1
|
Raffaelle P, Wang GT, Shestopalov AA. Light-Mediated Contact Printing of Phosphorus Species onto Silicon Using Carbene-Based Molecular Layers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12027-12034. [PMID: 38814003 PMCID: PMC11171451 DOI: 10.1021/acs.langmuir.4c00763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
The ability to deposit pattern-specific molecular layers onto silicon with either regional p-/n-doping properties or that act as chemoselective resists for area-selective deposition is highly sought after in the bottom-up manufacturing of microelectronics. In this study, we demonstrate a simple protocol for the covalent attachment and patterning of a phosphorus-based dopant precursor onto silicon(100) functionalized with reactive carbene species. This method relies on selective surface reactions, which provide terminal functionalities that can be photochemically modified via ultraviolet-assisted contact printing between the carbene-functionalized substrate and an elastomeric stamp inked with the inorganic dopant precursor. X-ray photoelectron spectroscopy (XPS) analysis combined with scanning electron microscopy (SEM) imaging was used to characterize the molecule attachment and patterning ability of this technique. XPS spectra are indicative of the covalent bonding between phosphorus-containing molecules and the functionalized surface after both bulk solution-phase reaction and photochemical printing. SEM analysis of the corresponding printed features demonstrates the effective transfer of the phosphorus species in a patterned orientation matching that of the stamp pattern. This simple approach to patterning dopant precursors has the potential to inform the continued refinement of thin-film electronic, photonic, and quantum device manufacturing.
Collapse
Affiliation(s)
- Patrick
R. Raffaelle
- Department
of Chemical Engineering, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York 14627, United States
| | - George T. Wang
- Sandia
National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Alexander A. Shestopalov
- Department
of Chemical Engineering, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
2
|
Jin M, Shi P, Sun Z, Zhao N, Shi M, Wu M, Ye C, Lin CT, Fu L. Advancements in Polymer-Assisted Layer-by-Layer Fabrication of Wearable Sensors for Health Monitoring. SENSORS (BASEL, SWITZERLAND) 2024; 24:2903. [PMID: 38733009 PMCID: PMC11086243 DOI: 10.3390/s24092903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Recent advancements in polymer-assisted layer-by-layer (LbL) fabrication have revolutionized the development of wearable sensors for health monitoring. LbL self-assembly has emerged as a powerful and versatile technique for creating conformal, flexible, and multi-functional films on various substrates, making it particularly suitable for fabricating wearable sensors. The incorporation of polymers, both natural and synthetic, has played a crucial role in enhancing the performance, stability, and biocompatibility of these sensors. This review provides a comprehensive overview of the principles of LbL self-assembly, the role of polymers in sensor fabrication, and the various types of LbL-fabricated wearable sensors for physical, chemical, and biological sensing. The applications of these sensors in continuous health monitoring, disease diagnosis, and management are discussed in detail, highlighting their potential to revolutionize personalized healthcare. Despite significant progress, challenges related to long-term stability, biocompatibility, data acquisition, and large-scale manufacturing are still to be addressed, providing insights into future research directions. With continued advancements in polymer-assisted LbL fabrication and related fields, wearable sensors are poised to improve the quality of life for individuals worldwide.
Collapse
Grants
- (52272053, 52075527, 52102055) the National Natural Science Foundation of China
- (2022YFA1203100, 2022YFB3706602, 2021YFB3701801) the National Key R&D Program of China
- (2021Z120, 2021Z115, 2022Z084, 2022Z191) Ningbo Key Scientific and Technological Project
- (2021A-037-C, 2021A-108-G) the Yongjiang Talent Introduction Programme of Ningbo
- JCPYJ-22030 the Youth Fund of Chinese Academy of Sciences
- (2020M681965, 2022M713243) China Postdoctoral Science Foundation
- 2020301 CAS Youth Innovation Promotion Association
- (2021ZDYF020196, 2021ZDYF020198) Science and Technology Major Project of Ningbo
- XDA22020602, ZDKYYQ2020001) the Project of Chinese Academy of Science
- 2019A-18-C Ningbo 3315 Innovation Team
Collapse
Affiliation(s)
- Meiqing Jin
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Peizheng Shi
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (P.S.); (Z.S.); (N.Z.); (M.S.); (M.W.)
