit SC, Das N, Mondal J. Presenting porous-organic-polymers as next-generation invigorating materials for nanoreactors. Chem Commun (Camb) 2021; 57:8550-8567. [PMID: 34369958 DOI: 10.1039/d1cc02616j] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Porous organic polymers (POPs) represent an emerging class of porous organic materials which mainly comprise organic building blocks that are interconnected via strong covalent bonds, thereby offering highly cross-linked frameworks with rigid structures and specific void spaces for accommodating guest molecules. In the past few years, POPs have garnered colossal research interest as nanoreactors for heterogeneous catalysis (thermal, photochemical, electrochemical, etc.) because of their intriguing characteristic features, such as high thermal and chemical stabilities, adjustable chemical functionalities, large surface areas, and tunable pore size distributions. This feature article provides an overview of existing research relating to diverse POP synthetic approaches (COFs, CTFs, and some amorphous POPs), the possible modification of the functionality of POPs, and their exciting application as next-generation nanoreactors. These POPs are extremely interesting, as they offer the potential for either metal-free or metalated polymer catalysts allowing photocatalytic CO2 reduction to solar-fuel, biofuel upgrades, the conversion of waste cooking oil to bio-oil, and clean H2 production from water, addressing many scientific and technological challenges and providing new opportunities for various specific topics in catalysis. Finally, we emphasize that the integration of various synthetic approaches and the application of POPs as nanoreactors will provide opportunities in the near future for the precision synthesis of functional materials with significant impact in both basic and applied research areas.
Collapse
Affiliation(s)
- Chitra Sarkar
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 50007, India.
| | | | | | | |
Collapse
|
24
|
Wu J, Liu J, Wen B, Li Y, Zhou B, Wang Z, Yang S, Zhao R. Nitrogen-rich covalent triazine frameworks for high-efficient removal of anion dyes and the synergistic adsorption of cationic dyes. CHEMOSPHERE 2021; 272:129622. [PMID: 33482512 DOI: 10.1016/j.chemosphere.2021.129622] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/03/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Efficient adsorption of organic dyes from effluent has great importance for ecological and environmental protection. Herein, covalent triazine frameworks (CTFs) were constructed via the polycondensation of melamine and cyanuric chloride directly. Due to the numerous basic nitrogen atoms as high as 58.98 wt%, high BET surface area (670.2 m g-1), and hierarchical pore structure, CTFs demonstrated selective adsorption of anionic dyes in high capacity (e.g., a maximum adsorption capacity of 1581 mg g-1 for Congo red at 30 °C). The mechanism of the outstanding adsorption performance was carefully verified and ascribed to the electrostatic attraction and hydrogen bonding between CTFs and anionic dyes. The amine groups linking two adjacent triazine rings have primary responsibility for the superior performance. Unexpectedly, CTFs expressed a tuning synergetic effect for removing cationic dyes in aqueous solution coexisting with anionic dyes, exhibiting a great superiority in the specific and comprehensive treatment of organic dyes contaminated water. Furthermore, CTFs were stable and had long-periodic availability for more than 6 times, ensuring the adsorption rate higher than 90%. For better operation, hybrid monolithic aerogels were constructed by incorporating CTFs into polyvinylidene fluoride then casting in melamine resin foams. The obtained aerogels expressed high-efficient removal of anionic dyes coupled with convenient operation. This well-established metal-free porous material is a promising adsorbent candidate for anionic dyes selectively and even synergetic adsorption of cationic dyes in water remediation.
Collapse
Affiliation(s)
- Jingjing Wu
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Jian Liu
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| | - Bingyan Wen
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Yipei Li
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Binghua Zhou
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Zhipeng Wang
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Shenghong Yang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Rusong Zhao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China; Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| |
Collapse
|
25
|
In silico design of new nitrogen-rich melamine-based porous polyamides applied to CO2/N2 separation. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Liu J, Zhang X, Wen B, Li Y, Wu J, Wang Z, Wu T, Zhao R, Yang S. Pre-carbonized nitrogen-rich polytriazines for the controlled growth of silver nanoparticles: catalysts for enhanced CO 2 chemical conversion at atmospheric pressure. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02473b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mono-dispersed Ag NPs were generated controllably in pre-carbonized covalent triazine frameworks for CO2 conversion at mild conditions with excellent catalytic activity.
