1
|
Christensen CSQ, Hansen N, Motadayen M, Lock N, Henriksen ML, Quinson J. A review of metal-organic frameworks and polymers in mixed matrix membranes for CO 2 capture. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:155-186. [PMID: 39968168 PMCID: PMC11833178 DOI: 10.3762/bjnano.16.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/10/2025] [Indexed: 02/20/2025]
Abstract
Polymeric membranes offer an appealing solution for sustainable CO2 capture, with potential for large-scale deployment. However, balancing high permeability and selectivity is an inherent challenge for pristine membranes. To address this challenge, the development of mixed matrix membranes (MMMs) is a promising strategy. MMMs are obtained by carefully integrating porous nano-fillers into polymeric matrices, enabling the simultaneous enhancement of selectivity and permeability. In particular, metal-organic frameworks (MOFs) have gained recognition as MMM fillers for CO2 capture. Here, a review of the current state, recent advancements, and challenges in the fabrication and engineering of MMMs with MOFs for selective CO2 capture is proposed. Key considerations and promising research directions to fully exploit the gas separation potential of MOF-based MMMs in CO2 capture applications are highlighted.
Collapse
Affiliation(s)
- Charlotte Skjold Qvist Christensen
- Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Allé 3, 8000 Aarhus C, Denmark
- Centre for Water Technology (WATEC), Aarhus University, Ole Worms Allé 3, 8000 Aarhus C, Denmark
| | - Nicholas Hansen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Mahboubeh Motadayen
- Department of Electrical and Computer Engineering, Aarhus University, Finlandsgade 22, 8200 Aarhus N, Denmark
| | - Nina Lock
- Department of Biological and Chemical Engineering, Aarhus University, Aabogade 40, 8200 Aarhus N, Denmark
| | - Martin Lahn Henriksen
- Department of Biological and Chemical Engineering, Aarhus University, Aabogade 40, 8200 Aarhus N, Denmark
| | - Jonathan Quinson
- Department of Biological and Chemical Engineering, Aarhus University, Aabogade 40, 8200 Aarhus N, Denmark
| |
Collapse
|
2
|
Gopalsamy K, Singh CP, Krishnamurty S, Babarao R. Metal-Organic Frameworks for Enhanced Hydrogen Generation from Syngas: A Density Functional Theory Approach. Chempluschem 2024; 89:e202400229. [PMID: 38972840 DOI: 10.1002/cplu.202400229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/09/2024]
Abstract
Although methane poses environmental concerns, it is employed in hydrogen production processes such as steam-methane reforming (SMR), which has an issue of by-products released. Initiatives are being pursued to address CO and CO2 emissions using carbon capture methods, with the goal of minimizing environmental harm while improving pure hydrogen generation from syngas. In this study, porous coordination network (PCN-250) has been studied for its selective adsorption property towards CO, CO2 and H2O as syngas mixture to obtain pure hydrogen. For this purpose, the trimetallic cluster node Fe2M (where Fe2 represents the 3+ oxidation state and M is Cr(II), Mn(II), Fe(II), Co(II), Ni(II), and Zn(II)) has been considered. Fe(III) in combination with metal atoms like Cr(II), Co(II), or Ni(II) has been found to exhibit enhanced adsorption properties towards CO, CO2 and H2O. The molecule with the strongest interaction was found to be H2O over Fe(III)2Zn(II) cluster and weakest interaction was found between H2 and Fe(III)2Ni(II). Charge transfer, natural bond orbital (NBO) and spin density analyses reveal the electronic structural properties of this combination, leading to enhanced adsorption of CO and CO2.
Collapse
Affiliation(s)
- Karuppasamy Gopalsamy
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Chandrodai Pratap Singh
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sailaja Krishnamurty
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ravichandar Babarao
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
- ARC Centre of Excellence for Electrochemical Transformation of Carbon Dioxide, Australia
| |
Collapse
|
3
|
Li WL, Shuai Q, Yu J. Recent Advances of Carbon Capture in Metal-Organic Frameworks: A Comprehensive Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402783. [PMID: 39115100 DOI: 10.1002/smll.202402783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Indexed: 11/08/2024]
Abstract
The excessive emission of greenhouse gases, which leads to global warming and alarms the world, has triggered a global campaign for carbon neutrality. Carbon capture and sequestration (CCS) technology has aroused wide research interest as a versatile emission mitigation technology. Metal-organic frameworks (MOFs), as a new class of high-performance adsorbents, hold great potential for CO2 capture from large point sources and ambient air due to their ultra-high specific surface area as well as pore structure. In recent years, MOFs have made great progress in the field of CO2 capture and separation, and have published a number of important results, which have greatly promoted the development of MOF materials for practical carbon capture applications. This review summarizes the most recent advanced research on MOF materials for carbon capture in various application scenarios over the past six years. The strategies for enhancing CO2 selective adsorption and separation of MOFs are described in detail, along with the development of MOF-based composites. Moreover, this review also systematically summarizes the highly concerned issues of MOF materials in practical applications of carbon capture. Finally, future research on CO2 capture by MOF materials is prospected.
