1
|
Wang KY, Zhang J, Hsu YC, Lin H, Han Z, Pang J, Yang Z, Liang RR, Shi W, Zhou HC. Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chem Rev 2023; 123:5347-5420. [PMID: 37043332 PMCID: PMC10853941 DOI: 10.1021/acs.chemrev.2c00879] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Indexed: 04/13/2023]
Abstract
Enzymatic catalysis has fueled considerable interest from chemists due to its high efficiency and selectivity. However, the structural complexity and vulnerability hamper the application potentials of enzymes. Driven by the practical demand for chemical conversion, there is a long-sought quest for bioinspired catalysts reproducing and even surpassing the functions of natural enzymes. As nanoporous materials with high surface areas and crystallinity, metal-organic frameworks (MOFs) represent an exquisite case of how natural enzymes and their active sites are integrated into porous solids, affording bioinspired heterogeneous catalysts with superior stability and customizable structures. In this review, we comprehensively summarize the advances of bioinspired MOFs for catalysis, discuss the design principle of various MOF-based catalysts, such as MOF-enzyme composites and MOFs embedded with active sites, and explore the utility of these catalysts in different reactions. The advantages of MOFs as enzyme mimetics are also highlighted, including confinement, templating effects, and functionality, in comparison with homogeneous supramolecular catalysts. A perspective is provided to discuss potential solutions addressing current challenges in MOF catalysis.
Collapse
Affiliation(s)
- Kun-Yu Wang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiaqi Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Chuan Hsu
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hengyu Lin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zongsu Han
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiandong Pang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- School
of Materials Science and Engineering, Tianjin Key Laboratory of Metal
and Molecule-Based Material Chemistry, Nankai
University, Tianjin 300350, China
| | - Zhentao Yang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rong-Ran Liang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wei Shi
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
2
|
Berijani K, Chang LM, Gu ZG. Chiral templated synthesis of homochiral metal-organic frameworks. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
3
|
Chiu NC, Loughran RP, Gładysiak A, Vismara R, Park AHA, Stylianou KC. Wet flue gas CO 2 capture and utilization using one-dimensional metal-organic chains. NANOSCALE 2022; 14:14962-14969. [PMID: 36200609 DOI: 10.1039/d2nr04156a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, we describe the use of an ultramicroporous metal-organic framework (MOF) with a composition of [Ni3(pzdc)2(ade)2(H2O)1.5]·(H2O)1.3 (pzdc: 3,5-pyrazole dicarboxylic acid; ade: adenine), for the selective capture of carbon dioxide (CO2) from wet flue gas followed by its conversion to value-added products. This MOF is comprised of one-dimensional Ni(II)-pyrazole dicarboxylate-adenine chains; through pi-pi stacking and H-bonding interactions, these one-dimensional chains stack into a three-dimensional supramolecular structure with a one-dimensional pore network. Upon heating, our MOF undergoes a color change from light blue to lavender, indicating a change in the coordination geometry of Ni(II). Variable temperature ultraviolet-visible (UV/vis) spectroscopy data revealed a blue shift of the d-d transitions, suggesting a change in the Ni-coordination geometry from octahedral to a mixture of square planar and square pyramidal. The removal of the water molecules coordinated to Ni(II) leads to the generation of a MOF with open Ni(II) sites. Nitrogen isotherms collected at 77 K and 1 bar revealed that this MOF is microporous with a pore volume of 0.130 cm3 g-1. Carbon dioxide isotherms show a step in the uptake at low pressure, after which the CO2 uptake is saturated. The step in the CO2 uptake is likely attributable to the rearrangement of the three-dimensional supramolecular structure to accommodate CO2 within its pores. The affinity of this MOF for CO2 is 35.5 kJ mol-1 at low loadings, and it increases to 41.9 kJ mol-1 at high loadings. While our MOF is porous to CO2 and water (H2O) at 298 K, it is not porous to N2, and the CO2/N2 selectivity increases from 28.5 to 31.5 as a function of pressure. Breakthrough experiments reveal that this MOF can capture CO2 from dry and wet flue gas with uptake capacities of 1.48 ± 0.01 and 1.14 ± 0.06 mmol g-1, respectively. The MOF can be regenerated and reused at least three times, demonstrating consistent CO2 uptake capacities. Upon understanding the sorption behavior of this MOF, catalysis experiments show that the MOF is catalytically active in the fixation of CO2 into an epoxide ring for the formation of a cyclic carbonate. The turnover frequency for this reaction is 21.95 ± 0.03 h-1. The MOF showed no catalytic deterioration after two cycles and maintained comparable catalytic activity when dry and wet CO2/N2 mixtures were used. This highlights that both N2 and H2O do not dramatically affect the catalytic activity of our MOF toward CO2 fixation.