Collapse
Affiliation(s)
- Jian Liu
- Institute of Advanced Materials
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang
- China
| | - Xiaoyi Zhang
- Institute of Advanced Materials
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang
- China
| | - Bingyan Wen
- Institute of Advanced Materials
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang
- China
| | - Yipei Li
- Institute of Advanced Materials
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang
- China
| | - Jingjing Wu
- Institute of Advanced Materials
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang
- China
| | - Zhipeng Wang
- Institute of Advanced Materials
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang
- China
| | - Ting Wu
- Institute of Advanced Materials
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang
- China
| | - Rusong Zhao
- Shandong Provincial Key Laboratory of Molecular Engineering
- School of Chemistry and Chemical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
| | - Shenghong Yang
- Shandong Provincial Key Laboratory of Molecular Engineering
- School of Chemistry and Chemical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
| |
Collapse
|
27
|
Bu R, Zhang L, Gao LL, Sun WJ, Yang SL, Gao EQ. Copper(I)-modified covalent organic framework for CO2 insertion to terminal alkynes. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111319] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Luo R, Xu W, Chen M, Liu X, Fang Y, Ji H. Covalent Triazine Frameworks Obtained from Nitrile Monomers for Sustainable CO 2 Catalysis. CHEMSUSCHEM 2020; 13:6509-6522. [PMID: 33118279 DOI: 10.1002/cssc.202002422] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Carbon dioxide catalytic conversion (i. e., CO2 catalysis) is considered as one of the most promising technologies to control CO2 emissions, which is of great significance to build a sustainable society with green low-carbon cycle. In view of its thermodynamic stability and kinetic inertness, CO2 selective activation is still desired. Nowadays, the traditional strategy is to selectively capture and efficiently convert atmospheric CO2 into high value-added chemicals and fuels. Covalent triazine frameworks (CTFs) as a newly emerging and attractive kind of porous organic polymer (POP) have drawn worldwide attention among heterogeneous catalysis because of their nitrogen-rich porous structures and exceptional physicochemical stabilities. In this Minireview, the focus was mainly placed on the structural design and synthesis of CTFs and their applications in CO2 catalysis including CO2 cycloaddition, CO2 carboxylation, CO2 hydrogenation, CO2 photoreduction, and CO2 electroreduction. By discussing the structure-property relationship, valuable guidance from a sustainable perspective may be provided for developing precisely designed CTFs with high performance and excellent industrial application prospects in sustainable CO2 catalysis.
Collapse
Affiliation(s)
- Rongchang Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Wei Xu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Min Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Xiangying Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yanxiong Fang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Hongbing Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
29
|
Yue C, Wang W, Li F. Building N-Heterocyclic Carbene into Triazine-Linked Polymer for Multiple CO 2 Utilization. CHEMSUSCHEM 2020; 13:5996-6004. [PMID: 32960512 DOI: 10.1002/cssc.202002154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 06/11/2023]
Abstract
The development of new CO2 detection technologies and CO2 "capture-conversion" materials is of great significance due to the growing environmental crisis. Here, multifunctional triazine-linked polymers with built-in N-heterocyclic carbene (NHC) sites (designated as NHC-triazine@polymer) are presented for simultaneous CO2 detection, capture, activation, and catalytic conversion. NHC-triazine@polymer were readily obtained through polymerization of cyanophenyl-substituted NHC. The obtained film-like polymers exhibited interesting CO2 -triggered fluorescence "turn-on" response and CO2 -sensitive reversible color change. Both NHC and triazine sites could act as efficient binding sites for CO2 , and the CO2 uptake of NHC and triazine reached 1.52 and 1.36 mmol g-1 , respectively. Notably, after being captured by NHC, CO2 was activated into a zwitterionic adduct NHC-CO2 that could be easily transformed into cyclic carbonate in the presence of epoxides. Moreover, NHC-triazine@polymer were stable and active catalysts for the conversion of low-concentration CO2 in a gas mixture (7 vol %) into cyclic carbonates as well as for hydrosilylation of CO2 to formamides.