Collapse
Affiliation(s)
- Wen-Liang Li
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Qi Shuai
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jiamei Yu
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
4
|
Ramasamy N, Raj AJLP, Akula VV, Nagarasampatti Palani K. Leveraging experimental and computational tools for advancing carbon capture adsorbents research. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55069-55098. [PMID: 39225926 DOI: 10.1007/s11356-024-34838-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
CO2 emissions have been steadily increasing and have been a major contributor for climate change compelling nations to take decisive action fast. The average global temperature could reach 1.5 °C by 2035 which could cause a significant impact on the environment, if the emissions are left unchecked. Several strategies have been explored of which carbon capture is considered the most suitable for faster deployment. Among different carbon capture solutions, adsorption is considered both practical and sustainable for scale-up. But the development of adsorbents that can exhibit satisfactory performance is typically done through the experimental approach. This hit and trial method is costly and time consuming and often success is not guaranteed. Machine learning (ML) and other computational tools offer an alternate to this approach and is accessible to everyone. Often, the research towards materials focuses on maximizing its performance under simulated conditions. The aim of this study is to present a holistic view on progress in material research for carbon capture and the various tools available in this regard. Thus, in this review, we first present a context on the workflow for carbon capture material development before providing various machine learning and computational tools available to support researchers at each stage of the process. The most popular application of ML models is for predicting material performance and recommends that ML approaches can be utilized wherever possible so that experimentations can be focused on the later stages of the research and development.
Collapse
Affiliation(s)
- Niranjan Ramasamy
- Department of Chemical Engineering, Rajalakshmi Engineering College, Chennai, India
| | | | - Vedha Varshini Akula
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Sriperumbudur, 602117, Kancheepuram, India
| | - Kavitha Nagarasampatti Palani
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Sriperumbudur, 602117, Kancheepuram, India.
| |
Collapse
|
5
|
Wang C, Zhang XW, Chen XX, Zhang WX, Zhang JP. Isomeric Porous Cu(I) Triazolate Frameworks Showing Periodic and Aperiodic Flexibility for Efficient CO Separation. J Am Chem Soc 2024; 146:13886-13893. [PMID: 38739909 DOI: 10.1021/jacs.4c01539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Guest-induced (crystal-to-crystal) transformation, i.e., periodic flexibility, is a typical feature of molecule-based crystalline porous materials, but its role for adsorptive separation is controversial. On the other hand, aperiodic flexibility is rarely studied. This work reports a pair of isomeric Cu(I) triazolate frameworks, namely, α-[Cu(fetz)] (MAF-2Fa) and β-[Cu(fetz)] (MAF-2Fb), which show typical periodic and aperiodic flexibility for CO chemical adsorption, respectively. Quantitative mixture breakthrough experiments show that, while MAF-2Fa exhibits high adsorption capacity at high pressures but negligible adsorption below the threshold pressure and with leakage concentrations of 3-8%, MAF-2Fb exhibits relatively low adsorption capacity at high pressures but no leakage (residual CO concentration <1 ppb). Tandem connection of MAF-2Fa and MAF-2Fb can combine their advantages of high CO adsorption capacities at high and low pressures, respectively. MAF-2Fa and MAF-2Fb can both keep the separation performances unchanged at high relative humidities, but only MAF-2Fb shows a unique coadsorption behavior at a relative humidity of 82%, which can be used to improve purification performances.
