1
|
Zhu L, Jiang R, Chen C. Fabrication of a Janus Copper Mesh by SiO 2 Spraying for Unidirectional Water Transportation and Oil/Water Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8694-8702. [PMID: 38587567 DOI: 10.1021/acs.langmuir.4c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Massive discharge of oily wastewater and frequent occurrence of offshore oil spills have posed an enormous threat to the socioeconomic and ecological environments. Janus membranes with asymmetric wettability properties have great potential for oil/water separation applications and have attracted widespread attention. However, existing Janus membranes still suffer from complex and costly manufacturing processes, low permeability, and poor recyclability. Herein, a novel and facile strategy was proposed to fabricate a Janus copper mesh with opposite wettability for unidirectional water transport and efficient oil/water separation. The hydrophilic side of the Janus copper mesh was prepared by coating it with Cu(OH)2 nanoneedles via a chemical oxidation method. The hydrophobic side was fabricated by coating it with hydrophobic SiO2 nanoparticles via a facile spraying method. The as-prepared Janus copper mesh showed asymmetric surface wettability, which can achieve unidirectional water transport and efficient oil/water separation with excellent recyclability, exhibiting great application potential for droplet manipulation and wastewater purification.
Collapse
Affiliation(s)
- Linfeng Zhu
- School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Ruisong Jiang
- School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Chaolang Chen
- School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
- National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, Luoyang, Henan 471023, People's Republic of China
| |
Collapse
|
2
|
Goswami S, Sidhpuria RM, Khandekar S. Effect of Droplet-Laden Fibers on Aerodynamics of Fog Collection on Vertical Fiber Arrays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18238-18251. [PMID: 38059749 DOI: 10.1021/acs.langmuir.3c02022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Growing population, along with rapid urbanization, has led to severe water scarcity, necessitating development of novel techniques to mitigate this looming problem. Fog contains water in the form of liquid droplets suspended in air, which can be collected on a porous structure placed in the path of the fog flow. We first develop an artificial fog-generating system using the thermodynamic principle of mixing of air streams followed by condensation, which closely mimics the liquid water content and droplet size distribution of natural fog. We then investigate how collected fog droplets growing on fiber surfaces alter the aerodynamics of fog flow across vertical fiber arrays, called harps, thus affecting their fog collection efficiency. As deposited droplets grow on the fiber surface, they increase the area occluded by droplet-laden fibers, thus increasing the effective shade coefficient (SCact), which increases with time from its initial geometric value (SCgeo), eventually reaching a quasi-steady state, as droplet shedding due to gravity and droplet growth due to fog collection balance each other. We find that this difference in the SCgeo and SCact is governed by local fiber geometry and its physico-chemical morphology; the process dynamics is captured by a nondimensional number, SC*, which increases with the length scale corresponding to the critical volume of droplet shedding relative to the fiber diameter, V*. Thus, there is a significantly greater increase in the effective shade coefficient for thin fibers having larger values of V* as compared to fibers with larger diameters which have lower V* values. On hydrophobic fibers, the quasi-steady state is achieved faster, and the time-averaged SCact is lower as compared to hydrophilic fibers due to the lower critical volume of droplet shedding. The shape of droplets growing on harp fibers affects the aerodynamics of fog flow, its inertial capture mechanism, and efficiency, which can guide design considerations for fog harps toward achieving optimal fog collection performance.
Collapse
Affiliation(s)
- Sohom Goswami
- Department Of Mechanical Engineering, Indian Institute Of Technology Kanpur, Kanpur 208016, India
| | - Ravi M Sidhpuria
- Department Of Mechanical Engineering, Indian Institute Of Technology Kanpur, Kanpur 208016, India
| | - Sameer Khandekar
- Department Of Mechanical Engineering, Indian Institute Of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
3
|
Ding L, Dong S, Yu Y, Li X, An L. Bionic Surfaces for Fog Collection: A Comprehensive Review of Natural Organisms and Bioinspired Strategies. ACS APPLIED BIO MATERIALS 2023; 6:5193-5209. [PMID: 38104272 DOI: 10.1021/acsabm.3c00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Water scarcity has become a critical global threat, particularly in arid and underdeveloped regions. However, certain insects and plants have evolved the capability to obtain water from fog under these arid conditions. Bionic fog collection, characterized by passive harvesting, minimal energy requirements, and low maintenance costs, has proven to be an efficient method for water harvesting, offering a sustainable water source. This review introduces two superwettable surfaces, namely, superhydrophilic and superhydrophobic surfaces, detailing their preparation methods and applications in fog collection. The fog collection mechanisms of three typical natural organisms, Namib Desert beetles, spider silk, and cactus, along with their bionic surfaces for fog collection devices, are discussed. Additionally, other biological surfaces exhibiting fog transport properties are presented. The main challenges regarding the fabrication and application of bionic fog collection are summarized. Furthermore, we firmly believe that environmentally friendly, low-cost, and stable fog collection materials or devices hold promising prospects for future applications.
Collapse
Affiliation(s)
- Lan Ding
- College of Mechanical Engineering, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, China
| | - Shuliang Dong
- College of Mechanical Engineering, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, China
| | - Yifan Yu
- College of Mechanical Engineering, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, China
| | - Xianzhun Li
- College of Mechanical Engineering, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, China
| | - Libao An
- College of Mechanical Engineering, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, China
| |
Collapse
|
4
|
Gao J, Song Y, Huang L, Luo H, Dong X, Wang C, Duan JA. Laser-Textured Hybrid Brass Pattern Array Surface for High-Efficiency Fog Collection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38037240 DOI: 10.1021/acs.langmuir.3c03056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Fog collection holds promise for addressing water shortage. However, the conventional fabrication of fog collection devices, normally chemical methods, suffers many challenges, such as complicated preparation and environmental issues. Herein, we proposed a green fabrication strategy to construct superhydrophobic/hydrophilic surfaces on the brass substrate via the combination of laser fabrication and heat treatment. The wettability of brass is directly dictated by the laser process parameters. The different superhydrophobic/hydrophilic hybrid pattern surface with a rectangular/triangular array was designed for an optimal fog collection performance. The maximum water collection efficiency of the prepared surface is measured up to 427.36 mg h-1 cm-2, which is 97% higher than that of the control sample. Furthermore, the surface can be folded into different forms to realize a flexible collector. We envision that our work provides a green fabrication strategy to construct a superwetting surface for highly efficient fog collection.
Collapse
Affiliation(s)
- Jinghui Gao
- College of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Street, Changsha 410004, China
| | - Yuxin Song
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Longhui Huang
- College of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Street, Changsha 410004, China
| | - Hong Luo
- College of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Street, Changsha 410004, China
| | - Xinran Dong
- College of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Street, Changsha 410004, China
| | - Cong Wang
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, 932 South Lushan Street, Changsha 410083, China
| | - Ji-An Duan
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, 932 South Lushan Street, Changsha 410083, China
| |
Collapse
|
5
|
Li Y, Liu X, Wang R, Jiao S, Liu Y, Lai H, Cheng Z. Triple-Bioinspired Shape Memory Microcavities with Strong and Switchable Adhesion. ACS NANO 2023. [PMID: 37983013 DOI: 10.1021/acsnano.3c06651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Smart adhesives with switchable adhesion have attracted considerable attention for their potential applications in sensors, soft grippers, and robots. In particular, surfaces with controlled adhesion to both solids and liquids have received more attention, because of their wider range of applications. However, surfaces that exhibit controllable adhesion to both solids and liquids often cannot provide sufficient adhesion strength for strong solid adhesion. To overcome this limitation, this study developed a triple-bioinspired shape memory smart adhesive, drawing inspiration from the adhesion structures found in octopus suckers, lotus leaves, and creepers. Our adhesive design incorporates microcavities formed by a shape memory polymer (SMP), which can transition between rubbery and glassy states in response to temperature changes. By leveraging the shape memory effect and the rubber-glass (R-G) phase transition of the SMP, the adhesion of the surface to smooth solids, rough solids, and water droplets could be switched by adjusting the temperature and applied force. Notably, the adhesives designed herein exhibited high adhesion strength (up to 420 kPa) on solids, facilitated by the shape interlocking effect and the negative pressure generated within the microcavities. Furthermore, the programmable transport of solids and liquids can be achieved by utilizing this switchable adhesion. This approach expands the possibilities for designing smart adhesives and holds potential for various applications in different fields.
Collapse
Affiliation(s)
- Yufen Li
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Xiaofeng Liu
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Ruijie Wang
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Shouzheng Jiao
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yuyan Liu
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Hua Lai
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Zhongjun Cheng
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
6
|
Chen C, Zhu L, Jiang R, Li X. Preparation of a Janus copper mesh via nanoparticle interface self-assembly for unidirectional water transportation. Chem Commun (Camb) 2023; 59:13506-13509. [PMID: 37882452 DOI: 10.1039/d3cc04578a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
A simple colloidal particle interface assembly method is presented to fabricate Janus meshes. The transport mechanism of water on the Janus mesh was fully revealed by experimental observation and numerical simulation. Furthermore, a liquid-assisted ultrafast transport of water droplets on the Janus mesh was presented (transport speed was increased by more than 20 times).