Collapse
Affiliation(s)
- Chengtao Yue
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 10049, P. R. China
| | - Wenlong Wang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, 523808, P. R. China
| | - Fuwei Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
30
|
Wang X, Yang L, Chen Y, Yang C, Lan J, Sun J. Metal-Free Triazine-Incorporated Organosilica Framework Catalyst for the Cycloaddition of CO2 to Epoxide under Solvent-Free Conditions. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04466] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xin Wang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Li Yang
- State Key Lab of Advanced Welding and Joining, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yanglin Chen
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Chaokun Yang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Jianwen Lan
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Jianmin Sun
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| |
Collapse
|
31
|
Liu Z, Liu Y, Qi F, Yan H, Jiang Z, Chen Y. Flexible π-Conjugated 2,5-Diarylamino-Terephthalates: A New Class of Mechanochromic Luminophores with Tunable Aggregation States. Chemistry 2020; 26:14963-14968. [PMID: 32761663 DOI: 10.1002/chem.202002712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/27/2020] [Indexed: 01/10/2023]
Abstract
The generation of different thermodynamically (meta)stable states is crucial for the development of smart solid-state luminescent materials. However, the design of luminophores with tunable aggregation states is remaining a grand challenge. Herein, we present a family of mechanochromic luminophores with tunable metastable states, based on the dynamically controllable π-π stacking of the flexible π-conjugated structure of 2,5-diarylamino-terephthalates in the solid state. The experimental data revealed that both the kinetically controlled metastable state and thermodynamic controlled stable state can be generated via tuning the intermolecular interactions such as π-π stacking and hydrogen bonds. As a result, the highly sensitive mechano-stimuli response of these luminophores was successfully achieved.
Collapse
Affiliation(s)
- Zhipeng Liu
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210073, P. R. China
| | - Yi Liu
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Fen Qi
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210023, P. R. China
| | - Hui Yan
- School of Pharmacy, Liaocheng University, 1 Hunan Road, Liaocheng, 252000, P. R. China
| | - Zhiyong Jiang
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210073, P. R. China.,Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yuncong Chen
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210023, P. R. China
| |
Collapse
|
32
|
Khan AA, Ahmad R, Ahmad I, Su X. Selective adsorption of CO 2 from gas mixture by P-decorated C 24N 24 fullerene assisted by an electric field: A DFT approach. J Mol Graph Model 2020; 103:107806. [PMID: 33248340 DOI: 10.1016/j.jmgm.2020.107806] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 02/02/2023]
Abstract
Selective, reversible and tailored adsorption of CO2 from gas mixture is always demanded to control global warming. We for the first time used P-decorated C24N24 fullerene for selective separation of CO2 from N2/CO2 mixture in the presence of an electric field by using density functional theory methods. The computed geometrical parameters evince that the binding distances and bond angles (OCO) are remarkably reduced in electric field and that transformed the physisorption to chemisorption by increasing the field from 0.012 to 0.013 au. The adsorption/desorption of CO2 over the substrate can be easily controlled by switching on and off the electric field. This study reveals that P@C24N24 is a selective adsorbent of CO2 from N2/CO2 mixture and will help the future synthesis of selective, controllable and regenerable adsorbent for the CO2 separation from gas mixture in presence of electric field.
Collapse
Affiliation(s)
- Adnan Ali Khan
- Center for Computational Materials Science, University of Malakand, Pakistan; Department of Chemistry, University of Malakand, Pakistan
| | - Rashid Ahmad
- Center for Computational Materials Science, University of Malakand, Pakistan; Department of Chemistry, University of Malakand, Pakistan.
| | - Iftikhar Ahmad
- Center for Computational Materials Science, University of Malakand, Pakistan; Department of Physics, Gomal University, Dera Ismail Khan, Pakistan.
| | - Xintai Su
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
33
|
Zeng R, Chen L, Yan Q. CO 2 -Folded Single-Chain Nanoparticles as Recyclable, Improved Carboxylase Mimics. Angew Chem Int Ed Engl 2020; 59:18418-18422. [PMID: 32691516 DOI: 10.1002/anie.202006842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Indexed: 12/24/2022]
Abstract
Emulating the function of natural carboxylases to convert CO2 under atmospheric condition is a great challenge. Herein we report a class of CO2 -folded single-chain nanoparticles (SCNPs) that can function as recyclable, function-intensified carboxylase mimics. Lewis pair polymers containing bulky Lewis acidic and basic groups as the precursor, can bind CO2 to drive an intramolecular folding into SCNPs, in which CO2 as the folded nodes can form gas-bridged bonds. Such bridging linkages highly activate CO2 , which endows the SCNPs with extraordinary catalytic ability that can not only catalyze CO2 -insertion of C(sp3 )-H for imitating the natural enzyme's function, it can also act on non-natural carboxylation pathways for C(sp2 and sp)-H substrates. The nanocatalysts are of highly catalytic efficiency and recyclability, and can work at room temperature and near ambient CO2 condition, inspiring a new approach to sustainable C1 utilization.