Collapse
Affiliation(s)
- Chao Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xue-Wen Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Xian Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wei-Xiong Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jie-Peng Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
6
|
Lin H, Yang Y, Hsu YC, Zhang J, Welton C, Afolabi I, Loo M, Zhou HC. Metal-Organic Frameworks for Water Harvesting and Concurrent Carbon Capture: A Review for Hygroscopic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209073. [PMID: 36693232 DOI: 10.1002/adma.202209073] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/05/2023] [Indexed: 06/17/2023]
Abstract
As water scarcity becomes a pending global issue, hygroscopic materials prove a significant solution. Thus, there is a good cause following the structure-performance relationship to review the recent development of hygroscopic materials and provide inspirational insight into creative materials. Herein, traditional hygroscopic materials, crystalline frameworks, polymers, and composite materials are reviewed. The similarity in working conditions of water harvesting and carbon capture makes simultaneously addressing water shortages and reduction of greenhouse effects possible. Concurrent water harvesting and carbon capture is likely to become a future challenge. Therefore, an emphasis is laid on metal-organic frameworks (MOFs) for their excellent performance in water and CO2 adsorption, and representative role of micro- and mesoporous materials. Herein, the water adsorption mechanisms of MOFs are summarized, followed by a review of MOF's water stability, with a highlight on the emerging machine learning (ML) technique to predict MOF water stability and water uptake. Recent advances in the mechanistic elaboration of moisture's effects on CO2 adsorption are reviewed. This review summarizes recent advances in water-harvesting porous materials with special attention on MOFs and expects to direct researchers' attention into the topic of concurrent water harvesting and carbon capture as a future challenge.
Collapse
Affiliation(s)
- Hengyu Lin
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Yihao Yang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Yu-Chuan Hsu
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Jiaqi Zhang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Claire Welton
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Ibukun Afolabi
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Marshal Loo
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
7
|
Rajendran A, Shimizu GKH, Woo TK. The Challenge of Water Competition in Physical Adsorption of CO 2 by Porous Solids for Carbon Capture Applications - A Short Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301730. [PMID: 37496078 DOI: 10.1002/adma.202301730] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/03/2023] [Indexed: 07/28/2023]
Abstract
With ever-increasing efforts to design sorbent materials to capture carbon dioxide from flue gas and air, this perspective article is provided based on nearly a decade of collaboration across science, engineering, and industry partners. A key point learned is that a holistic view of the carbon capture problem is critical. While researchers can be inclined to value their own fields and associated metrics, often, key parameters are those that enable synergy between materials and processes. While the role of water in the chemisorption of CO2 is well-studied, in this perspective, it is hoped to highlight the often-overlooked but critical role of water in assessing the potential of a physical adsorbent for CO2 capture. This is a challenge that requires interdisciplinarity. As such, this document is written for a general audience rather than experts in any specific discipline.
Collapse
Affiliation(s)
- Arvind Rajendran
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - George K H Shimizu
- Department of Chemistry, University of Calgary, Department of Chemistry, Calgary, T2N1N4, Canada
| | - Tom K Woo
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, Ontario, K1N6N5, Canada
| |
Collapse
|
8
|
Liu S, Wang L, Zhang H, Fang H, Yue X, Wei S, Liu S, Wang Z, Lu X. Efficient CO 2 Capture and Separation in MOFs: Effect from Isoreticular Double Interpenetration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7152-7160. [PMID: 38294350 DOI: 10.1021/acsami.3c16622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Severe CO2 emissions has posed an increasingly alarming threat, motivating the development of efficient CO2 capture materials, one of the key parts of carbon capture, utilization, and storage (CCUS). In this study, a series of metal-organic frameworks (MOFs) named Sc-X (X = S, M, L) were constructed inspired by recorded MOFs, Zn-BPZ-SA and MFU-4l-Li. The corresponding isoreticular double-interpenetrating MOFs (Sc-X-IDI) were subsequently constructed via the introduction of isoreticular double interpenetration. Grand canonical Monte Carlo (GCMC) simulations were adopted at 298 K and 0.1-1.0 bar to comprehensively evaluate the CO2 capture and separation performances in Sc-X and Sc-X-IDI, with gas distribution, isothermal adsorption heat (Qst), and van der Waals (vdW)/Coulomb interactions. It is showed that isoreticular double interpenetration significantly improved the interactions between adsorbed gases and frameworks by precisely modulating pore sizes, particularly observed in Sc-M and Sc-M-IDI. Specifically, the Qst and Coulomb interactions exhibited a substantial increase, rising from 28.38 and 22.19 kJ mol-1 in Sc-M to 43.52 and 38.04 kJ mol-1 in Sc-M-IDI, respectively, at 298 K and 1.0 bar. Besides, the selectivity of CO2 over CH4/N2 was enhanced from 55.36/107.28 in Sc-M to 3308.61/7021.48 in Sc-M-IDI. However, the CO2 capture capacity is significantly influenced by the pore size. Sc-M, with a favorable pore size, exhibits the highest capture capacity of 15.86 mmol g-1 at 298 K and 1.0 bar. This study elucidated the impact of isoreticular double interpenetration on the CO2 capture performance in MOFs.