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Zhuang Sun
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (P.S.); (Z.S.); (N.Z.); (M.S.); (M.W.)
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Ningbin Zhao
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (P.S.); (Z.S.); (N.Z.); (M.S.); (M.W.)
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Mingjiao Shi
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (P.S.); (Z.S.); (N.Z.); (M.S.); (M.W.)
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Mengfan Wu
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (P.S.); (Z.S.); (N.Z.); (M.S.); (M.W.)
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Chen Ye
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (P.S.); (Z.S.); (N.Z.); (M.S.); (M.W.)
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Cheng-Te Lin
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (P.S.); (Z.S.); (N.Z.); (M.S.); (M.W.)
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
| |
Collapse
|
3
|
Lu Y, Gu TJ, Shen RN, Zhang KL. Proton conduction and electrochemical glucose sensing property of a newly constructed Cu(II) coordination polymer. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Malanina AN, Kuzin YI, Ivanov AN, Ziyatdinova GK, Shurpik DN, Stoikov II, Evtugyn GA. Polyelectrolyte Polyethylenimine–DNA Complexes in the Composition of Voltammetric Sensors for Detecting DNA Damage. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822020095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Sweedan A, Cohen Y, Yaron S, Bashouti MY. Binding Capabilities of Different Genetically Engineered pVIII Proteins of the Filamentous M13/Fd Virus and Single-Walled Carbon Nanotubes. NANOMATERIALS 2022; 12:nano12030398. [PMID: 35159743 PMCID: PMC8839290 DOI: 10.3390/nano12030398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
Abstract
Binding functional biomolecules to non-biological materials, such as single-walled carbon nanotubes (SWNTs), is a challenging task with relevance for different applications. However, no one has yet undertaken a comparison of the binding of SWNTs to different recombinant filamentous viruses (phages) bioengineered to contain different binding peptides fused to the virus coat proteins. This is important due to the range of possible binding efficiencies and scenarios that may arise when the protein’s amino acid sequence is modified, since the peptides may alter the virus’s biological properties or they may behave differently when they are in the context of being displayed on the virus coat protein; in addition, non-engineered viruses may non-specifically adsorb to SWNTs. To test these possibilities, we used four recombinant phage templates and the wild type. In the first circumstance, we observed different binding capabilities and biological functional alterations; e.g., some peptides, in the context of viral templates, did not bind to SWNTs, although it was proven that the bare peptide did. The second circumstance was excluded, as the wild-type virus was found to hardly bind to the SWNTs. These results may be relevant to the possible use of the virus as a “SWNT shuttle” in nano-scale self-assembly, particularly since the pIII proteins are free to act as binding-directing agents. Therefore, knowledge of the differences between and efficiencies of SWNT binding templates may help in choosing better binding phages or peptides for possible future applications and industrial mass production.
Collapse
Affiliation(s)
- Amro Sweedan
- The Ilse-Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
- The Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yachin Cohen
- The Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Correspondence: (Y.C.); (S.Y.); (M.Y.B.)
| | - Sima Yaron
- The Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Correspondence: (Y.C.); (S.Y.); (M.Y.B.)
| | - Muhammad Y. Bashouti
- The Ilse-Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
- Jacob Blaustein Institutes for Desert Research, Sede Boqer Campus, Ben-Gurion University of the Negev, Sede Boqer 8499000, Israel
- Correspondence: (Y.C.); (S.Y.); (M.Y.B.)
| |
Collapse
|
6
|
Ivanov AS, Pershina LV, Nikolaev KG, Skorb EV. Recent Progress of Layer-by-layer Assembly, Free-Standing Film and Hydrogel Based on Polyelectrolytes. Macromol Biosci 2021; 21:e2100117. [PMID: 34272830 DOI: 10.1002/mabi.202100117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/10/2021] [Indexed: 12/29/2022]
Abstract
Nowadays, polyelectrolytes play an essential role in the development of new materials. Their use allows creating new properties of materials and surfaces and vary them in a wide range. Basically, modern methods are divided into three areas-the process of layer-by-layer deposition, free-standing films, and hydrogels based on polyelectrolytes. Layer-by-layer assembly of polyelectrolytes on various surfaces is a powerful technique. It allows giving surfaces new properties, for example, protect them from corrosion. Free-standing films are essential tools for the design of membranes and sensors. Hydrogels based on polyelectrolytes have recently shown their applicability in electrical and materials science. The creation of new materials and components with controlled properties can be achieved using polyelectrolytes. This review focuses on new technologies that have been developed with polyelectrolytes over the last five years.