Collapse
Affiliation(s)
- Rongjin Zeng
- State Key Lab of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Liang Chen
- State Key Lab of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Qiang Yan
- State Key Lab of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
34
|
Zeng R, Chen L, Yan Q. CO
2
‐Folded Single‐Chain Nanoparticles as Recyclable, Improved Carboxylase Mimics. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rongjin Zeng
- State Key Lab of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200433 China
| | - Liang Chen
- State Key Lab of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200433 China
| | - Qiang Yan
- State Key Lab of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200433 China
| |
Collapse
|
35
|
Zhu H, Lin W, Li Q, Hu Y, Guo S, Wang C, Yan F. Bipyridinium-Based Ionic Covalent Triazine Frameworks for CO 2, SO 2, and NO Capture. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8614-8621. [PMID: 31983201 DOI: 10.1021/acsami.9b15903] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The exploitation of novel porous materials for capturing/adsorption of harmful gases is considered a very promising approach to deal with air pollution. Herein, bipyridinium-based ionic covalent triazine frameworks (ICTFs) were synthesized via ZnCl2-catalyzed ionothermal polymerization. The as-prepared ICTFs had a satisfactory total pore volume and specific surface of approximately 0.4582 cm3 g-1 and 1000 m2 g-1, respectively. Moreover, the specific surface area, pore size and distribution, and total pore volumes of ICTFs could be adjusted via ion-exchange of the anion. The obtained ICTFs were explored as the adsorbent for the separation/adsorption of the mixed gases (SO2, CO2, NO, and N2), and they showed the strong adsorption ability for CO2 (2.75 mmol g-1), SO2 (9.22 mmol g-1), and NO (4.05 mmol g-1) at 1 bar and 298 K. This unique design provides a new insight to prepare high-efficiency porous materials for CO2, SO2, and NO capture.
Collapse
Affiliation(s)
- Hai Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Wenjun Lin
- Department of Chemistry, ZJU-NHU United R&D Center , Zhejiang University , Hangzhou 310027 , China
| | - Qi Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Yin Hu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Siyu Guo
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Congmin Wang
- Department of Chemistry, ZJU-NHU United R&D Center , Zhejiang University , Hangzhou 310027 , China
| | - Feng Yan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| |
Collapse
|
36
|
Zhang J, Zheng T, Zhang J. I2
/K2
S2
O8
Mediated Direct Oxidative Annulation of Alkylazaarenes with Amidines for the Synthesis of Substituted 1,3,5-Triazines. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jun Zhang
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule; College of Chemistry & Materials Science; Northwest University; 710127 Xi'an Shaanxi P. R. China
| | - Tingting Zheng
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule; College of Chemistry & Materials Science; Northwest University; 710127 Xi'an Shaanxi P. R. China
| | - Jidong Zhang
- School of Chemistry & Chemical Engineering; Ankang University; 725000 Ankang Shaanxi P. R. China
| |
Collapse
|
37
|
Salam N, Paul P, Ghosh S, Mandi U, Khan A, Alam SM, Das D, Manirul Islam S. AgNPs encapsulated by an amine-functionalized polymer nanocatalyst for CO2fixation as a carboxylic acid and the oxidation of cyclohexane under ambient conditions. NEW J CHEM 2020. [DOI: 10.1039/c9nj05865f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel catalyst comprising Ag NPs grafted to a porous polystyrene material was synthesized for the production of valuable propiolic acid derivativesviaCO2(1 atm) incorporation, and the oxidation of cyclohexane under ambient reaction conditions.