Collapse
Affiliation(s)
- Nan Chieh Chiu
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon, USA.
| | - Ryan P Loughran
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon, USA.
| | - Andrzej Gładysiak
- Department of Earth and Environmental Engineering, Department of Chemical Engineering, Lenfest Center for Sustainable Energy, Columbia University, New York, USA
| | - Rebecca Vismara
- Departamento de Química Inorgánica, Universidad de Granada, 18071 Granada, Spain
| | - Ah-Hyung Alissa Park
- Department of Earth and Environmental Engineering, Department of Chemical Engineering, Lenfest Center for Sustainable Energy, Columbia University, New York, USA
| | - Kyriakos C Stylianou
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon, USA.
| |
Collapse
|
4
|
Cao M, Wang H, Ma Y, Tung CH, Liu L. Site- and Enantioselective Manganese-Catalyzed Benzylic C-H Azidation of Indolines. J Am Chem Soc 2022; 144:15383-15390. [PMID: 35951549 DOI: 10.1021/jacs.2c07089] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A manganese-catalyzed highly site- and enantioselective benzylic C-H azidation of indolines has been described. The practical method is applicable for azidation of a tertiary benzylic C-H bond with good functional group tolerance, allowing facile access to structurally diverse tertiary azide-containing indolines in high efficiency with excellent site-, chemo-, and enantioselectivity. The generality of the method was further demonstrated by site- and enantioselective azidation of the secondary benzylic C-H bond for a range of secondary azide-containing indolines. The benzylic C-H azidation method allows to straightforwardly and enantioselectively install a variety of nitrogen-based functional groups and diverse bioactive molecules at the C3 position of indoline frameworks through post-azidation manipulations. Gram-scale synthesis was also demonstrated, further highlighting the synthetic potential of the method. Mechanistic studies by combined experiments and computations elucidated the reaction mechanism and origins of stereoselectivity.
Collapse
Affiliation(s)
- Min Cao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Hongliang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yingang Ma
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lei Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
5
|
Abstract
In the past two decades, metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) assembled from metal ions or clusters and organic linkers via metal-ligand coordination bonds have captivated significant scientific interest on account of their high crystallinity, exceptional porosity, and tunable pore size, high modularity, and diverse functionality. The opportunity to achieve functional porous materials by design with promising properties, unattainable for solid-state materials in general, distinguishes MOFs from other classes of materials, in particular, traditional porous materials such as activated carbon, silica, and zeolites, thereby leading to complementary properties. Scientists have conducted intense research in the production of chiral MOF (CMOF) materials for specific applications including but not limited to chiral recognition, separation, and catalysis since the discovery of the first functional CMOF (i.e., d- or l-POST-1). At present, CMOFs have become interdisciplinary between chirality chemistry, coordination chemistry, and material chemistry, which involve in many subjects including chemistry, physics, optics, medicine, pharmacology, biology, crystal engineering, environmental science, etc. In this review, we will systematically summarize the recent progress of CMOFs regarding design strategies, synthetic approaches, and cutting-edge applications. In particular, we will highlight the successful implementation of CMOFs in asymmetric catalysis, enantioselective separation, enantioselective recognition, and sensing. We envision that this review will provide readers a good understanding of CMOF chemistry and, more importantly, facilitate research endeavors for the rational design of multifunctional CMOFs and their industrial implementation.