Collapse
Affiliation(s)
- Chaolang Chen
- School of Mechanical Engineering, Sichuan University, 610065, Chengdu, China.
| | - Linfeng Zhu
- School of Mechanical Engineering, Sichuan University, 610065, Chengdu, China.
| | - Ruisong Jiang
- School of Mechanical Engineering, Sichuan University, 610065, Chengdu, China.
| | - Xuan Li
- Department of Mechanical Engineering, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
7
|
Yan D, Chen Y, Liu J, Song J. Super-Fast Fog Collector Based on Self-Driven Jet of Mini Fog Droplets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301745. [PMID: 37156743 DOI: 10.1002/smll.202301745] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Freshwater scarcity crisis threatens human life and economic security. Collecting water from the fog seems to be an effective method to defuse this crisis. Nonetheless, the existing fog collection methods have the limitations of the low fog collection rate and efficiency because of their gravity-based droplet shedding. Here, the aforementioned limitations are resolved by proposing a new fog collection method based on the self-driven jet phenomenon of the mini fog droplets. A prototype fog collector (PFC) composed of a square container that is filled with water is first designed. Both sides of the PFC are superhydrophobic but covered with superhydrophilic pore array. The mini fog droplets touching the side wall are easily captured and spontaneously and rapidly penetrate into the pores to form jellyfish-like jets, which greatly increases the droplet shedding frequency, guaranteeing a higher fog collection rate and efficiency compared with the existing fog collection methods. Based on this, a more practical super-fast fog collector is finally successfully designed and fabricated which is assembled by several PFCs. This work is hoping to resolve the water crisis in some arid but foggy regions.
Collapse
Affiliation(s)
- Defeng Yan
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yang Chen
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jinming Liu
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jinlong Song
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, P. R. China
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
8
|
Li Z, Tang L, Wang H, Singh SC, Wei X, Yang Z, Guo C. Nature-Inspired Surface Engineering for Efficient Atmospheric Water Harvesting. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:11019-11031. [PMID: 37538294 PMCID: PMC10394688 DOI: 10.1021/acssuschemeng.3c00760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/05/2023] [Indexed: 08/05/2023]
Abstract
Atmospheric water harvesting is a sustainable solution to global water shortage, which requires high efficiency, high durability, low cost, and environmentally friendly water collectors. In this paper, we report a novel water collector design based on a nature-inspired hybrid superhydrophilic/superhydrophobic aluminum surface. The surface is fabricated by combining laser and chemical treatments. We achieve a 163° contrast in contact angles between the superhydrophilic pattern and the superhydrophobic background. Such a unique superhydrophilic/superhydrophobic combination presents a self-pumped mechanism, providing the hybrid collector with highly efficient water harvesting performance. Based on simulations and experimental measurements, the water harvesting rate of the repeating units of the pattern was optimized, and the corresponding hybrid collector achieves a water harvesting rate of 0.85 kg m-2 h-1. Additionally, our hybrid collector also exhibits good stability, flexibility, as well as thermal conductivity and hence shows great potential for practical application.
Collapse
Affiliation(s)
- Zihao Li
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
- School
of Physics and Optoelectronics, South China
University of Technology, Guangzhou 510640, China
| | - Luheng Tang
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Hanbin Wang
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Subhash C. Singh
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Xiaoming Wei
- School
of Physics and Optoelectronics, South China
University of Technology, Guangzhou 510640, China
| | - Zhongmin Yang
- School
of Physics and Optoelectronics, South China
University of Technology, Guangzhou 510640, China
| | - Chunlei Guo
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
9
|
Hamza KH, El-Shanshory AA, Agwa MM, Abo-Alkasem MI, El-Fakharany EM, Abdelsattar AS, El-Bardan AA, Kassem TS, Mo X, Soliman HMA. Topically Applied Biopolymer-Based Tri-Layered Hierarchically Structured Nanofibrous Scaffold with a Self-Pumping Effect for Accelerated Full-Thickness Wound Healing in a Rat Model. Pharmaceutics 2023; 15:pharmaceutics15051518. [PMID: 37242760 DOI: 10.3390/pharmaceutics15051518] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/17/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Wound healing has grown to be a significant problem at a global scale. The lack of multifunctionality in most wound dressing-based biopolymers prevents them from meeting all clinical requirements. Therefore, a multifunctional biopolymer-based tri-layered hierarchically nanofibrous scaffold in wound dressing can contribute to skin regeneration. In this study, a multifunctional antibacterial biopolymer-based tri-layered hierarchically nanofibrous scaffold comprising three layers was constructed. The bottom and the top layers contain hydrophilic silk fibroin (SF) and fish skin collagen (COL), respectively, for accelerated healing, interspersed with a middle layer of hydrophobic poly-3-hydroxybutyrate (PHB) containing amoxicillin (AMX) as an antibacterial drug. The advantageous physicochemical properties of the nanofibrous scaffold were estimated by SEM, FTIR, fluid uptake, contact angle, porosity, and mechanical properties. Moreover, the in vitro cytotoxicity and cell healing were assessed by MTT assay and the cell scratching method, respectively, and revealed excellent biocompatibility. The nanofibrous scaffold exhibited significant antimicrobial activity against multiple pathogenic bacteria. Furthermore, the in vivo wound healing and histological studies demonstrated complete wound healing in wounded rats on day 14, along with an increase in the expression level of the transforming growth factor-β1 (TGF-β1) and a decrease in the expression level of interleukin-6 (IL-6). The results revealed that the fabricated nanofibrous scaffold is a potent wound dressing scaffold, and significantly accelerates full-thickness wound healing in a rat model.
Collapse
Affiliation(s)
- Kholoud H Hamza
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Ahmed A El-Shanshory
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab, Alexandria 21934, Egypt
| | - Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Mohamed I Abo-Alkasem
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza 12578, Egypt
- Center for X-Ray and Determination of Structure of Matter, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza 12578, Egypt
| | - Ali A El-Bardan
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Taher S Kassem
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Xiumei Mo
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Hesham M A Soliman
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab, Alexandria 21934, Egypt
| |
Collapse
|
10
|
Zhang Z, Yang Z, Zhao Z, Liu Y, Wang C, Xu W. Multimodal Deep-Learning Framework for Accurate Prediction of Wettability Evolution of Laser-Textured Surfaces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10261-10272. [PMID: 36775913 DOI: 10.1021/acsami.2c21439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The lengthy process through which laser-textured surfaces transform from hydrophilic to hydrophobic severely restricts their practical applications. Accurately predicting the wettability evolution curve is crucial; however, developing a reliable prediction model remains challenging. Herein, a data-driven multimodal deep-learning framework was developed, in which multimodal data of micro/nanostructure morphology images, composition distribution images, and time information are effectively coupled and fed into a convolutional neural network (CNN). Rich data input and in-depth data mining make the framework more robust, achieving accurate prediction of the wettability evolution curves of various typical micro/nanostructures. Additionally, accurate prediction of input images with varying magnifications and untrained laser-textured surfaces demonstrates the generalizability of the multimodal CNN framework. The visualization results of the convolution layer confirmed the rationality of the information learned by the model. Additionally, the proposed multimodal CNN framework was successfully utilized to investigate the optimization process. Further, a laser-textured surface with a shorter evolution period and a larger final contact angle was realized. The proposed multimodal CNN framework offers an efficient and cost-effective method for predicting the wettability evolution curves and exploring the optimization processes, enhancing the application potential of laser micro/nanofabrication of superhydrophobic surfaces.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Rolling and Automation, School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China
| | - Zenan Yang
- Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China
| | - Zhixi Zhao
- State Key Laboratory of Rolling and Automation, School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China
| | - Yiyang Liu
- State Key Laboratory of Rolling and Automation, School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China
| | - Chenchong Wang
- State Key Laboratory of Rolling and Automation, School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China
| | - Wei Xu
- State Key Laboratory of Rolling and Automation, School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China
| |
Collapse
|
11
|
Sh Yalishev V, Abbasi NA, Iqbal M, Alnaser AS. Comparing Water Transport Properties of Janus Membranes Fabricated from Copper Mesh and Foam Using a Femtosecond Laser. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1815-1825. [PMID: 36695534 DOI: 10.1021/acs.langmuir.2c02697] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
One of the important aspects of manipulating and controlling liquid transport is the design of membrane surfaces. Janus membranes with opposite wettability characteristics can be manufactured for efficient directional water transfer. In this work, two types of materials were used to fabricate membranes with an asymmetric wettability behavior: copper foam and copper mesh. One side of the membranes was treated by scanning with a femtosecond laser beam, as a result of which it was converted to a superhydrophilic state, while the untreated side remained hydrophobic. Both membranes demonstrated excellent properties of a water diode through which water droplets could easily pass from the hydrophobic side to the hydrophilic side, but not vice versa. This behavior was achieved by finding the optimal laser scanning speed. This type of Janus membrane has found applications in collecting water droplets from fog; therefore, the samples obtained were also tested in terms of harvesting micro-droplets. The Janus mesh-based structure has demonstrated a higher water collection efficiency (3.9 g/cm2 h) compared to the foam-based membrane (2.5 g/cm2 h). Since the fog-water conversion efficiency decreased over time (to 0.5 g/cm2 h in 2 weeks) due to the absorbance of organic pollutants, a coating of titanium oxide was applied to the laser-treated side of the Janus membranes. As a result, the effective function of the systems became distinctly long-lasting and was well maintained for at least 60 days. Moreover, the fabricated systems were protected from further degradation by simply placing them under sunlight for several hours. Our results prove to be useful in developing asymmetric hydrophobic-superhydrophilic membranes, which have potential applications in high-precision drop control and in harvesting water from arid environments.