Collapse
Affiliation(s)
- Noor Salam
- Department of Chemistry
- University of Kalyani
- Kalyani
- India
- Department of Chemistry
| | - Priyanka Paul
- Department of Chemistry
- University of Kalyani
- Kalyani
- India
- Department of Chemistry
| | | | - Usha Mandi
- Department of Chemistry
- Jogamaya Devi College
- Kolkata
- India
| | - Aslam Khan
- King Abdullah Institute for Nanotechnology
- King Saud University
- Riyadh
- Saudi Arabia
| | | | - Debasis Das
- Department of Chemistry
- The University of Burdwan
- Burdwan
- India
| | | |
Collapse
|
38
|
Jena HS, Krishnaraj C, Schmidt J, Leus K, Van Hecke K, Van Der Voort P. Effect of Building Block Transformation in Covalent Triazine-Based Frameworks for Enhanced CO 2 Uptake and Metal-Free Heterogeneous Catalysis. Chemistry 2019; 26:1548-1557. [PMID: 31603596 DOI: 10.1002/chem.201903926] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/04/2019] [Indexed: 01/14/2023]
Abstract
Covalent triazine frameworks (CTFs) have provided a unique platform in functional material design for a wide range of applications. This work reports a series of new CTFs with two new heteroaromatic building blocks (pyrazole and isoxazole groups) through a building-block transformation approach aiming for carbon capture and storage (CCS) and metal-free catalysis. The CTFs were synthesized from their respective building blocks [(4,4'-(1H-pyrazole-3,5-diyl)dibenzonitrile (pyz) and 4,4'-(isoxazole-3,5-diyl)dibenzonitrile (isox))] under ionothermal conditions using ZnCl2 . Both of the building blocks were designed by an organic transformation of an acetylacetone containing dinitrile linker to pyrazole and isoxazole groups, respectively. Due to this organic transformation, (i) linker aromatization, (ii) higher surface areas and nitrogen contents, (iii) higher aromaticity, and (iv) higher surface basicity was achieved. Due to these enhanced properties, CTFs were explored for CO2 uptake and metal-free heterogeneous catalysis. Among all, the isox-CTF, synthesized at 400 °C, showed the highest CO2 uptake (4.92 mmol g-1 at 273 K and 2.98 mmol g-1 at 298 K at 1 bar). Remarkably, these CTFs showed excellent metal-free catalytic activity for the aerobic oxidation of benzylamine at mild reaction conditions. On studying the properties of the CTFs, it was observed that organic transformations and ligand aromatization of the materials are crucial factor to tune the important parameters that influence the CO2 uptake and the catalytic activity. Overall, this work highlights the substantial effect of designing new CTF materials by building-block organic transformations resulting in better properties for CCS applications and heterogeneous catalysis.
Collapse
Affiliation(s)
- Himanshu Sekhar Jena
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281 (S3 B), 9000, Ghent, Belgium
| | - Chidharth Krishnaraj
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281 (S3 B), 9000, Ghent, Belgium
| | - Johannes Schmidt
- Technische Universität Berlin, Institut für Chemie-Funktionsmaterialien, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Karen Leus
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281 (S3 B), 9000, Ghent, Belgium
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281 (S3 B), 9000, Ghent, Belgium
| | - Pascal Van Der Voort
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281 (S3 B), 9000, Ghent, Belgium
| |
Collapse
|
39
|
Chen X, Geng K, Liu R, Tan KT, Gong Y, Li Z, Tao S, Jiang Q, Jiang D. Kovalente organische Gerüstverbindungen: chemische Ansätze für Designerstrukturen und integrierte Funktionen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904291] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xinyi Chen
- Department of ChemistryFaculty of ScienceNational University of Singapore 3 Science Drive 3 Singapur 117543 Singapur
| | - Keyu Geng
- Department of ChemistryFaculty of ScienceNational University of Singapore 3 Science Drive 3 Singapur 117543 Singapur
| | - Ruoyang Liu
- Department of ChemistryFaculty of ScienceNational University of Singapore 3 Science Drive 3 Singapur 117543 Singapur
| | - Ke Tian Tan
- Department of ChemistryFaculty of ScienceNational University of Singapore 3 Science Drive 3 Singapur 117543 Singapur
| | - Yifan Gong
- Department of ChemistryFaculty of ScienceNational University of Singapore 3 Science Drive 3 Singapur 117543 Singapur
| | - Zhongping Li
- Department of ChemistryFaculty of ScienceNational University of Singapore 3 Science Drive 3 Singapur 117543 Singapur
| | - Shanshan Tao
- Department of ChemistryFaculty of ScienceNational University of Singapore 3 Science Drive 3 Singapur 117543 Singapur
| | - Qiuhong Jiang
- Department of ChemistryFaculty of ScienceNational University of Singapore 3 Science Drive 3 Singapur 117543 Singapur
| | - Donglin Jiang
- Department of ChemistryFaculty of ScienceNational University of Singapore 3 Science Drive 3 Singapur 117543 Singapur
- Joint School of National University of Singapore, and Tianjin University International Campus of Tianjin University, Binhai New City Fuzhou 350207 China
| |
Collapse
|
40
|
Chen X, Geng K, Liu R, Tan KT, Gong Y, Li Z, Tao S, Jiang Q, Jiang D. Covalent Organic Frameworks: Chemical Approaches to Designer Structures and Built-In Functions. Angew Chem Int Ed Engl 2019; 59:5050-5091. [PMID: 31144373 DOI: 10.1002/anie.201904291] [Citation(s) in RCA: 280] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Indexed: 12/31/2022]
Abstract
A new approach has been developed to design organic polymers using topology diagrams. This strategy enables covalent integration of organic units into ordered topologies and creates a new polymer form, that is, covalent organic frameworks. This is a breakthrough in chemistry because it sets a molecular platform for synthesizing polymers with predesignable primary and high-order structures, which has been a central aim for over a century but unattainable with traditional design principles. This new field has its own features that are distinct from conventional polymers. This Review summarizes the fundamentals as well as major progress by focusing on the chemistry used to design structures, including the principles, synthetic strategies, and control methods. We scrutinize built-in functions that are specific to the structures by revealing various interplays and mechanisms involved in the expression of function. We propose major fundamental issues to be addressed in chemistry as well as future directions from physics, materials, and application perspectives.