Collapse
Affiliation(s)
- Sen Liu
- College of Science, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Lu Wang
- College of Science, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Huili Zhang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Hongxu Fang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Xiaokun Yue
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Shuxian Wei
- College of Science, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Siyuan Liu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Zhaojie Wang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| |
Collapse
|
9
|
Padinjareveetil AK, Perales-Rondon JV, Zaoralová D, Otyepka M, Alduhaish O, Pumera M. Fe-MOF Catalytic Nanoarchitectonic toward Electrochemical Ammonia Production. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47294-47306. [PMID: 37782845 PMCID: PMC10571008 DOI: 10.1021/acsami.3c12822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 10/04/2023]
Abstract
Electrochemical reduction of nitrate into ammonia has lately been identified as one among the promising solutions to address the challenges triggered by the growing global energy demand. Exploring newer electrocatalyst materials is vital to make this process effective and feasible. Recently, metal-organic framework (MOF)-based catalysts are being well investigated for electrocatalytic ammonia synthesis, accounting for their enhanced structural and compositional integrity during catalytic reduction reactions. In this study, we investigate the ability of the PCN-250-Fe3 MOF toward ammonia production in its pristine and activated forms. The activated MOF catalyst delivered a faradaic efficiency of about 90% at -1 V vs RHE and a yield rate of 2.5 × 10-4 mol cm-2 h-1, while the pristine catalyst delivered a 60% faradaic efficiency at the same potential. Theoretical studies further provide insights into the nitrate reduction reaction mechanism catalyzed by the PCN-250-Fe3 MOF catalyst. In short, simpler and cost-effective strategies such as pretreatment of electrocatalysts have an upper hand in aggravating the intrinsic material properties, for catalytic applications, when compared to conventional material modification approaches.
Collapse
Affiliation(s)
- Akshay
Kumar K. Padinjareveetil
- Future
Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 612 00, Czech Republic
| | - Juan V. Perales-Rondon
- Future
Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 612 00, Czech Republic
| | - Dagmar Zaoralová
- IT4Innovations,
VŠB − Technical University of Ostrava, Ostrava-Poruba 708 00, Czech Republic
| | - Michal Otyepka
- IT4Innovations,
VŠB − Technical University of Ostrava, Ostrava-Poruba 708 00, Czech Republic
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Olomouc 783 71, Czech Republic
| | - Osamah Alduhaish
- Chemistry
Department, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Martin Pumera
- Future
Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 612 00, Czech Republic
- Chemistry
Department, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Faculty
of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 708 00, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University Prague, KeKarlovu 2, Prague 128 08, Czech Republic
- Department
of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| |
Collapse
|
10
|
Chen M, Li M, Liang Y, Meng W, Zhang Z, Wu Y, Li X, Zhang F. Improvement in CO 2 Capture of Polyamine with Micro-Interfacial System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14451-14458. [PMID: 37773886 DOI: 10.1021/acs.langmuir.3c02053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Polyamines have emerged as a promising class of CO2 absorbents due to their remarkable sequestration capacity. However, their potential industrial application as aqueous absorbents is significantly hindered by a low regeneration efficiency and high energy consumption. To address these issues, this study investigates the use of triethylenetetramine (TETA) and ethylene glycol (EG) to develop a nonaqueous absorbent. The incorporation of EG enhances absorption performance and reduces the regeneration energy needed for TETA, whereas the high viscosity of the absorbent impedes absorption rate, amine efficiency, and regeneration efficiency. In order to enhance CO2 capture, micron-sized reaction units (SiO2@TETA-EG) were developed by encapsulating TETA solution with nanosilica. The SiO2@TETA-EG composite exhibits a large specific surface area (99 m2/g), with a porous shell structure and improved fluidity, which effectively counteracts the negative effects caused by high viscosity. Notably, SiO2@TETA-EG indicates a noticeably higher apparent rate constant of 4.29 min-1 at 323.2 K compared to the TETA-EG solution. Furthermore, SiO2@TETA-EG displays a 28.4% boost in regeneration efficiency while maintaining favorable stability in pore size and shape after regeneration.