Collapse
Affiliation(s)
- Vadim Sh Yalishev
- Department of Physics, American University of Sharjah, P.O. Box 26666, Sharjah 26666, UAE
| | - Naveed A Abbasi
- Department of Physics, American University of Sharjah, P.O. Box 26666, Sharjah 26666, UAE
| | - Mazhar Iqbal
- Department of Physics, American University of Sharjah, P.O. Box 26666, Sharjah 26666, UAE
| | - Ali S Alnaser
- Department of Physics, American University of Sharjah, P.O. Box 26666, Sharjah 26666, UAE
| |
Collapse
|
12
|
Wu J, Yan Z, Yan Y, Li C, Dai J. Beetle-Inspired Dual-Directional Janus Pumps with Interfacial Asymmetric Wettability for Enhancing Fog Harvesting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49338-49351. [PMID: 36268797 DOI: 10.1021/acsami.2c14808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fog-harvesting devices (FHDs) have been widely explored and applied to alleviate the shortage of fresh water. However, during the fog collection process, how to maintain a balance between fog capture and water removal behaviors to enhance the water collection rate still remains a challenge. Herein, inspired by the Stenocara beetle, we combined a beetle-like Janus surface and the conventional cross-sectional Janus structure together, developed a simple spray-and-dry strategy to obtain three types of biomimetic asymmetric meshes, and explored the working modes for atmospheric fog collection. The surface wettability could be carefully controlled, and various asymmetric meshes with different water transportation behaviors were obtained. Through a detailed study of the fog collection process, we concluded that there existed three main working modes: Janus mode, hybrid mode, and Janus and hybrid mode. It was noted that the dual-directional Janus pump with the Janus and hybrid working mode balanced the fog capture and water removal ability and exhibited the highest water collection rate of 2478.73 mg m-2 h-1, which was 2.61 times more than that of the corresponding superhydrophilic mesh. Furthermore, the prepared dual-directional Janus pump showed superior mechanical durability and antibacterial ability. In general, this work was considered instrumental in the reasonable design of biomimetic asymmetric meshes and could provide references for efficient atmospheric fog harvesting.
Collapse
Affiliation(s)
- Junda Wu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Zhuo Yan
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Yongsheng Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Chunxiang Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Jiangdong Dai
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| |
Collapse
|
13
|
Tahzibi H, Azizian S, Szunerits S, Boukherroub R. Fast Capture, Collection, and Targeted Transfer of Underwater Gas Bubbles Using Janus-Faced Carbon Cloth Prepared by a Novel and Simple Strategy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45013-45024. [PMID: 36149819 DOI: 10.1021/acsami.2c12027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Transportation of bubbles in liquids in a controlled fashion is a challenging task and an important subject in numerous industrial processes, including elimination of corrosive gas bubbles in fluid transportation pipes, water electrolysis, reactions between gases, heat transfer, etc. Using superaerophilic surfaces represents a promising solution for bubble movement in a programmed way. Here, a novel and low-cost method is introduced for the preparation of Janus-faced carbon cloth (Janus-CC) using poly(dimethylsiloxane) (PDMS) coating and then burning one side of the carbon cloth/PDMS on an alcoholic burner. The results show that the superhydrophobic face behaves as a superaerophilic surface, while the superhydrophilic side is aerophobic underwater. Subsequently, the Janus-CC is applied for pumpless transport of underwater gas bubbles even under harsh conditions. The movement of gas bubbles on the surface of the Janus-CC is interpreted based on the formed gaseous film on the aerophilic side of the Janus-CC. Various applications of the prepared Janus-CC for underwater bubble transportation, such as underwater gas distributor, gas collector membrane, gas transport for chemical reactions, unidirectional gas membrane, and elimination of gas bubbles in transport pipe, are presented.
Collapse
Affiliation(s)
- Haniyeh Tahzibi
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 65167 Hamedan, Iran
| | - Saeid Azizian
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 65167 Hamedan, Iran
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| |
Collapse
|
14
|
Xu Y, Zeng X, Qiu L, Yang F. 2D nanoneedle-like ZnO/SiO2 Janus membrane with asymmetric wettability for highly efficient separation of various oil/water mixtures. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Rong X, Chen X, Li P, Zhao C, Peng S, Ma H, Qu H. Mechanically durable anti-bacteria non-fluorinated superhydrophobic sponge for highly efficient and fast microplastic and oil removal. CHEMOSPHERE 2022; 299:134493. [PMID: 35385765 DOI: 10.1016/j.chemosphere.2022.134493] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 05/06/2023]
Abstract
Microplastics (MPs) pollution evolves into a global environmental problem to be solved urgently. Although many studies are exploring ways to remove MPs from water environment, most of them are lack of selectivity and low efficiency. Herein, considering the fascinating absorption selectivity of superwetting materials, a robust magnetic-responsive superhydrophobic and superoleophilic sponge was firstly used to quickly eliminate MPs from water with very high efficiency. The functional sponge was fabricated by a non-fluorinated coating technique that consisted of polydimethylsiloxane (PDMS) grafted Fe3O4 particle, PDMS grafted halloysite nanotubes, and PDMS binder. The coated sponge achieved excellent mechanically durable and chemically stable superhydrophobicity that resisted a series of severe treatments. It was unquestionable to show very fast oil absorption. What's more, it especially showed very high adsorption capacity (24.3-48.2 mg/g) and could quickly adsorb almost 100% MPs (polypropylene, polyvinyl chloride, and polyethylene) from aqueous suspensions. Moreover, the removal rates remained almost 100% for these MPs after 50 cycles. Besides, the coated sponge had excellent salt tolerance and antibacterial activity to Escherichia coli (E. coli) (99.91%) and Staphylococcus aureus (S. aureus) (90.46%). The adsorption mechanism of the coating was discussed from the perspectives of molecular structure, electronic effect, steric hindrance, and size-scale effect. The absorption driving force mainly derived from the intra-particle diffusion under capillary attraction, whilst slight electrostatic interaction, hydrogen bond interaction, and σ-p (or p-p) conjugation between PDMS and MPs. This functional sponge was destined to be a new strategy in the removal of MPs and other solid pollutants, especially in the high-salinity and rich-microorganism water environment.
Collapse
Affiliation(s)
- Xin Rong
- College of Chemistry and Environmental Science, China; College of Eco-Environment, China.
| | - Xiaoxin Chen
- College of Chemistry and Environmental Science, China; College of Eco-Environment, China.
| | - Pan Li
- College of Chemistry and Environmental Science, China.
| | - Chenyang Zhao
- College of Chemistry and Environmental Science, China.
| | - Shan Peng
- College of Chemistry and Environmental Science, China; Engineering Technology Research Center for Flame Retardant Materials and Processing Technology of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, 071002, China.
| | - Haiyun Ma
- College of Chemistry and Environmental Science, China; Engineering Technology Research Center for Flame Retardant Materials and Processing Technology of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, 071002, China.
| | - Hongqiang Qu
- College of Chemistry and Environmental Science, China; Engineering Technology Research Center for Flame Retardant Materials and Processing Technology of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, 071002, China.
| |
Collapse
|
16
|
Lee JH, Lee YJ, Kim HY, Moon MW, Kim SJ. Unclogged Janus Mesh for Fog Harvesting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21713-21726. [PMID: 35499316 PMCID: PMC9104128 DOI: 10.1021/acsami.2c03419] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Janus membranes with asymmetric surface wettability have been extensively utilized in various fields, including fog harvesting, because of their novel liquid transport properties. However, Janus membranes have an inherent disadvantage in terms of aerodynamic efficiency in harvesting fog because of the clogged water bridges caused by the small pore size. In the present work, we applied Janus wettability to mesh geometry with systematically varying hole sizes. For a clogged mesh with a small hole size, capillary water transport to the mesh back via the wettability gradient in the direction of fog flow helps harvest more fog by enhancing water drainage, similarly to the Janus membrane. The advantage of the capillary water transport extends to a clog-free mesh with larger hole sizes but more preferably to a Janus mesh with a superhydrophilic back, which presents the highest level of fog-harvesting yield because of the fast shedding frequency and short onset time. In contrast, a Janus mesh with a superhydrophobic front, which also has a wettability gradient along the fog flow, produces a lower fog-harvesting performance, particularly at slow fog speeds, because of the dropwise deposition of large water drops that locally disturb fog flow around a protruding water surface. On the other hand, the other type of Janus mesh with a superhydrophilic front is observed to minimize this disadvantage in the local fog flow by virtue of the filmwise deposition. It is also found that some Janus treatments can help protect mesh holes from clogging up by either forming a thin water meniscus or resisting water transport through the mesh holes.
Collapse
Affiliation(s)
- Joo Hee Lee
- Extreme
Materials Research Center, Korea Institute
of Science and Technology, Seoul 02792, Korea
| | - Young Jin Lee
- Extreme
Materials Research Center, Korea Institute
of Science and Technology, Seoul 02792, Korea
| | - Ho-Young Kim
- Department
of Mechanical Engineering, Seoul National
University, Seoul 08826, Korea
| | - Myoung-Woon Moon
- Extreme
Materials Research Center, Korea Institute
of Science and Technology, Seoul 02792, Korea
| | - Seong Jin Kim
- Extreme
Materials Research Center, Korea Institute
of Science and Technology, Seoul 02792, Korea
| |
Collapse
|
17
|
Liu Q, Yan J, Zhang T, Hu J, Bao Y, Wu L, Yu D, Li J. Multiphase media superwettability regulated by coexisting prewetting phase. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Liu C, Peng Y, Huang C, Ning Y, Shang J, Li Y. Bioinspired Superhydrophobic/Superhydrophilic Janus Copper Foam for On-Demand Oil/Water Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11981-11988. [PMID: 35220721 DOI: 10.1021/acsami.2c00585] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Superwettable Janus membranes with unique interfacial characteristics have versatile applications in oil/water separation, microfluid transportation, and membrane distillation. However, it remains a significant challenge to simply fabricate three-dimensional (3D) metallic foams with Janus superwettability using a facile and environment-friendly method. In this study, a novel method is present to construct a Janus copper foam (CF) by combining superhydrophobicity and superhydrophilicity into CF. Based on gravity, the water in the light oil (LO)/water mixture can be transported from the superhydrophilic (SHL) side to the superhydrophobic (SHB) side, while the heavy oil (HO) in the HO/water/mixture can be transported from the SHB side to the SHL side. Therefore, cylindrical Janus oil/water separation devices with superior separation efficiency and excellent repeatability can achieve on-demand oil/water separation effortlessly. This design and fabrication method offers a novel avenue for the preparation of Janus interface materials for practical applications in liquid transportation, sensor devices, energy materials, and oil spills.