Collapse
Affiliation(s)
- Wei Gong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Zhijie Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
6
|
Metal Organic Frameworks as Heterogeneous Catalysts in Olefin Epoxidation and Carbon Dioxide Cycloaddition. INORGANICS 2021. [DOI: 10.3390/inorganics9110081] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Metal–organic frameworks (MOFs) are a family of porous crystalline materials that serve in some cases as versatile platforms for catalysis. In this review, we overview the recent developments about the use of these species as heterogeneous catalysts in olefin epoxidation and carbon dioxide cycloaddition. We report the most important results obtained in this field relating them to the presence of specific organic linkers, metal nodes or clusters and mixed-metal species. Recent advances obtained with MOF nanocomposites were also described. Finally we compare the results and summarize the major insights in specific Tables, outlining the major challenges for this emerging field. This work could promote new research aimed at producing coordination polymers and MOFs able to catalyse a broader range of CO2 consuming reactions.
Collapse
|
7
|
Hao L, Xia Q, Zhang Q, Masa J, Sun Z. Improving the performance of metal-organic frameworks for thermo-catalytic CO2 conversion: Strategies and perspectives. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63841-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Sabri MA, Al Jitan S, Bahamon D, Vega LF, Palmisano G. Current and future perspectives on catalytic-based integrated carbon capture and utilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148081. [PMID: 34091328 DOI: 10.1016/j.scitotenv.2021.148081] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/03/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
There exist several well-known methods with varying maturity for capturing carbon dioxide from emission sources of different concentrations, including absorption, adsorption, cryogenics and membrane separation, among others. The capture and separation steps can produce almost pure CO2, but at substantial cost for being conditioned for transport and final utilization, with high economical risks to be considered. A possible way for the elimination of this conditioning and cost is direct CO2 utilization, whether on-site in a further process but within the same plant, or in-situ, coupling both capture and conversion in the same unit. This approach is usually called integrated carbon capture and utilization (ICCU) or integrated carbon capture and conversion (ICCC), and has lately started receiving considerable attention in many circles. As CO2 is already industrially employed in other sectors, such as food preservation, water treatment and conversion to high added-value chemicals and fuels such as methanol, methane, etc., among others, it is of great interest to explore the global ICCC approach. Catalytic-based processes play a key role in CO2 conversion, and different technologies are gaining great attention from both academia and industry. However, the 'big picture of ICCU' and in which technology the efforts should focus on at large scale is still unclear. This review analyzes some promising concepts of ICCU specifically on CO2 catalytic conversion, highlighting their current commercial relevance as well as challenges that have to be faced today and in the next future.
Collapse
Affiliation(s)
- Muhammad Ashraf Sabri
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Samar Al Jitan
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and H(2) (RICH Center), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Daniel Bahamon
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and H(2) (RICH Center), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Lourdes F Vega
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and H(2) (RICH Center), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates.
| | - Giovanni Palmisano
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and H(2) (RICH Center), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates.
| |
Collapse
|
9
|
Chiral metal–organic frameworks based on asymmetric synthetic strategies and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214083] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Redox-active ligands: Recent advances towards their incorporation into coordination polymers and metal-organic frameworks. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213891] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
|
12
|
Zhang H, Lou LL, Yu K, Liu S. Advances in Chiral Metal-Organic and Covalent Organic Frameworks for Asymmetric Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005686. [PMID: 33734597 DOI: 10.1002/smll.202005686] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Asymmetric catalysis is of crucial importance owing to the huge and rising demand for optically pure substances. Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), as two emerging crystalline porous materials, have presented great promising applications for heterogeneous asymmetric catalysis. The unique properties, such as, highly regular porous structures, prominent structural tunability, and well-ordered catalytic sites, render chiral MOFs (CMOFs) and chiral COFs (CCOFs) highly active and enantioselective for a large number of asymmetric catalytic organic transformations. Furthermore, they provide a useful platform for facile mechanistic understanding and catalyst design. This review provides an overview of the advancements in CMOFs and CCOFs for asymmetric catalysis. The designs, syntheses and structures of these crystalline porous materials, and their asymmetric catalytic performance are described. And the perspectives on challenges and opportunities in development of CMOFs and CCOFs are discussed. It is anticipated that this review will shed light on the heterogeneous asymmetric catalysis with CMOFs and CCOFs and motivate further research in this promising field.
