1
|
Enriquez-Izazaga Y, Rodriguez-Nuñez JA, Frontana C, Armendariz-Vidales G. Intramolecular Hydrogen Bonding Effect on the Electron-Transfer Thermodynamics of a Series of o-Nitrobenzyl Alcohol Derivatives. J Org Chem 2023; 88:11434-11443. [PMID: 37535447 DOI: 10.1021/acs.joc.3c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
From thermoelectrochemical experiments and electronic structure calculations of a series of nitrobenzyl alcohol derivatives, the effect of intramolecular hydrogen bonding (IHB) on the electron transfer thermodynamics is discussed on a molecular basis. A linear correlation between formal reduction potential (E1/2) values and temperature was obtained for the temperature range from 300 to 350 K. Estimated electron transfer entropy values (ΔS)─determined from this dependence─and the enthalpy (ΔΔH) changes relative to o-nitrobenzyl alcohol confirmed that the effect of the formation of IHB proved to be decisive in the charge-transfer thermodynamics. The possibility of intermolecular hydrogen bonding is further discussed upon comparing thermodynamic data among three different solvents.
Collapse
Affiliation(s)
- Y Enriquez-Izazaga
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C., Parque Tecnológico Quéretaro Sanfandila, Pedro Escobedo, Querétaro 76703, México
| | - J A Rodriguez-Nuñez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C., Parque Tecnológico Quéretaro Sanfandila, Pedro Escobedo, Querétaro 76703, México
| | - C Frontana
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C., Parque Tecnológico Quéretaro Sanfandila, Pedro Escobedo, Querétaro 76703, México
| | - G Armendariz-Vidales
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C., Parque Tecnológico Quéretaro Sanfandila, Pedro Escobedo, Querétaro 76703, México
| |
Collapse
|
2
|
Mapping the energy level alignment at donor/acceptor interfaces in non-fullerene organic solar cells. Nat Commun 2022; 13:2046. [PMID: 35440117 PMCID: PMC9018783 DOI: 10.1038/s41467-022-29702-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 03/15/2022] [Indexed: 11/30/2022] Open
Abstract
Energy level alignment (ELA) at donor (D) -acceptor (A) heterojunctions is essential for understanding the charge generation and recombination process in organic photovoltaic devices. However, the ELA at the D-A interfaces is largely underdetermined, resulting in debates on the fundamental operating mechanisms of high-efficiency non-fullerene organic solar cells. Here, we systematically investigate ELA and its depth-dependent variation of a range of donor/non-fullerene-acceptor interfaces by fabricating and characterizing D-A quasi bilayers and planar bilayers. In contrast to previous assumptions, we observe significant vacuum level (VL) shifts existing at the D-A interfaces, which are demonstrated to be abrupt, extending over only 1–2 layers at the heterojunctions, and are attributed to interface dipoles induced by D-A electrostatic potential differences. The VL shifts result in reduced interfacial energetic offsets and increased charge transfer (CT) state energies which reconcile the conflicting observations of large energy level offsets inferred from neat films and large CT energies of donor - non-fullerene-acceptor systems. Energy level alignment (ELA) at donor-acceptor heterojunctions is of vital importance yet largely undetermined in organic solar cells. Here, authors determine the heterojunction ELA with (mono) layer-by-layer precision to understand the co-existence of efficient charge.
Collapse
|
3
|
Bi P, Zhang S, Wang J, Ren J, Hou J. Progress in Organic Solar Cells: Materials, Physics and Device Engineering. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000666] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pengqing Bi
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Shaoqing Zhang
- School of Chemistry and Biology Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Jingwen Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Junzhen Ren
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
4
|
Karuthedath S, Gorenflot J, Firdaus Y, Chaturvedi N, De Castro CSP, Harrison GT, Khan JI, Markina A, Balawi AH, Peña TAD, Liu W, Liang RZ, Sharma A, Paleti SHK, Zhang W, Lin Y, Alarousu E, Lopatin S, Anjum DH, Beaujuge PM, De Wolf S, McCulloch I, Anthopoulos TD, Baran D, Andrienko D, Laquai F. Intrinsic efficiency limits in low-bandgap non-fullerene acceptor organic solar cells. NATURE MATERIALS 2021; 20:378-384. [PMID: 33106652 DOI: 10.1038/s41563-020-00835-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 09/17/2020] [Indexed: 05/20/2023]
Abstract
In bulk heterojunction (BHJ) organic solar cells (OSCs) both the electron affinity (EA) and ionization energy (IE) offsets at the donor-acceptor interface should equally control exciton dissociation. Here, we demonstrate that in low-bandgap non-fullerene acceptor (NFA) BHJs ultrafast donor-to-acceptor energy transfer precedes hole transfer from the acceptor to the donor and thus renders the EA offset virtually unimportant. Moreover, sizeable bulk IE offsets of about 0.5 eV are needed for efficient charge transfer and high internal quantum efficiencies, since energy level bending at the donor-NFA interface caused by the acceptors' quadrupole moments prevents efficient exciton-to-charge-transfer state conversion at low IE offsets. The same bending, however, is the origin of the barrier-less charge transfer state to free charge conversion. Our results provide a comprehensive picture of the photophysics of NFA-based blends, and show that sizeable bulk IE offsets are essential to design efficient BHJ OSCs based on low-bandgap NFAs.