Collapse
Affiliation(s)
- Chunhua Liu
- Engineering Research Center of Jiangxi Province for Bamboo-based Advanced Materials and Biomass Conversion, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Yun Peng
- Engineering Research Center of Jiangxi Province for Bamboo-based Advanced Materials and Biomass Conversion, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Conglin Huang
- Engineering Research Center of Jiangxi Province for Bamboo-based Advanced Materials and Biomass Conversion, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Yuzhen Ning
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Jiaoping Shang
- Engineering Research Center of Jiangxi Province for Bamboo-based Advanced Materials and Biomass Conversion, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Yibao Li
- Engineering Research Center of Jiangxi Province for Bamboo-based Advanced Materials and Biomass Conversion, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| |
Collapse
|
19
|
Li C, Jiang L, Hu J, Xu C, Li Z, Liu W, Zhao X, Zhao B. Superhydrophilic-Superhydrophobic Multifunctional Janus Foam Fabrication Using a Spatially Shaped Femtosecond Laser for Fog Collection and Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9873-9881. [PMID: 35142217 DOI: 10.1021/acsami.1c24284] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fog collection is an effective method for addressing water shortages in arid areas. By constructing a Janus structure with asymmetric wettability on its two sides, flexible and efficient fog capture can be achieved. However, in situ detection and fog collection on a Janus surface are still challenging tasks. Herein, a novel method for producing a superhydrophilic-superhydrophobic Janus fog collector is proposed; the method utilizes a combined process in which a spatially shaped femtosecond laser treatment (superhydrophilic) is applied to one side of a copper foam and a chemical replacement reaction (superhydrophobic) is applied to the other side of the copper foam. Two configurations of the Janus structure were designed to study different water transport behaviors. Furthermore, the Au micro-nanoparticle prepared adhered to the Janus structure, indicating the effectiveness of surface-enhanced Raman spectroscopy detection. The Janus foam shows excellent sensitivity and stability on testing the fog mixed with rhodamine 6G. This surface allows for the simultaneous collection and detection of fog, which can provide insights into the preparation of Janus multifunction structures and how such structures can play a key role in the subsequent purification and usage of water resources.
Collapse
Affiliation(s)
- Chen Li
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Lan Jiang
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, P. R. China
| | - Jie Hu
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chenyang Xu
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zihao Li
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Wei Liu
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiaoming Zhao
- Tianjin Navigation Instruments Research Institute, Tianjin 300131, P. R. China
| | - Bingquan Zhao
- Tianjin Navigation Instruments Research Institute, Tianjin 300131, P. R. China
| |
Collapse
|
20
|
Review on the Development and Application of Directional Water Transport Textile Materials. COATINGS 2022. [DOI: 10.3390/coatings12030301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Moisture (sweat) management in textile products is crucial to regulate human thermo-physiological comfort. Traditional hydrophilic textiles, such as cotton, can absorb sweat, but they retain it, leading to undesired wet adhesion sensation and even excessive cooling. To address such issues, the development of functional textiles with directional water transport (DWT) has garnered great deal of interest. DWT textile materials can realize directional water transport and prevent water penetration in the reverse direction, which is a great application for sweat release in daily life. In this review article, the mechanism of directional water transport is analyzed. Then, three key methods to achieve DWT performance are reviewed, including the design of the fabric structure, surface modification and electrospinning. In addition, the applications of DWT textile materials in functional clothing, electronic textiles, and wound dressing are introduced. Finally, the challenges and future development trends of DWT textile materials in the textile field are discussed.
Collapse
|
21
|
Tang J, Peng L, Chen D, Xie J, Chen M, Wu J, Hao X, Cai W, Zheng F, Shi J. Environmentally Responsive Intelligent Dynamic Water Collector. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2202-2210. [PMID: 34978403 DOI: 10.1021/acsami.1c17477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Collecting water from fog flow is emerging as a promising solution to the water shortage problem. This work demonstrated a novel environmentally responsive water collector made from a self-prepared Janus polyvinyl alcohol sponge in combination with a two-way shape memory alloy spring, which transforms the traditional manner of static water collection into a dynamic one. The unidirectional water transport of the Janus structure together with the dynamic collection approach correspond to a 30.8% increase in the water-collection rate (WCR). The resultant WCR is up to 5.1 g/h, which ranks relatively high compared to similar studies. The light- and thermal-response capability, easy fabrication, and good cycling performance indicate that our devices could be utilized in a variety of applications. In this work, an efficient, intelligent adaptive, simple-preparation, precision-guided, and economical fog-collecting devices are recommended. Our work provides new insights on the design of high-efficient water collectors with practicability.
Collapse
Affiliation(s)
- Jie Tang
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou 510632, China
| | - Linhui Peng
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou 510632, China
| | - Daqi Chen
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou 510632, China
| | - Jingting Xie
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou 510632, China
| | - Mingchuang Chen
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou 510632, China
| | - Jinlei Wu
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou 510632, China
| | - Xi Hao
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou 510632, China
| | - Wanzhu Cai
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou 510632, China
| | - Feipeng Zheng
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou 510632, China
| | - Jifu Shi
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou 510632, China
| |
Collapse
|
22
|
Zhao Z, Ning Y, Ben S, Zhang X, Li Q, Yu C, Jin X, Liu K, Jiang L. Liquid-Assisted Single-Layer Janus Membrane for Efficient Unidirectional Liquid Penetration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103765. [PMID: 34761548 PMCID: PMC8760174 DOI: 10.1002/advs.202103765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/26/2021] [Indexed: 06/10/2023]
Abstract
Unidirectional liquid penetration plays an important role in many fields, such as microfluidic devices, biological medical, liquid printing, and oil/water separation. Although there are some progresses in the liquid unidirectional penetration using a variety of Janus membranes with anisotropic wettability, it still remains a great difficulty for single-layer Janus membranes with straight pore to balance spontaneous liquid penetration in positive direction and superior liquid resistance in the reverse direction. Herein, a liquid-assisted strategy for single-layer Janus membrane is developed, which can efficiently decrease the critical breakthrough pressure from superhydrophobic side to hydrophilic side and show little influence on that in the reverse direction. Consequently, unidirectional water penetration with high hydraulic pressure difference can be achieved. The Laplace pressure change along the thickness of the single-layer Janus membranes is further discussed, and the mechanism by which the auxiliary liquid decreases the critical breakthrough pressure is revealed. Furthermore, this Janus membrane with unidirectional water penetration "diode" performance can be used to prevent liquid backflow in intravenous transfusion. It is believed that this work can open an avenue for people to design single-layer Janus membrane with high pressure difference and find wide applications in unidirectional liquid transport.
Collapse
Affiliation(s)
- Zhihong Zhao
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and TechnologySchool of ChemistryBeihang UniversityBeijing100191P. R. China
| | - Yuzhen Ning
- School of Mechanical Engineering and AutomationBeihang UniversityBeijing100191P. R. China
| | - Shuang Ben
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and TechnologySchool of ChemistryBeihang UniversityBeijing100191P. R. China
| | - Xudong Zhang
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and TechnologySchool of ChemistryBeihang UniversityBeijing100191P. R. China
| | - Qiang Li
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and TechnologySchool of ChemistryBeihang UniversityBeijing100191P. R. China
| | - Cunming Yu
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and TechnologySchool of ChemistryBeihang UniversityBeijing100191P. R. China
| | - Xu Jin
- Research Institute of Petroleum Exploration and Development PetroChinaBeijing100083China
| | - Kesong Liu
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and TechnologySchool of ChemistryBeihang UniversityBeijing100191P. R. China
- Beijing Advanced Innovation Centre for Biomedical EngineeringBeihang UniversityBeijing100191China
| | - Lei Jiang
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and TechnologySchool of ChemistryBeihang UniversityBeijing100191P. R. China
- Beijing Advanced Innovation Centre for Biomedical EngineeringBeihang UniversityBeijing100191China
| |
Collapse
|
23
|
Chen J, Low ZX, Feng S, Zhong Z, Xing W, Wang H. Nanoarchitectonics for Electrospun Membranes with Asymmetric Wettability. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60763-60788. [PMID: 34913668 DOI: 10.1021/acsami.1c16047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Membranes with asymmetric wettability have attracted significant interest by virtue of their unique transport characteristics and functionalities arising from different wetting behaviors of each membrane surface. The cross-sectional wettability distinction enables a membrane to realize directional liquid transport or multifunction integration, resulting in rapid advance in applications, such as moisture management, fog collection, oil-water separation, and membrane distillation. Compared with traditional homogeneous membranes, these membranes possess enhanced transport performance and higher separation efficiency owing to the synergistic or individual effects of asymmetric wettability. This Review covers the recent progress in fabrication, transport mechanisms, and applications of electrospun membranes with asymmetric wettability and provides a perspective on future development in this important area.
Collapse
Affiliation(s)
- Jiwang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Ze-Xian Low
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Shasha Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Zhaoxiang Zhong
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Weihong Xing
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
24
|
Song YY, Yu ZP, Dong LM, Zhu ML, Ye ZC, Shi YJ, Liu Y. Cactus-Inspired Janus Membrane with a Conical Array of Wettability Gradient for Efficient Fog Collection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13703-13711. [PMID: 34767375 DOI: 10.1021/acs.langmuir.1c02368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fog collection plays an important role in alleviating the global water shortage. Despite great progress in creating bionic surfaces to collect fog, water droplets still could adhere to the microscale hydrophilic region and reach the thermodynamic stable state before falling, which delays the transport of water and hinders the continuous fog collection. Inspired by lotus leaves and cactuses, we designed a Janus membrane that functions to both collect fog from the air and transport it to a certain region. The Janus membrane with opposite wettability contains conical microcolumns with a wettability gradient and hydrophilic copper mesh surface. The apexes of conical microcolumns are superhydrophobic and the rest are hydrophobic. The fog droplets were deposited, coalesced, and directionally transported to the bottom of the conical microcolumns. Then, the droplets unidirectionally passed through the membrane and flowed into the water film on the surface of the copper mesh. The asymmetric structural and wettability merits endow the Janus membrane with an improved fog collection of ∼7.05 g/cm2/h. The study is valuable for designing and developing fluid control equipment in fog collection, liquid manipulation, and microfluidics.