Collapse
Affiliation(s)
- Hao Zhang
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Lan-Lan Lou
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Kai Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria and Tianjin Key Laboratory of Environmental Technology for Complex Transmedia Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shuangxi Liu
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
- MOE Key Laboratory of Advanced Energy Materials Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
13
|
Zhang B, Wang W, Liu B, Hou L. Indium metal-organic frameworks based on pyridylcarboxylate ligands and their potential applications. Dalton Trans 2021; 50:5713-5723. [PMID: 33949548 DOI: 10.1039/d1dt00504a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Indium metal-organic frameworks (In-MOFs) based on pyridylcarboxylate ligands represent a subclass of MOFs featuring diverse structures, a high stability, and various properties. This review discusses the different aspects of In-MOFs including their design, synthesis and structures as well as their typical potential applications in adsorption and separation, catalysis, and chemical sensors. Importantly, the effect of pyridine on the properties and stability of frameworks has been carefully studied. The introduction of a pyridine group not only significantly enriches clusters of In3+ ions, but also enables flexible, controllably synthesized ionic or neutral frameworks to be fabricated. Based on this, we suggest that this type of In-metal organic framework (MOF) should receive more attention in the field of MOF design.
Collapse
Affiliation(s)
- Bin Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China. and Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Weize Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Bo Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
14
|
Liu L, Tao ZP, Chi HR, Wang B, Wang SM, Han ZB. The applications and prospects of hydrophobic metal-organic frameworks in catalysis. Dalton Trans 2021; 50:39-58. [PMID: 33306086 DOI: 10.1039/d0dt03635h] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In recent years, large numbers of hydrophobic/superhydrophobic metal-organic frameworks (MOFs) have been developed. These hydrophobic MOFs not only retain rich structural variety, highly crystalline frameworks, and uniform micropores, but they also have lower affinity towards water and boosted hydrolytic stability. Until now, there were two main strategies to prepare hydrophobic MOFs, including a one-step method and post-synthesis modification (PSM). PSM was an often-used strategy for preparing hydrophobic MOFs. Hydrophobic MOFs showed unique advantages when used as catalysts for various categories of reactions. Herein, recent research advances relating to hydrophobic MOFs in the catalytic field are presented. The catalytic activities of hydrophobic MOFs and corresponding hydrophilic ones are also compared, and the superiority of hydrophobic MOFs or MOF materials as catalysts in 10 reactions is discussed. Finally, the advantages of hydrophobic MOFs as catalysts or auxiliary materials are summarized and promising future developments of hydrophobic MOFs are highlighted.
Collapse
Affiliation(s)
- Lin Liu
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Metal–organic frameworks (MOFs) are a valuable group of porous crystalline solids with inorganic and organic parts that can be used in dual catalysis.
Collapse
Affiliation(s)
- Kayhaneh Berijani
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Iran
| | - Ali Morsali
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Iran
| |
Collapse
|
16
|
Feng L, Pang J, She P, Li JL, Qin JS, Du DY, Zhou HC. Metal-Organic Frameworks Based on Group 3 and 4 Metals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004414. [PMID: 32902012 DOI: 10.1002/adma.202004414] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Metal-organic frameworks (MOFs) based on group 3 and 4 metals are considered as the most promising MOFs for varying practical applications including water adsorption, carbon conversion, and biomedical applications. The relatively strong coordination bonds and versatile coordination modes within these MOFs endow the framework with high chemical stability, diverse structures and topologies, and interesting properties and functions. Herein, the significant progress made on this series of MOFs since 2018 is summarized and an update on the current status and future trends on the structural design of robust MOFs with high connectivity is provided. Cluster chemistry involving Y, lanthanides (Ln, from La to Lu), actinides (An, from Ac to Lr), Ti, and Zr is initially introduced. This is followed by a review of recently developed MOFs based on group 3 and 4 metals with their structures discussed based on the types of inorganic or organic building blocks. The novel properties and arising applications of these MOFs in catalysis, adsorption and separation, delivery, and sensing are highlighted. Overall, this review is expected to provide a timely summary on MOFs based on group 3 and 4 metals, which shall guide the future discovery and development of stable and functional MOFs for practical applications.