Collapse
Affiliation(s)
- Artemii S Ivanov
- Infochemistry Scientific Center of ITMO University, Lomonosova str. 9, Saint Petersburg, 191002, Russia
| | - Lyubov V Pershina
- Infochemistry Scientific Center of ITMO University, Lomonosova str. 9, Saint Petersburg, 191002, Russia
| | - Konstantin G Nikolaev
- Infochemistry Scientific Center of ITMO University, Lomonosova str. 9, Saint Petersburg, 191002, Russia
| | - Ekaterina V Skorb
- Infochemistry Scientific Center of ITMO University, Lomonosova str. 9, Saint Petersburg, 191002, Russia
| |
Collapse
|
7
|
Amara U, Mahmood K, Riaz S, Nasir M, Hayat A, Hanif M, Yaqub M, Han D, Niu L, Nawaz MH. Self-assembled perylene-tetracarboxylic acid/multi-walled carbon nanotube adducts based modification of screen-printed interface for efficient enzyme immobilization towards glucose biosensing. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Xu P, Ghosh S, Gul AR, Bhamore JR, Park JP, Park TJ. Screening of specific binding peptides using phage-display techniques and their biosensing applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Yu M, Li YT, Hu Y, Tang L, Yang F, Lv WL, Zhang ZY, Zhang GJ. Gold nanostructure-programmed flexible electrochemical biosensor for detection of glucose and lactate in sweat. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115029] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Škugor Rončević I, Krivić D, Buljac M, Vladislavić N, Buzuk M. Polyelectrolytes Assembly: A Powerful Tool for Electrochemical Sensing Application. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3211. [PMID: 32517055 PMCID: PMC7313698 DOI: 10.3390/s20113211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022]
Abstract
The development of sensing coatings, as important sensor elements that integrate functionality, simplicity, chemical stability, and physical stability, has been shown to play a major role in electrochemical sensing system development trends. Simple and versatile assembling procedures and scalability make polyelectrolytes highly convenient for use in electrochemical sensing applications. Polyelectrolytes are mainly used in electrochemical sensor architectures for entrapping (incorporation, immobilization, etc.) various materials into sensing layers. These materials can often increase sensitivity, selectivity, and electronic communications with the electrode substrate, and they can mediate electron transfer between an analyte and transducer. Analytical performance can be significantly improved by the synergistic effect of materials (sensing material, transducer, and mediator) present in these composites. As most reported methods for the preparation of polyelectrolyte-based sensing layers are layer-by-layer and casting/coating methods, this review focuses on the use of the latter methods in the development of electrochemical sensors within the last decade. In contrast to many reviews related to electrochemical sensors that feature polyelectrolytes, this review is focused on architectures of sensing layers and the role of polyelectrolytes in the development of sensing systems. Additionally, the role of polyelectrolytes in the preparation and modification of various nanoparticles, nanoprobes, reporter probes, nanobeads, etc. that are used in electrochemical sensing systems is also reviewed.
Collapse
Affiliation(s)
- Ivana Škugor Rončević
- Department of General and Inorganic Chemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia; (I.Š.R.); (N.V.)
| | - Denis Krivić
- Division of Biophysics, Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria;
| | - Maša Buljac
- Department of Environmental Chemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia;
| | - Nives Vladislavić
- Department of General and Inorganic Chemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia; (I.Š.R.); (N.V.)
| | - Marijo Buzuk
- Department of General and Inorganic Chemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia; (I.Š.R.); (N.V.)