Collapse
Affiliation(s)
- Meisi Chen
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China
| | - Mengjia Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China
| | - Yinchun Liang
- Nantong Cellulose Fibers Co., Ltd., Nantong, Jiangsu 226008, China
| | - Weimin Meng
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China
| | - Zhibing Zhang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China
| | - Youting Wu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China
| | - Xinyao Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China
| | - Feng Zhang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China
| |
Collapse
|
11
|
Hu L, Wu W, Jiang L, Hu M, Zhu H, Gong L, Yang J, Lin D, Yang K. Methyl-Functionalized Al-Based MOF ZJU-620(Al): A Potential Physisorbent for Carbon Dioxide Capture. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43925-43932. [PMID: 37688785 DOI: 10.1021/acsami.3c10086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
Developing Al-based metal-organic frameworks (MOFs) with moisture-resistance ability is a challenge for carbon dioxide (CO2) capture. Methyl-functionalized Al-based MOF ZJU-620(Al), with excellent chemical-thermal stability and specific surface area of 1347 m2/g, observed here, is a potential adsorbent for CO2 capture with good recyclability and large capacity up to 4.25 mmol/g at 298 K and 1 atm. CO2 molecules are largely trapped on two types of sites. One (site I) is near the AlO6 clusters, and another (site II) is between two parallel benzene rings with a distance of 6.64 Å. ZJU-620(Al) can be used for CO2/N2 (15/85) separation with the excellent selectivity up to 107.20 at 273 K and 31.93 at 298 K, and the separation factor of 13.68. It is also with excellent moisture-resistance ability due to 5% breakthrough time (outlet concentration reached the 5% of inlet concentration) without reduction at 80% relative humidity than under dry conditions. Water molecules occupy a small amount of CO2 adsorption site I, but they almost do not occupy the CO2 adsorption site II due to hydrophobic methyl-functional ligands. Moreover, CO2 can be adsorbed on the ZJU-620(Al) surface through C═O···H binding of water molecules with high affinity. Thus, ZJU-620(Al) is a candidate adsorbent for CO2 capture and separation especially under humidity conditions.
Collapse
Affiliation(s)
- Laigang Hu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Wenhao Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Ling Jiang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Min Hu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Hongxia Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Li Gong
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Jiahui Yang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| |
Collapse
|
12
|
Zhu R, Cai M, Fu T, Yin D, Peng H, Liao S, Du Y, Kong J, Ni J, Yin X. Fe-Based Metal Organic Frameworks (Fe-MOFs) for Bio-Related Applications. Pharmaceutics 2023; 15:1599. [PMID: 37376050 DOI: 10.3390/pharmaceutics15061599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Metal-organic frameworks (MOFs) are porous materials composed of metal ions and organic ligands. Due to their large surface area, easy modification, and good biocompatibility, MOFs are often used in bio-related fields. Fe-based metal-organic frameworks (Fe-MOFs), as important types of MOF, are favored by biomedical researchers for their advantages, such as low toxicity, good stability, high drug-loading capacity, and flexible structure. Fe-MOFs are diverse and widely used. Many new Fe-MOFs have appeared in recent years, with new modification methods and innovative design ideas, leading to the transformation of Fe-MOFs from single-mode therapy to multi-mode therapy. In this paper, the therapeutic principles, classification, characteristics, preparation methods, surface modification, and applications of Fe-MOFs in recent years are reviewed to understand the development trends and existing problems in Fe-MOFs, with the view to provide new ideas and directions for future research.
Collapse
Affiliation(s)
- Rongyue Zhu
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mengru Cai
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tingting Fu
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Dongge Yin
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hulinyue Peng
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shilang Liao
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuji Du
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiahui Kong
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jian Ni
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xingbin Yin
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
13
|
Wang Z, Gao Y, Wang Y, Yan J, Liu B, Chen Y. Moisture-enhanced trace chloroalkanes detection in bimetallic metal-organic frameworks 3-dimensional photonic crystal. Anal Chim Acta 2023; 1254:341117. [PMID: 37005027 DOI: 10.1016/j.aca.2023.341117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/04/2023]
Abstract
Chloroalkanes have long been a threat to environmental protection and human health, however, rapid and efficient detection of chloroalkanes remains challenging. Herein, 3-dimensional photonics crystals (3-D PCs) based on bimetallic materials of institute lavoisier frameworks-127 (MIL-127, Fe2M, M = Fe, Ni, Co, Zn) demonstrate the great potential of chloroalkanes sensing. Particularly, at temperature of 25 °C and dry conditions, the 3-D PC consisting of MIL-127 (Fe2Co) shows optimal selectivity and high concentration sensitivity of 0.0351 ± 0.00007 nm ppm-1 to carbon tetra-chloride (CCl4), and the limit of detection (LOD) can reach 2.85 ± 0.01 ppm. Meanwhile, MIL-127 (Fe2Co) 3-D PC sensor presents a rapid response of 1 s and recovery time of 4.5 s for CCl4 vapor, and can maintain excellent sensing performance under heat-treatment of 200 °C or in the long-term storage (30 days). Mechanism studies indicated that the excellent sensing property derived from the doping of transition metals. Moreover, the moisture-enhanced adsorption of CCl4 for the MIL-127 (Fe2Co) 3-D PC sensor is also observed. H2O molecule can remarkably enhance the adsorption of MIL-127 (Fe2Co) to CCl4. The MIL-127 (Fe2Co) 3-D PC sensor shows the highest concentration sensitivity of 0.146 ± 0.00082 nm ppm-1 to CCl4 and the lowest limit of detection (LOD) of 685 ± 4 ppb under the pre-adsorption of 75 ppm H2O. Our results provide an insight for a trace gas detection using metal-organic frameworks (MOFs) in the optical sensing field.