Collapse
Affiliation(s)
- Xinyi Chen
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Keyu Geng
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Ruoyang Liu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Ke Tian Tan
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yifan Gong
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zhongping Li
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Shanshan Tao
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Qiuhong Jiang
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Donglin Jiang
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
41
|
Zhang W, Mei Y, Huang X, Wu P, Wu H, He M. Size-Controlled Growth of Silver Nanoparticles onto Functionalized Ordered Mesoporous Polymers for Efficient CO 2 Upgrading. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44241-44248. [PMID: 31674181 DOI: 10.1021/acsami.9b14927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Highly dispersed metallic silver nanoparticles (AgNPs) are promising heterogeneous catalysts for carboxylative coupling of terminal alkynes with CO2 under mild conditions. Yet, their size-controlled synthesis is very challenging because of the high surface energy. Here, we prepared a series of amino-functionalized ordered mesoporous polymers as hosts for anchoring AgNPs. Control experiments and computations showed that electron-rich amines were confined in mesochannels with varying electron density and steric hindrance, creating "localized active zones (LAZ)" to control the growth of AgNPs. The particle size of AgNPs grows along with the increased volume of LAZ around nitrogen species. We also revealed that the catalytic activity of Ag-based catalysts is size-dependent and increases with decreasing particle size. Building on these findings, we report a facile one-pot synthesis strategy for preparing an amine-incorporated ordered mesoporous polymer (NOMP) with a high specific surface area, small LAZ volume, and uniform amine sites with controllable loading. These features result in the formation of ultrasmall and monodispersed Ag nanoparticles. Remarkably, Ag@NOMP gave a quantitative target yield under the conditions of 1 atm CO2 pressure and 50 °C, showing superior catalytic activity in CO2 carboxylation compared to other mesoporous analogues.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 3663 North Zhongshan Road , Shanghai 200062 , China
- Van 't Hoff Institute for Molecular Sciences , University of Amsterdam , Science Park 904 , Amsterdam 1098 XH , The Netherlands
| | - Yu Mei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 3663 North Zhongshan Road , Shanghai 200062 , China
| | - Xiao Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 3663 North Zhongshan Road , Shanghai 200062 , China
| | - Peng Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 3663 North Zhongshan Road , Shanghai 200062 , China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 3663 North Zhongshan Road , Shanghai 200062 , China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 3663 North Zhongshan Road , Shanghai 200062 , China
| |
Collapse
|
42
|
Chakraborty D, Shekhar P, Singh HD, Kushwaha R, Vinod CP, Vaidhyanathan R. Ag Nanoparticles Supported on a Resorcinol‐Phenylenediamine‐Based Covalent Organic Framework for Chemical Fixation of CO
2. Chem Asian J 2019; 14:4767-4773. [DOI: 10.1002/asia.201901157] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/18/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Debanjan Chakraborty
- Department of ChemistryIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
- Centre for Energy SceinceIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
| | - Pragalbh Shekhar
- Department of ChemistryIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
| | - Himan Dev Singh
- Department of ChemistryIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
| | - Rinku Kushwaha
- Department of ChemistryIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
| | - C. P. Vinod
- CSIR-NCL Catalysis and Inorganic Chemistry Division Pune Maharashtra- 411008 India
| | - Ramanathan Vaidhyanathan
- Department of ChemistryIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
- Centre for Energy SceinceIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
| |
Collapse
|
43
|
Tahir N, Krishnaraj C, Leus K, Van Der Voort P. Development of Covalent Triazine Frameworks as Heterogeneous Catalytic Supports. Polymers (Basel) 2019; 11:polym11081326. [PMID: 31405000 PMCID: PMC6722925 DOI: 10.3390/polym11081326] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 11/16/2022] Open
Abstract
Covalent triazine frameworks (CTFs) are established as an emerging class of porous organic polymers with remarkable features such as large surface area and permanent porosity, high thermal and chemical stability, and convenient functionalization that promotes great potential in heterogeneous catalysis. In this article, we systematically present the structural design of CTFs as a versatile scaffold to develop heterogeneous catalysts for a variety of chemical reactions. We mainly focus on the functionalization of CTFs, including their use for incorporating and stabilization of nanoparticles and immobilization of molecular complexes onto the frameworks.