| |
Collapse
|
11
|
Kang TH, Lee SW, Hwang K, Shim W, Lee KY, Lim JA, Yu WR, Choi IS, Yi H. All-Inkjet-Printed Flexible Nanobio-Devices with Efficient Electrochemical Coupling Using Amphiphilic Biomaterials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24231-24241. [PMID: 32353230 DOI: 10.1021/acsami.0c02596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nanostructured flexible electrodes with biological compatibility and intimate electrochemical coupling provide attractive solutions for various emerging bioelectronics and biosensor applications. Here, we develop all-inkjet-printed flexible nanobio-devices with excellent electrochemical coupling by employing amphiphilic biomaterial, an M13 phage, numerical simulation of single-drop formulation, and rational formulations of nanobio-ink. Inkjet-printed nanonetwork-structured electrodes of single-walled carbon nanotubes and M13 phage show efficient electrochemical coupling and hydrostability. Additive printing of the nanobio-inks also allows for systematic control of the physical and chemical properties of patterned electrodes and devices. All-inkjet-printed electrochemical field-effect transistors successfully exhibit pH-sensitive electrical current modulation. Moreover, all-inkjet-printed electrochemical biosensors fabricated via sequential inkjet-printing of the nanobio-ink, electrolytes, and enzyme solutions enable direct electrical coupling within the printed electrodes and detect glucose concentrations at as low as 20 μM. Glucose levels in sweat are successfully measured, and the change in sweat glucose levels is shown to be highly correlated with blood glucose levels. Synergistic combination of additive fabrication by inkjet-printing with directed assembly of nanostructured electrodes by functional biomaterials could provide an efficient means of developing bioelectronic devices for personalized medicine, digital healthcare, and emerging biomimetic devices.
Collapse
Affiliation(s)
- Tae-Hyung Kang
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung-Woo Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Kyowook Hwang
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Wonbo Shim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki-Young Lee
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jung-Ah Lim
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Woong-Ryeol Yu
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - In-Suk Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunjung Yi
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
12
|
Liang Z, Zhang J, Wu C, Hu X, Lu Y, Wang G, Yu F, Zhang X, Wang Y. Flexible and self-healing electrochemical hydrogel sensor with high efficiency toward glucose monitoring. Biosens Bioelectron 2020; 155:112105. [DOI: 10.1016/j.bios.2020.112105] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/03/2020] [Accepted: 02/17/2020] [Indexed: 01/27/2023]
|
13
|
Liu Q, Zhong H, Chen M, Zhao C, Liu Y, Xi F, Luo T. Functional nanostructure-loaded three-dimensional graphene foam as a non-enzymatic electrochemical sensor for reagentless glucose detection. RSC Adv 2020; 10:33739-33746. [PMID: 35519067 PMCID: PMC9056722 DOI: 10.1039/d0ra05553k] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
Non-enzymatic and reagentless electrochemical sensors for convenient and sensitive detection of glucose are highly desirable for prevention, diagnosis and treatment of diabetes owing to their unique merits of simplicity and easy operation. Facile fabrication of a three-dimensional (3D) sensing interface with non-enzymatic recognition groups and an immobilized electrochemical probe remains challenge. Herein, a novel non-enzymatic electrochemical sensor was developed for the sensitive and reagentless detection of glucose by loading functional nanostructure on 3D graphene. Monolithic and macroporous 3D graphene (3DG) foam grown by chemical vapor deposition (CVD) served as the electrode scaffold. Prussian blue (PB) and gold nanoparticles (AuNPs) were first co-electrodeposited on 3DG (3DG/PB-AuNPs) as immobilized signal indicator and electron conductor. After a polydopamine (PDA) layer was introduced on 3DG/PB-AuNPs via facile self-polymerization of dopamine to stabilize internal PB probes and offer chemical reducibility, the second layer of AuNPs was in situ formed to assemble the recognition ligand, mercaptobenzoboric acid (MPBA). Owing to the high stability of PB and good affinity between MPBA and glucose, the non-enzymatic sensor was able to be used in reagentless detection of glucose with high selectivity, wide linear range (5 μM–65 μM) and low detection limit (1.5 μM). Furthermore, the sensor was used for the detection of glucose level in human serum samples. A non-enzymatic electrochemical sensor was fabricated by loading functional nanostructure on three-dimensional graphene foam for reagentless detection of glucose with high sensitivity and stability.![]()
Collapse
Affiliation(s)
- Qianshi Liu
- Guangxi Medical University Cancer Hospital
- Nanning 530021
- PR China
| | - Huage Zhong