Collapse
|
14
|
Tu S, Yu L, Liu J, Lin D, Wu Y, Li Z, Wang H, Xia Q. Efficient CO 2 Capture under Humid Conditions on a Novel Amide-Functionalized Fe- soc Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12240-12247. [PMID: 36821648 DOI: 10.1021/acsami.3c00096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
CO2 is the main source of the greenhouse gases, and its capture from flue gas under humid conditions is challenging but important for promoting carbon neutrality. Herein, we report a novel soc topology Fe-based metal-organic framework (Fe-dbai) with highly efficient postcombusion CO2 capture performance by integrating multiple specific functionalities, such as unsaturated metal sites and amide functional groups. The CO2 adsorption capacity and CO2/N2 selectivity of Fe-dbai are high up to 6.4 mmol/g and 64 (298 K, 1 bar), respectively, superior to many other reported MOFs. More importantly, the CO2 working capacity of Fe-dbai under 60% RH conditions preserves 94% of that under dry conditions in the breakthrough experiments of CO2/N2 (15:85, v/v) mixtures. The molecular simulation highlights that the electronegative amide CO- group has a good affinity for CO2 and can improve the interaction between Fe UMS and CO2. Although H2O molecules will occupy a small fraction of the adsorption sites, the confinement effect it produces can enhance the adsorption affinity of the framework for CO2, which results in Fe-dbai retaining most of the CO2 adsorption capacity under humid conditions. The excellent CO2 capture performance makes Fe-dbai a potential candidate for the practical application of CO2 capture.
Collapse
Affiliation(s)
- Shi Tu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, P. R. China
| | - Liang Yu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, P. R. China
- Shenzhen Polytechnic, Hoffmann Institute of Advanced Materials, 7098 Liuxian Boulevard, Shenzhen 518055, China
| | - Jiaqi Liu
- Shenzhen Polytechnic, Hoffmann Institute of Advanced Materials, 7098 Liuxian Boulevard, Shenzhen 518055, China
| | - Danxia Lin
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, P. R. China
| | - Ying Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhong Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, P. R. China
| | - Hao Wang
- Shenzhen Polytechnic, Hoffmann Institute of Advanced Materials, 7098 Liuxian Boulevard, Shenzhen 518055, China
| | - Qibin Xia
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, P. R. China
| |
Collapse
|
15
|
Wan Y, Kong D, Xiong F, Qiu T, Gao S, Zhang Q, Miao Y, Qin M, Wu S, Wang Y, Zhong R, Zou R. Enhancing hydrophobicity via core–shell metal organic frameworks for high-humidity flue gas CO2 capture. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
16
|
Chen W, Wang Z, Wang Q, El-Yanboui K, Tan K, Barkholtz HM, Liu DJ, Cai P, Feng L, Li Y, Qin JS, Yuan S, Sun D, Zhou HC. Monitoring the Activation of Open Metal Sites in [Fe xM 3-x(μ 3-O)] Cluster-Based Metal-Organic Frameworks by Single-Crystal X-ray Diffraction. J Am Chem Soc 2023; 145:4736-4745. [PMID: 36790398 PMCID: PMC10848254 DOI: 10.1021/jacs.2c13299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Indexed: 02/16/2023]
Abstract
While trinuclear [FexM3-x(μ3-O)] cluster-based metal-organic frameworks (MOFs) have found wide applications in gas storage and catalysis, it is still challenging to identify the structure of open metal sites obtained through proper activations and understand their influence on the adsorption and catalytic properties. Herein, we use in situ variable-temperature single-crystal X-ray diffraction to monitor the structural evolution of [FexM3-x(μ3-O)]-based MOFs (PCN-250, M = Ni2+, Co2+, Zn2+, Mg2+) upon thermal activation and provide the snapshots of metal sites at different temperatures. The exposure of open Fe3+ sites was observed along with the transformation of Fe3+ coordination geometries from octahedron to square pyramid. Furthermore, the effect of divalent metals in heterometallic PCN-250 was studied for the purpose of reducing the activation temperature and increasing the number of open metal sites. The metal site structures were corroborated by X-ray absorption and infrared spectroscopy. These results will not only guide the pretreatment of [FexM3-x(μ3-O)]-based MOFs but also corroborate spectral and computational studies on these materials.