Collapse
Affiliation(s)
- Yun-Yun Song
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Zhao-Peng Yu
- School of Automotive Engineering, Changshu Institute of Technology, No. 99 Hushan Road, Changshu, Suzhou 215500, P. R. China
| | - Li-Ming Dong
- School of Automotive Engineering, Changshu Institute of Technology, No. 99 Hushan Road, Changshu, Suzhou 215500, P. R. China
| | - Mao-Lin Zhu
- School of Automotive Engineering, Changshu Institute of Technology, No. 99 Hushan Road, Changshu, Suzhou 215500, P. R. China
| | - Zhi-Chun Ye
- School of Automotive Engineering, Changshu Institute of Technology, No. 99 Hushan Road, Changshu, Suzhou 215500, P. R. China
| | - Yuan-Ji Shi
- Department of Mechanical Engineering, Nanjing Institute of Industry Technology, Nanjing 210046, Jiangsu, P. R. China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, P. R. China
| |
Collapse
|
25
|
Liang Z, He W, Chu D, Qu S, Yao P. Structured Copper Mesh for Efficient Oil-Water Separation Processed by Picosecond Laser Combined With Chemical Treatment or Thermal Oxidation. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.757487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oil-water separation has great practical significance, and can be used to help cope with growing oily industrial sewage discharge or marine oil spills, avoiding water pollution. Smart artificial super-wettable materials used for oil-water separation have aroused enormous interest because of their advantages of energy efficiency and applicability across a wide range of industrial processes. Herein, we report a highly efficient, simple method for oil-water separation using copper mesh fabricated by picosecond laser processing combined with chemical treatment or thermal oxidation. After laser processing, the surfaces of copper mesh show superhydrophilicity (hydrophilicity) and underwater superoleophobicity, which can be used to separate water from oil. While, for the samples after laser and chemical treatment or laser treatment combined with thermal oxidation, the surfaces become superhydrophobic (hydrophobic) and underwater superoleophilic, which can separate oil from water. Moreover, these three kinds of super-wettability meshes show high separation efficiency, achieving more than 99% seperation. Furthermore, the as-prepared mesh can be used for various oil-water mixture separation, such as edible oil, kerosene, diesel, and so on. Thus, this work will provide insights for controllable oil-water separation, and will also be beneficial to the study of microfluidic devices, and smart filters.
Collapse
|
26
|
Chi H, Xu Z, Wei Z, Zhang T, Wang H, Lin T, Zhao Y. Fabrics with Novel Air-Oil Amphibious, Spontaneous One-Way Water-Transport Capability for Oil/Water Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29150-29157. [PMID: 34101407 DOI: 10.1021/acsami.1c06489] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Porous media with directional water-transport capability have great applications in oil-water separation, moisture-harvesting, microfluidics, and moisture-management textiles. However, the previous directional water-transport materials chiefly work in the air. The materials with directional water-transport capability in the oil phase have been less reported. Here, we fabricated a novel Janus fabric with amphibious directional water-transport capability that can work both in the air and oil phases. It was prepared using dip coating and spraying to develop an oleophobic-hydrophobic to oleophobic-hydrophilic gradient across the thickness of the fabric substrate. The fabric allowed water droplets to rapidly transport from the hydrophobic to the hydrophilic side when the fabric was either in the air environment or fully immersed in oil. However, it hindered water transport in the opposite direction. More importantly, the fabric can overcome gravity to capture water from oil. Such an air-oil amphibious water-transport fabric showed excellent water collecting capability. In oil, it does not require any prewetting or extra pressure to perform directional water transport, which is vital for water-oil separation and microfluidics. Such amphibious directional water-transport function may be useful for the development of smart membranes and directional liquid delivery.
Collapse
Affiliation(s)
- Huanjie Chi
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Zhiguang Xu
- China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing 314001, China
| | - Zhenzhen Wei
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Tao Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Hongxia Wang
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Tong Lin
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Yan Zhao
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
27
|
Su Y, Chen L, Jiao Y, Zhang J, Li C, Zhang Y, Zhang Y. Hierarchical Hydrophilic/Hydrophobic/Bumpy Janus Membrane Fabricated by Femtosecond Laser Ablation for Highly Efficient Fog Harvesting. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26542-26550. [PMID: 34042424 DOI: 10.1021/acsami.1c02121] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The shortage of freshwater is threatening sustainable economic development and ecological security worldwide. Janus membrane, as a highly efficient method to collect the invisible fog water in the wet environment, is still hindered by some inherent limitations: (1) poor condensation of fog droplets on the superhydrophobic side due to the ultralow adhesive force of droplets with substrate and (2) insufficient detachment of droplets from the superhydrophilic side in time, which hampers the continuous water transport in the micropores. Herein, inspired by the desert beetle's back with alternating hydrophobic/hydrophilic bumps and the cactus thorn with an asymmetric geometry, we design and fabricate a kind of hierarchical hydrophilic/hydrophobic/bumpy Janus (HHHBJ) membrane by femtosecond laser ablation on an aluminum membrane to achieve the self-driven fog collection, which achieves over 250% enhancement in the water collection efficiency over the conventional Janus membrane. Even when the mist flow is applied to the surface at an incident angle of 45°, the collection efficiency increases by 600%. The mechanism of the HHHBJ film with excellent fog collection efficiency is mainly related to the continuous efficient fog condensation on the top surface and droplet removal on the bottom surface in time. We believe the proposed multi-bioinspired HHHBJ film with droplet self-driven collection ability provides insights to conceive and construct a highly efficient fog collection system in broad fields.
Collapse
Affiliation(s)
- Yahui Su
- School of Electrical Engineering and Automation, School of Electronics and Information Engineering, Anhui University, Hefei 230601, China
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China
- School of Electrical Engineering and Automation, Anhui University, Hefei 230601, China
| | - Liang Chen
- School of Electrical Engineering and Automation, School of Electronics and Information Engineering, Anhui University, Hefei 230601, China
| | - Yunlong Jiao
- Institute of Tribology, School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Juan Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Chuanzong Li
- School of Instrument Science and Opto-electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yiyuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yachao Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
28
|
Ren B, Pi H, Zhao X, Hu M, Zhang X, Wang R, Wu J. Janus membrane with novel directional water transport capacity for efficient atmospheric water capture. NANOSCALE 2021; 13:9354-9363. [PMID: 33998638 DOI: 10.1039/d1nr01120k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fresh water scarcity has become a crisis affecting human survival and development. Atmospheric water capture with remarkable advantages such as energy-independence and low-cost is supposed to be a promising way to address the problem. Herein, a facile strategy is presented to design a membrane material with efficient atmospheric water capture capacity and high practical significancy. A hybrid Janus membrane with anisotropic wettability and morphology is fabricated by integrating electrospinning and in situ surface oxidation methods. Taking advantage of the anisotropic wettability and strong force provided by directional wicking to draw water drops from a hydrophobic to a hydrophilic layer, the Janus membrane exhibits novel directional water droplet transport and possesses efficient and excellent atmospheric water capture capacity. Janus membrane with larger pores in the hydrophobic layer shows higher atmospheric water capture capacity than that with smaller pores. Furthermore, the hybrid Janus membrane is successfully implemented in soil water retention in the plant cultivation process. This work provides an insight into the facile design of the Janus membrane for fresh water capture, which is important to extend its practical applications.
Collapse
Affiliation(s)
- Baona Ren
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China.
| | - Haohong Pi
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China.
| | - Xin Zhao
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China.
| | - Miaomiao Hu
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China.
| | - Xiuqin Zhang
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China.
| | - Rui Wang
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China.
| | - Jing Wu
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China.
| |
Collapse
|
29
|
Liang X, Li D, Li S, Xu C, Guo Z. Artificial Leaf for Switchable Droplet Manipulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5745-5752. [PMID: 33929871 DOI: 10.1021/acs.langmuir.1c00799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Droplet manipulation plays an important role in scientific research, daily life, and practical production such as biological and chemical analysis. Inspired by the structure and function of three typical leaf veins, the bionic texture was replicated by the template method, and the artificial leaf was selectively treated by nanoparticles to obtain a quasi-three-dimensional hybrid superhydrophobic-hydrophilic surface. When the droplet touches the surface of the leaf, it will be attracted to the bottom of the main vein from different directions even in horizontal conditions due to the Laplace pressure gradient and energy gradient. The simulation analysis demonstrates that the reason for directional transportation is the energy gradient of the droplets on the different levels of veins, including the thin veins, lateral veins, and main vein. Meanwhile, the experimental result of water collection also showed an outstanding directional transportation effect and excellent water collection efficiency. In addition, when the sample is tilted upside down, the droplet will flow back to the main vein along the lateral vein and then flow down the main vein, showing a good droplet pumping effect. Therefore, the directional and polydirectional transportation of droplets on the same sample is successfully realized, and the conversion between executing single and multiple tasks simultaneously can be realized only by upright and inverted samples. This work provided a new strategy for directional and polydirectional water manipulation, water collection, directional drainage, and microfluidic devices.