- Guangxi Medical University Cancer Hospital
- Nanning 530021
- PR China
| | - Miao Chen
- Guangxi Medical University Cancer Hospital
- Nanning 530021
- PR China
| | - Chang Zhao
- Guangxi Medical University Cancer Hospital
- Nanning 530021
- PR China
| | - Yan Liu
- Guangxi Medical University Cancer Hospital
- Nanning 530021
- PR China
| | - Fengna Xi
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou
- PR China
| | - Tao Luo
- Guangxi Medical University Cancer Hospital
- Nanning 530021
- PR China
| |
Collapse
|
14
|
Kim S, Kim J, Kim D, Kim B, Chae H, Yi H, Hwang B. High-Performance Transparent Quantum Dot Light-Emitting Diode with Patchable Transparent Electrodes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26333-26338. [PMID: 31286764 DOI: 10.1021/acsami.9b05969] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Patchable electrodes are attractive for applications in optoelectronic devices because of their easy and reliable processability. However, development of reliable patchable transparent electrodes (TEs) with high optoelectronic performance is challenging; till now, optoelectronic devices fabricated with patchable TEs have been exhibiting limited performance. In this study, Ag nanowire (AgNW)/poly(methyl methacrylate) (PMMA) patchable TEs are developed and the highly efficient transparent quantum dot light-emitting diodes (QLEDs) using the patchable TEs are fabricated. AgNWs with optimized optoelectronic properties (figure of merit ≈ 3.3 × 10-2) are coated by an ultrathin PMMA nanolayer and transferred to thermal release tapes that enable physical attachment of TEs on the QLEDs without a significant damage to the adjacent active layer. The transparent QLEDs using patchable transparent top electrodes display excellent performance, with the maximum total luminance and current efficiency of 27 310 cd·m-2 and 45.99 cd·A-1, respectively. Fabricated by all-solution-based processes, these QLEDs exhibit the best performance to date among devices adopting patchable top electrodes.
Collapse
Affiliation(s)
- Sunho Kim
- Post-Silicon Semiconductor Institute , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| | | | | | - Bongsung Kim
- Nano-Convergence Mechanical Systems Research Division , Korea Institute of Machinery & Materials , Daejeon 34103 , Republic of Korea
| | | | - Hyunjung Yi
- Post-Silicon Semiconductor Institute , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| | - Byungil Hwang
- School of Integrative Engineering , Chung-Ang University , Seoul 06974 , Republic of Korea
| |
Collapse
|
15
|
Kang TH, Chang H, Choi D, Kim S, Moon J, Lim JA, Lee KY, Yi H. Hydrogel-Templated Transfer-Printing of Conductive Nanonetworks for Wearable Sensors on Topographic Flexible Substrates. NANO LETTERS 2019; 19:3684-3691. [PMID: 31117752 DOI: 10.1021/acs.nanolett.9b00764] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Transfer-printing enables the assembly of functional nanomaterials on unconventional substrates with a desired layout in a controllable manner. However, transfer-printing to substrates with complex surfaces remains a challenge. Herein, we show that hydrogels serve as effective template material platforms for the assembly and transfer-printing of conductive nanonetwork patterns for flexible sensors on various topographic surfaces in a very simple yet versatile manner. The non-adherence, nanoporous structure, and molding capability of the hydrophilic hydrogel enable the assembly of conductive nanonetwork patterns on the hydrogel surface and transfer of the nanonetworks onto various flexible and topographic substrates. Flexible strain sensors and pressure sensors that monitor finger motions and arterial pulses are successfully demonstrated using the hydrogel-templated approach. The rich chemistry of polymeric networks, facile molding capability, and biocompatibility of hydrogels could be further combined with additive technology for hydrogels and electronic materials for emerging four-dimensional functional materials and soft bioelectronics.
Collapse
Affiliation(s)
- Tae-Hyung Kang
- Post-Silicon Semiconductor Institute , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| | - Hochan Chang
- Post-Silicon Semiconductor Institute , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| | - Dongwon Choi
- Post-Silicon Semiconductor Institute , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| | - Soonwoo Kim
- Post-Silicon Semiconductor Institute , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
- Department of Energy Engineering , Hanyang University , Seoul 04763 , Republic of Korea
| | - Jihee Moon
- Post-Silicon Semiconductor Institute , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| | - Jung Ah Lim
- Post-Silicon Semiconductor Institute , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| | - Ki-Young Lee
- Post-Silicon Semiconductor Institute , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| | - Hyunjung Yi
- Post-Silicon Semiconductor Institute , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| |
Collapse
|