Collapse
Affiliation(s)
- Wenmiao Chen
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United
States
| | - Zhi Wang
- School
of Chemistry and Chemical Engineering, Shandong
University, Jinan 250100, P. R. China
| | - Qi Wang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United
States
| | - Khaoula El-Yanboui
- Department
of Materials Science & Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Kui Tan
- Department
of Materials Science & Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Heather M. Barkholtz
- Chemical
Sciences & Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Di-Jia Liu
- Chemical
Sciences & Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Peiyu Cai
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United
States
| | - Liang Feng
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United
States
| | - Youcong Li
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Jun-Sheng Qin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United
States
| | - Shuai Yuan
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United
States
| | - Di Sun
- School
of Chemistry and Chemical Engineering, Shandong
University, Jinan 250100, P. R. China
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United
States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77842, United States
| |
Collapse
|
17
|
Ullah S, Tan K, Sensharma D, Kumar N, Mukherjee S, Bezrukov AA, Li J, Zaworotko MJ, Thonhauser T. CO
2
Capture by Hybrid Ultramicroporous TIFSIX‐3‐Ni under Humid Conditions Using Non‐Equilibrium Cycling. Angew Chem Int Ed Engl 2022; 61:e202206613. [PMID: 35737638 PMCID: PMC9539483 DOI: 10.1002/anie.202206613] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 12/03/2022]
Abstract
Although pyrazine‐linked hybrid ultramicroporous materials (HUMs, pore size <7 Å) are benchmark physisorbents for trace carbon dioxide (CO2) capture under dry conditions, their affinity for water (H2O) mitigates their carbon capture performance in humid conditions. Herein, we report on the co‐adsorption of H2O and CO2 by TIFSIX‐3‐Ni—a high CO2 affinity HUM—and find that slow H2O sorption kinetics can enable CO2 uptake and release using shortened adsorption cycles with retention of ca. 90 % of dry CO2 uptake. Insight into co‐adsorption is provided by in situ infrared spectroscopy and ab initio calculations. The binding sites and sorption mechanisms reveal that both CO2 and H2O molecules occupy the same ultramicropore through favorable interactions between CO2 and H2O at low water loading. An energetically favored water network displaces CO2 molecules at higher loading. Our results offer bottom‐up design principles and insight into co‐adsorption of CO2 and H2O that is likely to be relevant across the full spectrum of carbon capture sorbents to better understand and address the challenge posed by humidity to gas capture.
Collapse
Affiliation(s)
- Saif Ullah
- Department of Physics and Center for Functional Materials Wake Forest University Winston-Salem NC 27109 USA
| | - Kui Tan
- Department of Materials Science & Engineering University of Texas at Dallas Richardson TX 75080 USA
| | - Debobroto Sensharma
- Bernal Institute Department of Chemical Sciences University of Limerick Limerick V94 T9PX Ireland
| | - Naveen Kumar
- Bernal Institute Department of Chemical Sciences University of Limerick Limerick V94 T9PX Ireland
| | - Soumya Mukherjee
- Bernal Institute Department of Chemical Sciences University of Limerick Limerick V94 T9PX Ireland
| | - Andrey A. Bezrukov
- Bernal Institute Department of Chemical Sciences University of Limerick Limerick V94 T9PX Ireland
| | - Jing Li
- Department of Chemistry and Chemical Biology Rutgers University Piscataway NJ 08854 USA
| | - Michael J. Zaworotko
- Bernal Institute Department of Chemical Sciences University of Limerick Limerick V94 T9PX Ireland
| | - Timo Thonhauser
- Department of Physics and Center for Functional Materials Wake Forest University Winston-Salem NC 27109 USA
| |
Collapse
|
18
|
Dong C, Yang JJ, Xie LH, Cui G, Fang WH, Li JR. Catalytic ozone decomposition and adsorptive VOCs removal in bimetallic metal-organic frameworks. Nat Commun 2022; 13:4991. [PMID: 36008479 PMCID: PMC9411195 DOI: 10.1038/s41467-022-32678-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/11/2022] [Indexed: 12/29/2022] Open
Abstract
Atmospheric ozone has long been a threat to human health, however, rational design of high-performance O3-decomposition catalysts remains challenging. Herein, we demonstrate the great potential of a series of isomorphous bimetallic MOFs denoted as PCN-250(Fe2M) (M = Co2+, Ni2+, Mn2+) in catalytic O3 decomposition. Particularly, PCN-250(Fe2Co) showed 100% O3 removal efficiency for a continuous air flow containing 1 ppm O3 over a wide humidity range (0 ‒ 80% RH) at room temperature. Mechanism studies suggested that the high catalytic performance originated from the introduction of open Co(II) sites as well as its porous structure. Additionally, at low pressures around 10 Pa, PCN-250(Fe2Co) exhibited high adsorption capacities (89 ‒ 241 mg g-1) for most VOCs, which are not only a class of hazardous air pollutants but also the precursor of O3. This work opens up a new avenue to develop advanced air purification materials for O3 and VOCs removal in one.