Collapse
Affiliation(s)
- Xiaojing Liang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Deke Li
- School of Materials Engineering, Lanzhou Institute of Technology, Lanzhou 730050, People's Republic of China
| | - ShanPeng Li
- College of Engineering, Lishui University, Lishui 323000, People's Republic of China
| | - Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| |
Collapse
|
30
|
Wu Z, Yin K, Wu J, Zhu Z, Duan JA, He J. Recent advances in femtosecond laser-structured Janus membranes with asymmetric surface wettability. NANOSCALE 2021; 13:2209-2226. [PMID: 33480955 DOI: 10.1039/d0nr06639g] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Janus wettability membranes have received much attention because of their asymmetric surface wettability. On the basis of this distinctiveness from traditional symmetrical membranes, relevant scholars have been inspired to pursue many innovations utilizing such membranes. Femtosecond laser microfabrication shows many advantages, such as precision, short time, and environmental friendliness, over traditional fabrication methods. Now this has been applied in structuring Janus membranes by researchers. This review covers recent advances in femtosecond laser-structured Janus membranes with asymmetric surface wettability. The background in femtosecond laser-structured Janus membranes is first discussed, focusing on the Janus wettability membrane and femtosecond laser microfabrication. Then the applications of Janus membranes are introduced, which are divided into unidirectional fluid transport, oil-water separation, fog harvesting, and seawater desalination. Finally, based on femtosecond laser-structured Janus membranes, some existing problems are pointed out and future perspectives proposed.
Collapse
Affiliation(s)
- Zhipeng Wu
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China.
| | - Kai Yin
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China. and The State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Junrui Wu
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China.
| | - Zhuo Zhu
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China.
| | - Ji-An Duan
- The State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Jun He
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China.
| |
Collapse
|
31
|
Xiao Y, Guo Z. Recent advances in biomimetic surfaces inspired by creatures for fog harvesting. NEW J CHEM 2021. [DOI: 10.1039/d1nj03675k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, the recent advances in artificial surfaces for fog harvesting are introduced with emphasis on the surfaces and their mechanisms used to enhance water capture and transportation, providing prospects for coping with water shortages.
Collapse
Affiliation(s)
- Yisu Xiao
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430000, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430000, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
32
|
Yang Y, Shen H, Qiu J. Fabrication of biomimetic robust self-cleaning superhydrophobic wood with canna-leaf-like micro/nanostructure through morph-genetic method improved water-, UV-, and corrosion resistance properties. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128616] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Bio-Inspired Design of Bi/Tridirectionally Anisotropic Sliding Superhydrophobic Titanium Alloy Surfaces. NANOMATERIALS 2020; 10:nano10112140. [PMID: 33121077 PMCID: PMC7692618 DOI: 10.3390/nano10112140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/15/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
Many biological surfaces with the multi-scale microstructure show obvious anisotropic wetting characteristics, which have many potential applications in microfluidic systems, biomedicine, and biological excitation systems. However, it is still a challenge to accurately prepare a metal microstructured surface with multidirectional anisotropy using a simple but effective method. In this paper, inspired by the microstructures of rice leaves and butterfly wings, wire electrical discharge machining was used to build dual-level (submillimeter/micrometer) periodic groove structures on the surface of titanium alloy, and then a nanometer structure was obtained after alkali-hydrothermal reaction, forming a three-level (submillimeter/micrometer/nanometer) structure. The surface shows the obvious difference of bidirectional superhydrophobic and tridirectional anisotropic sliding after modification, and the special wettability is easily adjusted by changing the spacing and angle of the inclined groove. In addition, the results indicate that the ability of water droplets to spread along parallel and perpendicular directions on the submillimeter groove structure and the different resistances generated by the inclined groove surface are the main reasons for the multi-anisotropic wettability. The research gives insights into the potential applications of metal materials with multidirectional anisotropic wetting properties.
Collapse
|
34
|
Oh I, Cha H, Chen J, Chavan S, Kong H, Miljkovic N, Hu Y. Enhanced Condensation on Liquid-Infused Nanoporous Surfaces by Vibration-Assisted Droplet Sweeping. ACS NANO 2020; 14:13367-13379. [PMID: 33064463 DOI: 10.1021/acsnano.0c05223] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Condensation is a universal phenomenon that occurs in nature and industry. Previous studies have used superhydrophobicity and liquid infusion to enable superior liquid repellency due to reduced contact angle hysteresis. However, small condensate droplets remain immobile on condensing surfaces until they grow to the departing size at which the body force can overcome the contact line pinning force. Hence, condensation heat transfer is limited by these remaining droplets that act as thermal barriers. To break these limitations, we introduce vibrational actuation to a slippery liquid-infused nanoporous surface (SLIPS) and show enhanced droplet mobility, controllable condensate repellency, and more efficient heat transfer compared to static SLIPSs. We demonstrate 39% smaller departing droplet size and 8× faster droplet departing speeds on the dynamic vibrating SLIPS compared to the nonactuated SLIPS. To understand the implications of these behaviors on heat transfer, we investigate the condensate area coverage and droplet distribution to verify enhanced dewetting on dynamic vibrating SLIPSs. Using well-validated heat transfer models, we demonstrate enhanced condensation heat transfer on dynamic SLIPSs due to the higher population of smaller condensate droplets (<100 μm). In addition to condensation heat transfer, we also show that vibrating SLIPSs can enhance droplet collection. This work utilizes the synergistic combination of surface chemistry and mechanical actuation to realize enhanced droplet mobility and heat transfer in an electrically controllable and switchable manner.
Collapse
Affiliation(s)
- Inkyu Oh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hyeongyun Cha
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jiehao Chen
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Shreyas Chavan
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Nenad Miljkovic
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yuhang Hu
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
35
|
Shi W, De Koninck LH, Hart BJ, Kowalski NG, Fugaro AP, van der Sloot TW, Ott RS, Kennedy BS, Boreyko JB. Harps under Heavy Fog Conditions: Superior to Meshes but Prone to Tangling. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48124-48132. [PMID: 33021369 DOI: 10.1021/acsami.0c12329] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In arid yet foggy regions, fog harvesting is emerging as a promising approach to combat water scarcity. The mesh netting used by current fog harvesters suffers from inefficient drainage, which severely constrains the water collection efficiency. Recently, it was demonstrated that fog harps can significantly enhance water harvesting as the vertical wire array does not obstruct the drainage pathway. However, fabrication limitations resulted in a very low shade coefficient of 18% for the initial fog harp prototype and the field testing was geographically confined to light fog conditions. Here, we use wire-electrical discharge machining (wire-EDM) to machine ultrafine comb arrays; winding the harp wire along a comb-embedded reinforced frame enabled a shade coefficient of 50%. To field test under heavy fog conditions, we placed the harvesters on a closed-circuit test road and inundated them with fog produced by an array of overlying fog towers. On average, the fog harps collected about three times more water than the mesh netting. During fog harvesting, the harp wires were observed to tangle together due to the surface tension of water. We developed a rational model to predict the extent of the tangling problem for any given fog harp design. By designing next-generation fog harps to be anti-tangling, we expect that even larger performance multipliers will be possible compared to the current mesh harvesters.
Collapse
Affiliation(s)
- Weiwei Shi
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Lance H De Koninck
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Brandon J Hart
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nicholas G Kowalski
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Andrew P Fugaro
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Thomas W van der Sloot
- School of Architecture and Design, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Robin S Ott
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Brook S Kennedy
- School of Architecture and Design, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jonathan B Boreyko
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
36
|
Han DD, Cai Q, Chen ZD, Li JC, Mao JW, Lv P, Gao BR. Bioinspired Surfaces With Switchable Wettability. Front Chem 2020; 8:692. [PMID: 32903458 PMCID: PMC7434979 DOI: 10.3389/fchem.2020.00692] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022] Open
Abstract
The surface wettability of plants exhibits many unique advantages, which enhances the environmental adaptability of plants. In view of the rapid development of responsive materials, smart surfaces have been explored extensively to regulate surface wettability through external stimuli. Herein, we summarized recent advancements in bioinspired surfaces with switchable wettability. Typical bioinspired surfaces with switchable wettability and their emerging applications have been reviewed. In the end, we have discussed the remaining challenges and provided perspective on future development.
Collapse
Affiliation(s)
- Dong-Dong Han
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China
| | - Qing Cai
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhao-Di Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China
| | - Ji-Chao Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China
| | - Jiang-Wei Mao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China
| | - Pin Lv
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China
| | - Bing-Rong Gao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
37
|
Xu J, Xin B, Wang C, Zheng Y, Chen C, Zhou M, Tian X, Du X. Tailoring double‐layered fibrous mat of modified polypropylene/cotton fabric for the function of directional moisture transport. J Appl Polym Sci 2020. [DOI: 10.1002/app.49530] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jinhao Xu
- School of Textiles and Fashion Engineering Shanghai University of Engineering Science Shanghai China
| | - Binjie Xin
- School of Textiles and Fashion Engineering Shanghai University of Engineering Science Shanghai China
| | - Chun Wang
- School of Textiles and Fashion Engineering Shanghai University of Engineering Science Shanghai China
- State Key Laboratory of Separation Membranes Membrane Process Tianjin Polytechnic University Tianjin China
| | - Yuansheng Zheng
- School of Textiles and Fashion Engineering Shanghai University of Engineering Science Shanghai China
| | - Chuoming Chen
- School of Textiles and Fashion Engineering Shanghai University of Engineering Science Shanghai China
| | - Mengjuan Zhou
- Collage of Textile Donghua University Shanghai China
| | - Xu Tian
- School of Textiles and Fashion Engineering Shanghai University of Engineering Science Shanghai China
| | - Xuanxuan Du
- School of Textiles and Fashion Engineering Shanghai University of Engineering Science Shanghai China
| |
Collapse
|
38
|
Wang J, Yi S, Yang Z, Chen Y, Jiang L, Wong CP. Laser Direct Structuring of Bioinspired Spine with Backward Microbarbs and Hierarchical Microchannels for Ultrafast Water Transport and Efficient Fog Harvesting. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21080-21087. [PMID: 32293863 DOI: 10.1021/acsami.0c02888] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Achieving effective dropwise capture and ultrafast water transport is essential for fog harvesting. In nature, cactus uses the conical spine with microbarbs to effectively capture fog, while Sarracenia utilizes the trichome with hierarchical microchannels to quickly transport water. Herein, we combined their advantages to present a novel configuration, a spine with barbs and hierarchical channels (SBHC), for simultaneous ultrafast water transport and high-efficient fog harvesting. This bioinspired SBHC exhibited the fastest water transport ability and the highest fog harvesting efficiency in comparison with the spine with hierarchical channels (SHCs), the spine with barbs and grooves (SBG), and the spine with barbs (SB). Based on the fundamental SBHC unit, we further designed and fabricated a two-dimensional (2D) spider-web-like fog collector and a three-dimensional (3D) cactus-like fog collector using direct laser structuring and origami techniques. The 2D spider-web and 3D cactus-like fog collectors showed high-efficient fog collection capacity. We envision that this fundamental understanding and rational design strategy can be applied in fog harvesting, heat transfer, liquid manipulation, and microfluidics.