Collapse
Affiliation(s)
- Liang Feng
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Jiandong Pang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Ping She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jia-Luo Li
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Jun-Sheng Qin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Dong-Ying Du
- National and Local United Engineering Lab for Power Battery, Department of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843-3003, USA
| |
Collapse
|
17
|
Jeoung S, Kim S, Kim M, Moon HR. Pore engineering of metal-organic frameworks with coordinating functionalities. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213377] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Nguyen KD, Ehrling S, Senkovska I, Bon V, Kaskel S. New 1D chiral Zr-MOFs based on in situ imine linker formation as catalysts for asymmetric C C coupling reactions. J Catal 2020. [DOI: 10.1016/j.jcat.2020.03.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Jiang H, Zhang W, Kang X, Cao Z, Chen X, Liu Y, Cui Y. Topology-Based Functionalization of Robust Chiral Zr-Based Metal-Organic Frameworks for Catalytic Enantioselective Hydrogenation. J Am Chem Soc 2020; 142:9642-9652. [PMID: 32363868 DOI: 10.1021/jacs.0c00637] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The design and development of robust and porous supported catalysts with high activity and selectivity is extremely significant but very challenging for eco-friendly synthesis of fine chemicals and pharmaceuticals. We report here the design and synthesis of highly stable chiral Zr(IV)-based MOFs with different topologies to support Ir complexes and demonstrate their network structures-dependent asymmetric catalytic performance. Guided by the modulated synthesis and isoreticular expansion strategy, five chiral Zr-MOFs with a flu or ith topology are constructed from enantiopure 1,1'-biphenol-derived tetracarboxylate linkers and Zr6, Zr9, or Zr12 clusters. The obtained MOFs all show high chemical stability in boiling water, strongly acidic, and weakly basic aqueous solutions. The two flu MOFs featuring the dihydroxyl groups of biphenol in open and large cages, after sequential postsynthetic modification with P(NMe2)3 and [Ir(COD)Cl]2, can be highly efficient and recyclable heterogeneous catalysts for hydrogenation of α-dehydroamino acid esters with up to 98% ee, whereas the three ith MOFs featuring the dihydroxyl groups in small cages cannot be installed with P(NMe2)3 to support the Ir complex. Incorporation of Ir-phosphorus catalysts into Zr-MOFs leads to great enhancement of their chemical stability, durability, and even stereoselectivity. This work therefore not only advances Zr-MOFs as stable supports for labile metal catalysts for heterogeneous asymmetric catalysis but also provides a new insight into how highly active chiral centers can result due to the framework topology.
Collapse
Affiliation(s)
- Hong Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wenqiang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xing Kang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ziping Cao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xu Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
20
|
Li J, Han Y, Lin H, Wu N, Li Q, Jiang J, Zhu J. Cobalt-Salen-Based Porous Ionic Polymer: The Role of Valence on Cooperative Conversion of CO 2 to Cyclic Carbonate. ACS APPLIED MATERIALS & INTERFACES 2020; 12:609-618. [PMID: 31799826 DOI: 10.1021/acsami.9b16913] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cobalt-salen-based porous ionic polymers, which are composed of cobalt and halogen anions decorated on the framework, effectively catalyze the CO2 cycloaddition reaction of epoxides to cyclic carbonates under ambient conditions. The cooperative effect of bifunctional active sites of cobalt as the Lewis acidic site and the halogen anion as the nucleophile responds to the high catalytic performance. Moreover, density functional theory results indicate that the cobalt valence state and the corresponding coordination group influence the rate-determining step of the CO2 cycloaddition reaction and the nucleophilicity of halogen anions.