Collapse
Affiliation(s)
- Norini Tahir
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Ghent University, Krijgslaan 281 (S3), 9000 Ghent, Belgium
| | - Chidharth Krishnaraj
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Ghent University, Krijgslaan 281 (S3), 9000 Ghent, Belgium
| | - Karen Leus
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Ghent University, Krijgslaan 281 (S3), 9000 Ghent, Belgium.
| | - Pascal Van Der Voort
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Ghent University, Krijgslaan 281 (S3), 9000 Ghent, Belgium.
| |
Collapse
|
44
|
Chaudhary M, Muhammad R, Ramachandran CN, Mohanty P. Nitrogen Amelioration-Driven Carbon Dioxide Capture by Nanoporous Polytriazine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4893-4901. [PMID: 30879297 DOI: 10.1021/acs.langmuir.9b00643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nitrogen-enriched nanoporous polytriazines (NENPs) have been synthesized by ultrafast microwave-assisted condensation of melamine and cyanuric chloride. The experimental conditions have been optimized to tune the textural properties by synthesizing materials at different times, temperatures, microwave powers, and solvent contents. The maximum specific surface area (SABET) of 840 m2 g-1 was estimated in the sample (NENP-1) synthesized at 140 °C with a microwave power of 400 W and reaction time of 30 min. One of the major objectives of achieving a large nitrogen content as high as 52 wt % in the framework was realized. As predicted, the nitrogen amelioration has benefitted the application by capturing a very good amount of CO2 of 22.9 wt % at 273 K and 1 bar. Moreover, the CO2 storage capacity per unit specific surface area (per m2 g-1) is highest among the reported nanoporous organic frameworks. The interaction of the CO2 molecules with the polytriazine framework was theoretically investigated by using density functional theory. The experimental CO2 capture capacity was validated from the outcome of the theoretical calculations. The superior CO2 capture capability along with the theoretical investigation not only makes the nanoporous NENPs superior adsorbents for the energy and environmental applications but also provides a significant insight into the fundamental understanding of the interaction of CO2 molecules with the amine functionalities of the nanoporous frameworks.
Collapse
|
45
|
Hong J, Li M, Zhang J, Sun B, Mo F. C-H Bond Carboxylation with Carbon Dioxide. CHEMSUSCHEM 2019; 12:6-39. [PMID: 30381905 DOI: 10.1002/cssc.201802012] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/15/2018] [Indexed: 06/08/2023]
Abstract
Carbon dioxide is a nontoxic, renewable, and abundant C1 source, whereas C-H bond functionalization represents one of the most important approaches to the construction of carbon-carbon bonds and carbon-heteroatom bonds in an atom- and step-economical manner. Combining the chemical transformation of CO2 with C-H bond functionalization is of great importance in the synthesis of carboxylic acids and their derivatives. The contents of this Review are organized according to the type of C-H bond involved in carboxylation. The primary types of C-H bonds are as follows: C(sp)-H bonds of terminal alkynes, C(sp2 )-H bonds of (hetero)arenes, vinylic C(sp2 )-H bonds, the ipso-C(sp2 )-H bonds of the diazo group, aldehyde C(sp2 )-H bonds, α-C(sp3 )-H bonds of the carbonyl group, γ-C(sp3 )-H bonds of the carbonyl group, C(sp3 )-H bonds adjacent to nitrogen atoms, C(sp3 )-H bonds of o-alkyl phenyl ketones, allylic C(sp3 )-H bonds, C(sp3 )-H bonds of methane, and C(sp3 )-H bonds of halogenated aliphatic hydrocarbons. In addition, multicomponent reactions, tandem reactions, and key theoretical studies related to the carboxylation of C-H bonds are briefly summarized. Transition-metal-free, organocatalytic, electrochemical, and light-driven methods are highlighted.