Collapse
Affiliation(s)
- Safakath Karuthedath
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Julien Gorenflot
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Yuliar Firdaus
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Neha Chaturvedi
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Catherine S P De Castro
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - George T Harrison
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Jafar I Khan
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | | | - Ahmed H Balawi
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Top Archie Dela Peña
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Wenlan Liu
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Ru-Ze Liang
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Anirudh Sharma
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Sri H K Paleti
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Weimin Zhang
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Yuanbao Lin
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Erkki Alarousu
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Sergei Lopatin
- Imaging and Characterization Core Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Dalaver H Anjum
- Imaging and Characterization Core Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Pierre M Beaujuge
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Stefaan De Wolf
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Iain McCulloch
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Thomas D Anthopoulos
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Derya Baran
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | | | - Frédéric Laquai
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| |
Collapse
|
5
|
Xie R, Weisen AR, Lee Y, Aplan MA, Fenton AM, Masucci AE, Kempe F, Sommer M, Pester CW, Colby RH, Gomez ED. Glass transition temperature from the chemical structure of conjugated polymers. Nat Commun 2020; 11:893. [PMID: 32060331 PMCID: PMC7021822 DOI: 10.1038/s41467-020-14656-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/23/2020] [Indexed: 11/20/2022] Open
Abstract
The glass transition temperature (Tg) is a key property that dictates the applicability of conjugated polymers. The Tg demarks the transition into a brittle glassy state, making its accurate prediction for conjugated polymers crucial for the design of soft, stretchable, or flexible electronics. Here we show that a single adjustable parameter can be used to build a relationship between the Tg and the molecular structure of 32 semiflexible (mostly conjugated) polymers that differ drastically in aromatic backbone and alkyl side chain chemistry. An effective mobility value, ζ, is calculated using an assigned atomic mobility value within each repeat unit. The only adjustable parameter in the calculation of ζ is the ratio of mobility between conjugated and non-conjugated atoms. We show that ζ correlates strongly to the Tg, and that this simple method predicts the Tg with a root-mean-square error of 13 °C for conjugated polymers with alkyl side chains.
Collapse
Affiliation(s)
- Renxuan Xie
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Albree R Weisen
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Youngmin Lee
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Melissa A Aplan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Abigail M Fenton
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ashley E Masucci
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Fabian Kempe
- Institute for Chemistry, Chemnitz University of Technology, Strasse der Nationen 62, 09111, Chemnitz, Germany
| | - Michael Sommer
- Institute for Chemistry, Chemnitz University of Technology, Strasse der Nationen 62, 09111, Chemnitz, Germany
| | - Christian W Pester
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ralph H Colby
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- The Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Enrique D Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- The Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
6
|
Niu MS, Wang KW, Yang XY, Bi PQ, Zhang KN, Feng XJ, Chen F, Qin W, Xia JL, Hao XT. Hole Transfer Originating from Weakly Bound Exciton Dissociation in Acceptor-Donor-Acceptor Nonfullerene Organic Solar Cells. J Phys Chem Lett 2019; 10:7100-7106. [PMID: 31682127 DOI: 10.1021/acs.jpclett.9b02837] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The underlying hole-transfer mechanism in high-efficiency OSC bulk heterojunctions based on acceptor-donor-acceptor (A-D-A) nonfullerene acceptors (NFAs) remains unclear. Herein, we study the hole-transfer process between copolymer donor J91 and five A-D-A NFAs with different highest occupied molecular orbital energy offsets (ΔEH) (0.05-0.42 eV) via ultrafast optical spectroscopies. Transient absorption spectra reveal a rapid hole-transfer rate with small ΔEH, suggesting that a large energy offset is not required to overcome the exciton binding energy. Capacitance-frequency spectra and time-resolved photoluminescence spectra confirm the delocalization of an A-D-A-structured acceptor exciton with weak binding energy. Relative to the hole-transfer rate, hole-transfer efficiency is the key factor affecting device performance. We propose that holes primarily stem from weakly bound acceptor exciton dissociation, revealing a new insight into the hole-transfer process in A-D-A NFA-based OSCs.
Collapse
Affiliation(s)
- Meng-Si Niu
- School of Physics, State Key Laboratory of Crystal Materials , Shandong University , 250100 Jinan , Shandong , China
| | - Kang-Wei Wang
- School of Chemistry, Chemical Engineering and Life Science, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , 430070 Wuhan , Hubei , China
| | - Xiao-Yu Yang
- School of Physics, State Key Laboratory of Crystal Materials , Shandong University , 250100 Jinan , Shandong , China
| | - Peng-Qing Bi
- School of Physics, State Key Laboratory of Crystal Materials , Shandong University , 250100 Jinan , Shandong , China
| | - Kang-Ning Zhang
- School of Physics, State Key Laboratory of Crystal Materials , Shandong University , 250100 Jinan , Shandong , China
| | - Xian-Jin Feng
- School of Microelectronics , Shandong University , 250100 Jinan , Shandong , China
| | - Fei Chen
- Department of Mechanical, Materials and Manufacturing Engineering , The University of Nottingham Ningbo China , Ningbo 315100 , P.R. China
| | - Wei Qin
- School of Physics, State Key Laboratory of Crystal Materials , Shandong University , 250100 Jinan , Shandong , China
| | - Jian-Long Xia
- School of Chemistry, Chemical Engineering and Life Science, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , 430070 Wuhan , Hubei , China
| | - Xiao-Tao Hao
- School of Physics, State Key Laboratory of Crystal Materials , Shandong University , 250100 Jinan , Shandong , China
- ARC Centre of Excellence in Exciton Science, School of Chemistry , The University of Melbourne , Parkville , Victoria 3010 , Australia
| |
Collapse
|
7
|
Litofsky JH, Lee Y, Aplan MP, Kuei B, Hexemer A, Wang C, Wang Q, Gomez ED. Polarized Soft X-ray Scattering Reveals Chain Orientation within Nanoscale Polymer Domains. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02198] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | | | | | - Alexander Hexemer
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94530, United States
| | - Cheng Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94530, United States
| | | | | |
Collapse
|