Collapse
Affiliation(s)
- Jing Li
- Intelligent Composites Laboratory, Department of Chemical and Biomolecular Engineering , The University of Akron , Akron , Ohio 44325 , United States
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Yulan Han
- School of Chemistry and Materials Science , University of Science and Technology of China , Hefei 230026 , China
| | - Han Lin
- Intelligent Composites Laboratory, Department of Chemical and Biomolecular Engineering , The University of Akron , Akron , Ohio 44325 , United States
| | - Nanhua Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering , Nanjing Tech University , Nanjing 211816 , China
- Energy Engineering, Division of Energy Science , Luleå University of Technology , Luleå 97187 , Sweden
| | - Qinkun Li
- School of Chemistry and Materials Science , University of Science and Technology of China , Hefei 230026 , China
| | - Jun Jiang
- School of Chemistry and Materials Science , University of Science and Technology of China , Hefei 230026 , China
| | - Jiahua Zhu
- Intelligent Composites Laboratory, Department of Chemical and Biomolecular Engineering , The University of Akron , Akron , Ohio 44325 , United States
| |
Collapse
|
21
|
Guo F, Zhang X. Metal–organic frameworks for the energy-related conversion of CO2 into cyclic carbonates. Dalton Trans 2020; 49:9935-9947. [DOI: 10.1039/d0dt01516d] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MOFs are promising heterogeneous catalysts for chemical fixation of CO2 and epoxides into cyclic carbonates.
Collapse
Affiliation(s)
- Feng Guo
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing 408100
- P. R. China
| | - Xiuling Zhang
- College of Chemistry and Chemical Engineering
- Dezhou University
- Dezhou
- People's Republic of China
| |
Collapse
|
22
|
Lan J, Qu Y, Zhang X, Ma H, Xu P, Sun J. A novel water-stable MOF Zn(Py)(Atz) as heterogeneous catalyst for chemical conversion of CO2 with various epoxides under mild conditions. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2019.09.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Hou SL, Dong J, Zhao B. Formation of CX Bonds in CO 2 Chemical Fixation Catalyzed by Metal-Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1806163. [PMID: 31216093 DOI: 10.1002/adma.201806163] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/13/2019] [Indexed: 06/09/2023]
Abstract
Transformation of CO2 based on metal-organic framework (MOF) catalysts is becoming a hot research topic, not only because it will help to reduce greenhouse gas emission, but also because it will allow for the production of valuable chemicals. In addition, a large number of impressive products have been synthesized by utilizing CO2 . In fact, it is the formation of new covalent bonds between CO2 and substrate molecules that successfully result in CO2 solidly inserting into the products, and only four types of new CX bonds, including CH, CC, CN, and CO bonds, are observed in this exploration. An overview of recent progress in constructing CX bonds for CO2 conversion catalyzed by various MOF catalysts is provided. The catalytic mechanism of generating different CX bonds is further discussed according to both structural features of MOFs and the interactions among CO2 , substrates, as well as MOFs. The future opportunities and challenges in this field are also tentatively covered.
Collapse
Affiliation(s)
- Sheng-Li Hou
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Nankai University, Tianjin, 300071, China
| | - Jie Dong
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Nankai University, Tianjin, 300071, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Nankai University, Tianjin, 300071, China
| |
Collapse
|
24
|
Yilmaz G, Peh SB, Zhao D, Ho GW. Atomic- and Molecular-Level Design of Functional Metal-Organic Frameworks (MOFs) and Derivatives for Energy and Environmental Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901129. [PMID: 31728281 PMCID: PMC6839644 DOI: 10.1002/advs.201901129] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/21/2019] [Indexed: 05/12/2023]
Abstract
Continuing population growth and accelerated fossil-fuel consumption with recent technological advancements have engendered energy and environmental concerns, urging researchers to develop advanced functional materials to overcome the associated problems. Metal-organic frameworks (MOFs) have emerged as frontier materials due to their unique porous organic-inorganic hybrid periodic assembly and exceptional diversity in structural properties and chemical functionalities. In particular, the modular nature and modularity-dependent activity of MOFs and MOF derivatives have accentuated the delicate atomic- and molecular design and synthesis of MOFs, and their meticulous conversion into carbons and transition-metal-based materials. Synthetic control over framework architecture, content, and reactivity has led to unprecedented merits relevant to various energy and environmental applications. Herein, an overview of the atomic- and molecular-design strategies of MOFs to realize application-targeted properties is provided. Recent progress on the development of MOFs and MOF derivatives based on these strategies, along with their performance, is summarized with a special emphasis on design-structure and functionality-activity relationships. Next, the respective energy- and environmental-related applications of catalysis and energy storage, as well as gas storage-separation and water harvesting with close association to the energy-water-environment nexus are highlighted. Last, perspectives on current challenges and recommendations for further development of MOF-based materials are also discussed.