Collapse
Affiliation(s)
- Junting Hong
- Department of Energy and Resources Engineering, College of Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, PR China
| | - Man Li
- Department of Energy and Resources Engineering, College of Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, PR China
| | - Jianning Zhang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, PR China
| | - Beiqi Sun
- Department of Energy and Resources Engineering, College of Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, PR China
| | - Fanyang Mo
- Department of Energy and Resources Engineering, College of Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, PR China
| |
Collapse
|
46
|
Zhang H, Li G, Liao C, Cai Y, Jiang G. Bio-related applications of porous organic frameworks (POFs). J Mater Chem B 2019; 7:2398-2420. [PMID: 32255118 DOI: 10.1039/c8tb03192d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Porous organic frameworks (POFs) are promising candidates for bio-related applications. This review highlights the recent progress in POF-based bioapplications, including drug delivery, bioimaging, biosensing, therapeutics, and artificial shells. These encouraging performances suggest that POFs used for bioapplications deserve more attention in the future.
Collapse
Affiliation(s)
- He Zhang
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
- University of the Chinese Academy of Sciences
| | - Guoliang Li
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Chunyang Liao
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
- University of the Chinese Academy of Sciences
| | - Yaqi Cai
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
- University of the Chinese Academy of Sciences
| | - Guibin Jiang
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
- University of the Chinese Academy of Sciences
| |
Collapse
|
47
|
Li Y, Yu H, Xu F, Guo Q, Xie Z, Sun Z. Solvent controlled self-assembly of π-stacked/H-bonded supramolecular organic frameworks from a C3-symmetric monomer for iodine adsorption. CrystEngComm 2019. [DOI: 10.1039/c8ce01800f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Three π-stacked/H-bonded supramolecular organic frameworks (SOFs) with different architectures based on a C3-symmetric monomer were achieved through tuning the solvent systems.
Collapse
Affiliation(s)
- Yangxue Li
- Key Lab of Groundwater Resources and Environment
- Ministry of Education
- Jilin University
- Changchun 130021
- P. R. China
| | - Haiyang Yu
- Key Lab of Groundwater Resources and Environment
- Ministry of Education
- Jilin University
- Changchun 130021
- P. R. China
| | - Feifan Xu
- Key Lab of Groundwater Resources and Environment
- Ministry of Education
- Jilin University
- Changchun 130021
- P. R. China
| | - Qiaoyuan Guo
- Key Lab of Groundwater Resources and Environment
- Ministry of Education
- Jilin University
- Changchun 130021
- P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Zhiyong Sun
- Institute for Microbiology
- Technische Universität Dresden
- 01217 Dresden
- Germany
- State Key Laboratory of Polymer Physics and Chemistry
| |
Collapse
|
48
|
Lan X, Du C, Cao L, She T, Li Y, Bai G. Ultrafine Ag Nanoparticles Encapsulated by Covalent Triazine Framework Nanosheets for CO 2 Conversion. ACS APPLIED MATERIALS & INTERFACES 2018; 10:38953-38962. [PMID: 30338979 DOI: 10.1021/acsami.8b14743] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This paper describes the fabrication of covalent triazine framework nanosheet-encapsulated Ag nanoparticles (Ag0@CTFN) via a simple combination of the ultrasonic exfoliation and solution infiltration method. The as-prepared Ag0@CTFN displays an order layered-sheet structure with abundant micropores and mesopores, whereas ultrafine Ag nanoparticles are confined and stabilized in their interlayers through the interaction between N sites of triazine units and Ag nanoparticles. Considering that the Ag0@CTFN possesses the merits of high nitrogen, low density, and abundant basic sites, it was thus believed to have enough abilities to adsorb and activate CO2 in the CO2 conversion and catalysis. Importantly, the Ag0@CTFN, as a heterogeneous catalyst, showed highly catalytic activity in the carboxylation of various alkynes with CO2 at ambient pressure and low temperature. This catalyst also exhibited good functional group tolerance and excellent stability without any significant loss of its activity after six recycles. This work not only achieves valuable and novel composite material but also provides the first application of covalent triazine framework nanosheets in chemical conversion of CO2, opening a new field in preparing recyclable heterogeneous catalysts to accelerate the utilization of CO2.
Collapse
Affiliation(s)
- Xingwang Lan
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science , Hebei University , Baoding , Hebei 071002 , P. R. China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology Collaborative Innovation Center of Chemical Science and Engineering , Tianjin University , Weijin Road 92 , Tianjin 300072 , P. R. China
| | - Cheng Du
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science , Hebei University , Baoding , Hebei 071002 , P. R. China
| | - Lili Cao
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science , Hebei University , Baoding , Hebei 071002 , P. R. China
| | - Tiantian She
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science , Hebei University , Baoding , Hebei 071002 , P. R. China
| | - Yiming Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science , Hebei University , Baoding , Hebei 071002 , P. R. China
| | - Guoyi Bai
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science , Hebei University , Baoding , Hebei 071002 , P. R. China
| |
Collapse
|