Collapse
Affiliation(s)
- Jian Wang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Shengzhu Yi
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Zhilun Yang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yun Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Faculty of Engineering, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, P. R. China
| | - Lelun Jiang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Ching-Ping Wong
- Faculty of Engineering, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, P. R. China
| |
Collapse
|
39
|
All-dry patterning method to fabricate hydrophilic/hydrophobic surface for fog harvesting. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04656-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Zhu S, Li J, Cai S, Bian Y, Chen C, Xu B, Su Y, Hu Y, Wu D, Chu J. Unidirectional Transport and Effective Collection of Underwater CO 2 Bubbles Utilizing Ultrafast-Laser-Ablated Janus Foam. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18110-18115. [PMID: 32208611 DOI: 10.1021/acsami.0c00464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Manipulating gas bubbles in aqueous ambient is of great importance for applications in water treatment, gas collection, and matter transport. Here, a kind of Janus foam is designed and fabricated by one-step ultrafast laser ablation of one side of the copper film, which is treated to be superhydrophobic. Janus foam exhibits not only the capability of unidirectional transport of underwater bubbles but also gas collection with favorable efficiency up to ∼15 mL cm-2 min-1. The underlying physical mechanism is attributed to the cooperation of the buoyancy, adhesion, and wetting gradient forces imposed on the bubbles. As a paradigm, the underwater chemical reaction between the unidirectional CO2 gas flow and the alkaline phenolphthalein solution is demonstrated via Janus foam. This facile and low-cost fabrication approach for Janus foam will find broad potential applications in effective bubble transport, carbon capture, and controllable chemical reactions under aqueous conditions.
Collapse
Affiliation(s)
- Suwan Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Shengwen Cai
- School of Electrical Engineering and Automation, School of Electronics and Information Engineering, Key Laboratory of Computational Intelligence and Signal Processing, Ministry of Education, Anhui University, Hefei 230039, China
| | - Yucheng Bian
- School of Microelectronics, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Chao Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Bing Xu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yahui Su
- School of Electrical Engineering and Automation, School of Electronics and Information Engineering, Key Laboratory of Computational Intelligence and Signal Processing, Ministry of Education, Anhui University, Hefei 230039, China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
41
|
Li C, Jiao Y, Lv X, Wu S, Chen C, Zhang Y, Li J, Hu Y, Wu D, Chu J. In Situ Reversible Tuning from Pinned to Roll-Down Superhydrophobic States on a Thermal-Responsive Shape Memory Polymer by a Silver Nanowire Film. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13464-13472. [PMID: 32100537 DOI: 10.1021/acsami.9b20223] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Shape memory polymer (SMP) surfaces with tunable wettability have attracted extensive attention due to their widespread applications. However, there have been rare reports on in situ tuning wettability with SMP materials. In this paper, we reported a kind of distinct superhydrophobic SMP microconed surface on the silver nanowire (AgNW) film to achieve in situ reversible transition between pinned and roll-down states. The mechanism is taking advantage of the in situ heating functionality of the silver nanowire film by voltage, which provides the transition energy for SMP to achieve the fixation and recovery of temporary shape. It is noteworthy that the reversible transition could be repeated many times (>100 cycles), and we quantitatively investigate the shape memory ability of microcones with varied height and space under different applied voltages. These results show that the tilted microcones could recover its original upright state under a small voltage (4-11 V) in a short time, and the shortest recovery time is about 0.5 min under an applied voltage of ∼10 V. Finally, we utilize SMP microcone arrays with tunable wettability to realize lossless droplet transportation, and the tilted microconed surface also achieves liquid unidirectional transport due to its anisotropic water adhesion force. The robust microconed SMP surface with reversible morphology transitions will have far-ranging applications including droplet manipulation, reprogrammable fog harvesting, and so on.
Collapse
Affiliation(s)
- Chuanzong Li
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yunlong Jiao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Xiaodong Lv
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Sizhu Wu
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chao Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yiyuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
42
|
Li X, Yuan G, Yu W, Xing J, Zou Y, Zhao C, Kong W, Yu Z, Guo C. A self-driven microfluidic surface-enhanced Raman scattering device for Hg 2+ detection fabricated by femtosecond laser. LAB ON A CHIP 2020; 20:414-423. [PMID: 31867593 DOI: 10.1039/c9lc00883g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this paper, we proposed a novel approach for rapid and flexible fabrication of self-driven microfluidic surface enhanced Raman scattering (SERS) chips for quantitative analysis of Hg2+ by femtosecond laser direct writing. In contrast to traditional microfluidic chips, the microchannels of the device can drive a liquid sample flow without external driving force. The sample flow speed is tunable since the wettability and capillarity properties of the channels, which depend on the roughness and the inner diameter of the microchannels, can be controlled by optimizing the laser processing parameters. The SERS active detection sites, which exhibit high enhancement effects and fine reproducibility, were integrated through the femtosecond laser-induced periodic surface structures (LIPSS), followed by 30 nm Ag deposition. The SERS performance of the as-prepared microfluidic SERS detection chip was studied with R6G as probe molecules. The quantitative analysis of Hg2+ was realized by simply injecting the Hg2+ sample and the probe molecules R6G from the two inlets, separately, and collecting the SERS signal at the detection site. The lowest detection limit for Hg2+ is 10-9 M. It should be mentioned that this study is not only limited to Hg2+ quantitative analysis, but is also mainly aimed to develop a new technique for the design and fabrication of novel self-driven microfluidic devices depending on practical application requirements.
Collapse
Affiliation(s)
- Xiuyun Li
- The Guo China-US Photonics Laboratory, State Key Laboratory for Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gan Yuan
- The Guo China-US Photonics Laboratory, State Key Laboratory for Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weili Yu
- The Guo China-US Photonics Laboratory, State Key Laboratory for Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China.
| | - Jun Xing
- The Guo China-US Photonics Laboratory, State Key Laboratory for Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Zou
- The Guo China-US Photonics Laboratory, State Key Laboratory for Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Zhao
- The Guo China-US Photonics Laboratory, State Key Laboratory for Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenchi Kong
- The Guo China-US Photonics Laboratory, State Key Laboratory for Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Yu
- The Guo China-US Photonics Laboratory, State Key Laboratory for Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China.
| | - Chunlei Guo
- The Guo China-US Photonics Laboratory, State Key Laboratory for Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China. and The Institute of Optics, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
43
|
Abstract
This review starts with the main process of fog collection and then analyzes the influencing factors that affect the efficiency of fog collection.
Collapse
Affiliation(s)
- Xing Tang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials
- Hubei University
- Wuhan 430062
- People's Republic of China
- State Key Laboratory of Solid Lubrication
| | - Zhiguang Guo
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials
- Hubei University
- Wuhan 430062
- People's Republic of China
- State Key Laboratory of Solid Lubrication
| |
Collapse
|
44
|
Affiliation(s)
- Jian Li
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Zhiguang Guo
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
45
|
Wen C, Guo H, Bai H, Xu T, Liu M, Yang J, Zhu Y, Zhao W, Zhang J, Cao M, Zhang L. Beetle-Inspired Hierarchical Antibacterial Interface for Reliable Fog Harvesting. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34330-34337. [PMID: 31429271 DOI: 10.1021/acsami.9b11862] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The microdroplets in fog flow have been considered as an important resource for supplying fresh drinking water. Most of the reported works of fog collection focus on the water-collecting ability rather than the environmental reliability of selected materials. In this work, a beetle-inspired hierarchical fog-collecting interface based on the antibacterial needle-array (ABN) and hydrophilic/hydrophobic cooperative structure is displayed. The hydrophilic ABN is coated with zwitterionic carboxybetaine (CB) brushes that endow the fog collector with a long-term cleaning in harsh environment. Due to its strong affinity to water molecules, the tilted needles with a CB coating can facilitate the capture of fog and the rapid delivery of condensed water driven by gravity. After being transported to the connected hydrophobic sheet, the collected droplets can be rapidly detached and stored in the container, achieving a high fog-harvesting rate. Furthermore, CB-patterned channels are integrated on the hydrophobic sheet for the pathway-controlled water delivery. The CB coating is able to efficiently resist bacterial adhesion and contamination during fog harvesting, protecting the device from microbiological corrosion. The current design provides a promising method to incorporate antibacterial ability into fog collectors, which offer great opportunity to develop water harvesters for real-world applications.