Collapse
Affiliation(s)
- Gamze Yilmaz
- Department of Electrical and Computer EngineeringNational University of Singapore4 Engineering Drive 3Singapore117583Singapore
| | - Shing Bo Peh
- Department of Chemical and Biomolecular Engineering4 Engineering Drive 4Singapore117585Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering4 Engineering Drive 4Singapore117585Singapore
| | - Ghim Wei Ho
- Department of Electrical and Computer EngineeringNational University of Singapore4 Engineering Drive 3Singapore117583Singapore
- Institute of Materials Research and EngineeringA*STAR (Agency for Science, Technology and Research)3 Research LinkSingapore117602Singapore
| |
Collapse
|
25
|
Yadav A, Kanoo P. Metal-Organic Frameworks as Platform for Lewis-Acid-Catalyzed Organic Transformations. Chem Asian J 2019; 14:3531-3551. [PMID: 31509343 DOI: 10.1002/asia.201900876] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/10/2019] [Indexed: 11/05/2022]
Abstract
Metal-organic frameworks (MOFs) are highly promising Lewis acid catalysts; they either inherently possess Lewis acid sites (LASs) on it or the LASs can be generated through various post-synthetic methods, the later can be performed in MOFs in a trivial fashion. MOFs are suitable platform for catalysis because of its highly crystalline and porous nature. Moreover, with recent advancements, thermal and chemical stability is not a problem with many MOFs. In this Minireview, an enormous versatility of MOFs, in terms of their microporosity/mesoporosity, size/shape selectivity, chirality, pore size, etc., has been highlighted. These are advantageous for designing and performing various targeted organic transformations. Although, many organic transformations catalyzed by MOFs with LASs have been reported in the recent past. In this Minireview, we have restricted ourselves to four important organic reactions: (i) cyanosilylation, (ii) Diels-Alder reaction, (iii) C-H activation, and (iv) CO2 -addition. The discussion focuses mostly on the recent reports (42 examples).
Collapse
Affiliation(s)
- Anand Yadav
- Department of Chemistry, School of Chemical Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, Haryana, India
| | - Prakash Kanoo
- Department of Chemistry, School of Chemical Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, Haryana, India
| |
Collapse
|
26
|
Artem’ev AV, Fedin VP. Metal—Organic Frameworks in Asymmetric Catalysis: Recent Advances. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428019060101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Shi Y, Yang AF, Cao CS, Zhao B. Applications of MOFs: Recent advances in photocatalytic hydrogen production from water. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.012] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Sun X, Gu J, Yuan Y, Yu C, Li J, Shan H, Li G, Liu Y. A Stable Mesoporous Zr-Based Metal Organic Framework for Highly Efficient CO2 Conversion. Inorg Chem 2019; 58:7480-7487. [DOI: 10.1021/acs.inorgchem.9b00701] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaodong Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jiaming Gu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yang Yuan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Chengyang Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jiantang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hongyan Shan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Guanghua Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
29
|