Collapse
Affiliation(s)
- Chiyu Wen
- School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) , Tianjin University , Tianjin 300350 , China
- Qingdao Institute for Marine Technology , Tianjin University , Qingdao 266235 , China
| | - Hongshuang Guo
- School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) , Tianjin University , Tianjin 300350 , China
- Qingdao Institute for Marine Technology , Tianjin University , Qingdao 266235 , China
| | - Haoyu Bai
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering , Tianjin University , Tianjin 300072 , China
| | - Tong Xu
- School of Chemical Engineering and Technology , Inner Mongolia University of Technology , Huhhot 010051 , China
| | - Min Liu
- School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) , Tianjin University , Tianjin 300350 , China
- Qingdao Institute for Marine Technology , Tianjin University , Qingdao 266235 , China
| | - Jing Yang
- School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) , Tianjin University , Tianjin 300350 , China
- Qingdao Institute for Marine Technology , Tianjin University , Qingdao 266235 , China
| | - Yingnan Zhu
- School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) , Tianjin University , Tianjin 300350 , China
- Qingdao Institute for Marine Technology , Tianjin University , Qingdao 266235 , China
| | - Weiqiang Zhao
- School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) , Tianjin University , Tianjin 300350 , China
- Qingdao Institute for Marine Technology , Tianjin University , Qingdao 266235 , China
| | - Jiamin Zhang
- School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) , Tianjin University , Tianjin 300350 , China
- Qingdao Institute for Marine Technology , Tianjin University , Qingdao 266235 , China
| | - Moyuan Cao
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering , Tianjin University , Tianjin 300072 , China
| | - Lei Zhang
- School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) , Tianjin University , Tianjin 300350 , China
- Qingdao Institute for Marine Technology , Tianjin University , Qingdao 266235 , China
| |
Collapse
|
46
|
Li Y, Zhang H, Ma C, Yin H, Gong L, Duh Y, Feng R. Durable, cost-effective and superhydrophilic chitosan-alginate hydrogel-coated mesh for efficient oil/water separation. Carbohydr Polym 2019; 226:115279. [PMID: 31582078 DOI: 10.1016/j.carbpol.2019.115279] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/09/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023]
Abstract
Hydrogels with low-adhesive superoleophobicity are ideal candidates for modifying filtration substrates to achieve efficient and antifouling oil/water separation. However, there are still some unfavorable factors hindering their practical application, including expensive raw materials, complex fabrication process, poor stability and durability. In this work, a durable, cost-effective and superhydrophilic chitosan-alginate (CS-ALG) hydrogel coated mesh was developed by a facile, two-step dip-coating method for efficient oil/water separation in hypersaline environments. By integrating polysaccharide-based superhydrophobic surfaces and the hierarchical micro-/nanostructures, the as-fabricated CS-ALG hydrogel coated mesh exhibits excellent underwater superoleophobicity and anti-oil-fouling performance. Benefiting from that, the mesh could separate various oil/water mixtures with high separation efficiency (> 99%). It is worth mentioning that the double-cross-linked CS-ALG hydrogel based on sequential electrostatic interaction and ionic cross-linking shows excellent durability in hypersaline environments. All these attractive advantages make the hydrogel-coated mesh a promising candidate for oily wastewater treatment and oil spill cleanup.
Collapse
Affiliation(s)
- Yuqi Li
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China; Institute of Chemical Safety, Fujian University of Technology, Fuzhou 350118, China
| | - Hui Zhang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Cen Ma
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China
| | - Hao Yin
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lingzhu Gong
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China; Institute of Chemical Safety, Fujian University of Technology, Fuzhou 350118, China
| | - Yihshing Duh
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China
| | - Ren Feng
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China
| |
Collapse
|
47
|
Yang Y, He H, Li Y, Qiu J. Using Nanoimprint Lithography to Create Robust, Buoyant, Superhydrophobic PVB/SiO 2 Coatings on wood Surfaces Inspired by Red roses petal. Sci Rep 2019; 9:9961. [PMID: 31292503 PMCID: PMC6620340 DOI: 10.1038/s41598-019-46337-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/24/2019] [Indexed: 12/27/2022] Open
Abstract
Robust, buoyant, superhydrophobic PVB/SiO2 coatings were successfully formed on wood surface through a one-step solvothermal method and a nanoimprint lithography method. The as-prepared PVB/SiO2/wood specimens were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), thermogravimetric/differential thermogravimetric (TG-DTG) analyses. The superhydrophobic property and abrasion resistance of rose-petal-like wood were measured and assessed by water contact angle (WCA) and sand abrasion tests. The results show that PVB/SiO2/wood not only exhibited a robust superhydrophobic performance with a WCA of 160° but also had excellent durability and thermostability during the sand abrasion tests and against corrosive liquids. Additionally, the as-prepared PVB/SiO2/wood specimens show high buoyancy.
Collapse
Affiliation(s)
- Yushan Yang
- College of Materials Science and Engineering, Southwest Forestry University, Yunnan Kunming, 650224, People's Republic of China
| | - Haishan He
- College of Materials Science and Engineering, Southwest Forestry University, Yunnan Kunming, 650224, People's Republic of China
| | - Yougui Li
- College of Materials Science and Engineering, Southwest Forestry University, Yunnan Kunming, 650224, People's Republic of China
| | - Jian Qiu
- College of Materials Science and Engineering, Southwest Forestry University, Yunnan Kunming, 650224, People's Republic of China. .,Wood Collection, Southwest Forestry University, Yunnan Kunming, 650224, People's Republic of China.
| |
Collapse
|
48
|
Peng J, Zhao X, Wang W, Gong X. Durable Self-Cleaning Surfaces with Superhydrophobic and Highly Oleophobic Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8404-8412. [PMID: 31192609 DOI: 10.1021/acs.langmuir.9b01507] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Functional surfaces with superhydrophobic and superoleophobic properties are of great interest in many applications. However, such surfaces are generally difficult to obtain. Although a few superamphiphobic surfaces have been developed recently, a challenge still remains in preparing such a surface with good durability which is a critical issue in practical application. In this study, we demonstrate a facile method for preparing durable superhydrophobic and highly oleophobic surfaces using two kinds of nanoparticles. Epoxy resin is used as the adhesive material to improve the wear resistance of the surfaces. ZnO nanoparticles and SiO2 nanoparticles are used to create high surface roughness. The prepared surfaces exhibit excellent superhydrophobicity and high oleophobicity once the nanoparticles are treated with 1 H,1 H,2 H,2 H-perfluorodecyltriethoxydsilane (FAS-17). Water and ethylene glycol contact angles of the coatings can reach up to 172 ? 2? and 157 ? 2?, respectively. After undergoing strong adhesive tape peeling and mechanical abrasion, the coatings still maintain good amphiphobicity.
Collapse
Affiliation(s)
- Junyan Peng
- State Key Laboratory of Silicate Materials for Architectures , Wuhan University of Technology , Wuhan 430070 , China
| | - Xiujian Zhao
- State Key Laboratory of Silicate Materials for Architectures , Wuhan University of Technology , Wuhan 430070 , China
| | - Wufeng Wang
- Advanced Engineering Technology Research Institute of Zhongshan City , Wuhan University of Technology , Zhongshan 528400 , China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures , Wuhan University of Technology , Wuhan 430070 , China
| |
Collapse
|
49
|
Lu J, Ngo CV, Singh SC, Yang J, Xin W, Yu Z, Guo C. Bioinspired Hierarchical Surfaces Fabricated by Femtosecond Laser and Hydrothermal Method for Water Harvesting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3562-3567. [PMID: 30759979 DOI: 10.1021/acs.langmuir.8b04295] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The world is facing a global issue of water scarcity where two-thirds of the population does not have access to safe drinking water. Water harvesting from the ambient environment has a potential equivalent to ∼10% of the fresh water available on the earth's surface, but its efficiency requires a special control of surface morphology. We report a novel facile physicochemical hybrid method that combines femtosecond laser structuring with hydrothermal treatment to create a surface with a well-arranged hierarchical nanoneedle structures. Polydimethylsiloxane treatment of the thus-produced hierarchical structures nurtured superhydrophobic functionality with a very low water sliding angle (∼3°) and a high water adhesion ability. About 2.2 times higher water-collection efficiency was achieved using hierarchical structures over untreated flat Ti surfaces of the same area under a given experimental condition. The comparison of water-collection behavior with other samples showed that the improved efficiency is due to the structure, and wettability induced superior water attraction and removal ability. Moreover, a uniform water condensation under low humidity (28%) is achieved, which has potential applications in harvesting water from arid environments and in high-precision drop control.
Collapse
Affiliation(s)
- Jinlong Lu
- The Guo China-U.S. Photonics Lab , Changchun Institute of Optics, Fine Mechanics, and Physics , Changchun 130033 , China
| | - Chi-Vinh Ngo
- The Guo China-U.S. Photonics Lab , Changchun Institute of Optics, Fine Mechanics, and Physics , Changchun 130033 , China
| | - Subhash C Singh
- The Guo China-U.S. Photonics Lab , Changchun Institute of Optics, Fine Mechanics, and Physics , Changchun 130033 , China
- The Institute of Optics , University of Rochester , Rochester , New York 14627 , United States
| | - Jianjun Yang
- The Guo China-U.S. Photonics Lab , Changchun Institute of Optics, Fine Mechanics, and Physics , Changchun 130033 , China
| | - Wei Xin
- The Guo China-U.S. Photonics Lab , Changchun Institute of Optics, Fine Mechanics, and Physics , Changchun 130033 , China
| | - Zhi Yu
- The Guo China-U.S. Photonics Lab , Changchun Institute of Optics, Fine Mechanics, and Physics , Changchun 130033 , China
| | - Chunlei Guo
- The Guo China-U.S. Photonics Lab , Changchun Institute of Optics, Fine Mechanics, and Physics , Changchun 130033 , China
- The Institute of Optics , University of Rochester , Rochester , New York 14627 , United States
| |
Collapse
|