Kassie AA, Duan P, McClure ET, Schmidt-Rohr K, Woodward PM, Wade CR. Postsynthetic Metal Exchange in a Metal-Organic Framework Assembled from Co(III) Diphosphine Pincer Complexes. Inorg Chem 2019; 58:3227-3236. [PMID: 30762343 DOI: 10.1021/acs.inorgchem.8b03318] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A Zr metal-organic framework (MOF) 1-CoCl3 has been synthesized by solvothermal reaction of ZrCl4 with a carboxylic acid-functionalized CoIII-PNNNP pincer complex H4(L-CoCl3) ([L-CoCl3]4- = [(2,6-(NHPAr2)2C6H3)CoCl3]4-, Ar = p-C6H4CO2-). The structure of 1-CoCl3 has been determined by X-ray powder diffraction and exhibits a csq topology that differs from previously reported ftw-net Zr MOFs assembled from related PdII- and PtII-PNNNP pincer complexes. The Co-PNNNP pincer species readily demetallate upon reduction of CoIII to CoII, allowing for transmetalation with late second and third row transition metals in both the homogeneous complex and 1-CoCl3. Reaction of 1-CoCl3 with [Rh(nbd)Cl]2 (nbd = 2,5-nobornadiene) results in complete Rh/Co metal exchange at the supported diphosphine pincer complexes to generate 1-RhCl, which has been inaccessible by direct solvothermal synthesis. Treating 1-CoCl3 with PtCl2(SMe2)2 in the presence of the mild reductant NEt3 resulted in nearly complete Co substitution by Pt. In addition, a mixed metal pincer MOF, 1-PtRh, was generated by sequential substitution of Co with Pt followed by Rh.
Collapse
Affiliation(s)
- Abebu A Kassie
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Pu Duan
- Department of Chemistry , Brandeis University , Waltham , Massachusetts 02453 , United States
| | - Eric T McClure
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Klaus Schmidt-Rohr
- Department of Chemistry , Brandeis University , Waltham , Massachusetts 02453 , United States
| | - Patrick M Woodward
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Casey R Wade
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
30
|
Ding M, Flaig RW, Jiang HL, Yaghi OM. Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem Soc Rev 2019; 48:2783-2828. [DOI: 10.1039/c8cs00829a] [Citation(s) in RCA: 1089] [Impact Index Per Article: 181.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review summarizes recent advances and highlights the structure–property relationship on metal–organic framework-based materials for carbon dioxide capture and conversion.
Collapse
Affiliation(s)
- Meili Ding
- Hefei National Laboratory for Physical Sciences at the Microscale
- CAS Key Laboratory of Soft Matter Chemistry
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Department of Chemistry
- University of Science and Technology of China
| | - Robinson W. Flaig
- Department of Chemistry
- University of California-Berkeley
- Materials Sciences Division
- Lawrence Berkeley National Laboratory
- Kavli Energy NanoSciences Institute
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale
- CAS Key Laboratory of Soft Matter Chemistry
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Department of Chemistry
- University of Science and Technology of China
| | - Omar M. Yaghi
- Department of Chemistry
- University of California-Berkeley
- Materials Sciences Division
- Lawrence Berkeley National Laboratory
- Kavli Energy NanoSciences Institute
| |
Collapse
|
31
|
Ge Y, Cheng G, Xu N, Wang W, Ke H. Zinc 2-N-methyl N-confused porphyrin: an efficient catalyst for the conversion of CO2 into cyclic carbonates. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00739c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A zinc 2-N-methyl N-confused porphyrin (Zn(NCP)Cl) catalyst was developed for the solvent-free synthesis of cyclic carbonates from epoxides and CO2.
Collapse
Affiliation(s)
- Yuansheng Ge
- Faculty of Materials Science and Chemistry
- China University of Geosciences (Wuhan)
- Wuhan 430074
- People's Republic of China
| | - Guoe Cheng
- Faculty of Materials Science and Chemistry
- China University of Geosciences (Wuhan)
- Wuhan 430074
- People's Republic of China
| | - Nanfeng Xu
- Faculty of Materials Science and Chemistry
- China University of Geosciences (Wuhan)
- Wuhan 430074
- People's Republic of China
| | - Weizhou Wang
- College of Chemistry and Chemical Engineering
- and Henan Key Laboratory of Function-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471934
- People's Republic of China
| | - Hanzhong Ke
- Faculty of Materials Science and Chemistry
- China University of Geosciences (Wuhan)
- Wuhan 430074
- People's Republic of China
| |
Collapse
|