Collapse
Affiliation(s)
- Chen Dong
- grid.28703.3e0000 0000 9040 3743Beijing Key Laboratory for Green Catalysis and Separation, and Department of Environmental Chemical Engineering, Beijing University of Technology, 100124 Beijing, China
| | - Jia-Jia Yang
- grid.20513.350000 0004 1789 9964Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 100875 Beijing, China
| | - Lin-Hua Xie
- grid.28703.3e0000 0000 9040 3743Beijing Key Laboratory for Green Catalysis and Separation, and Department of Environmental Chemical Engineering, Beijing University of Technology, 100124 Beijing, China
| | - Ganglong Cui
- grid.20513.350000 0004 1789 9964Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 100875 Beijing, China
| | - Wei-Hai Fang
- grid.20513.350000 0004 1789 9964Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 100875 Beijing, China
| | - Jian-Rong Li
- grid.28703.3e0000 0000 9040 3743Beijing Key Laboratory for Green Catalysis and Separation, and Department of Environmental Chemical Engineering, Beijing University of Technology, 100124 Beijing, China
| |
Collapse
|
19
|
Palakkal AS, Pillai RS. Evaluating the performance of Cr-Soc-MOF Super-Adsorbents for CO2 capture from flue gas under humid condition through molecular simulation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
|
21
|
Ullah S, Tan K, Sensharma D, Kumar N, Mukherjee S, Bezrukov AA, Li J, Zaworotko MJ, Thonhauser T. CO2 Capture by Hybrid Ultramicroporous TIFSIX‐3‐Ni under Humid Conditions Using Non‐Equilibrium Cycling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Saif Ullah
- Wake Forest University Physics 2700 Reynolda Rd Apt. 1312 27106 Winston Salem UNITED STATES
| | - Kui Tan
- UTD: University of Texas at Dallas Department of Materials Science and Engineering UNITED STATES
| | | | - Naveen Kumar
- University of Limerick Department of Chemical Sciences IRELAND
| | | | | | - Jing Li
- Rutgers University: Rutgers The State University of New Jersey Department of Chemistry and Chemical Biology UNITED STATES
| | | | - Timo Thonhauser
- Wake Forest University Department of Physics and Center for Functional Materials UNITED STATES
| |
Collapse
|
22
|
Peng J, Liu Z, Wu Y, Xian S, Li Z. High-Performance Selective CO 2 Capture on a Stable and Flexible Metal-Organic Framework via Discriminatory Gate-Opening Effect. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21089-21097. [PMID: 35477298 DOI: 10.1021/acsami.2c04779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Selective CO2 capture is of great significance for environmental protection and industrial demand. Here, we report a stable and flexible metal-organic framework (MOF) with excellent water/moisture stability, namely, ZnDatzBdc, that enables high-performance selective CO2 capture from N2 and CH4 via a discriminatory gate-opening effect. ZnDatzBdc shows reversible structural transformation between the open-phase (OP) state and the close-phase (CP) state, owing to the synergistic effect of breakage/re-formation of intraframework hydrogen bonds and the rotation of the phenyl rings. Significantly, ZnDatzBdc exhibits S-shaped isotherms toward CO2, resulting in a large CO2 theoretical working capacity of 94.9 cm3/cm3 under typical pressure vacuum swing adsorption (PVSA) operations, which outperforms other flexible MOFs showing the CO2 selective gate-opening effect except for the miosture-sensitive ELM-11. In addition, CO2 uptake of ZnDatzBdc is well maintained upon multiple water/moisture exposure, indicating its excellent stability. Moreover, ZnDatzBdc establishes remarkable CO2 selectivity with ultrahigh uptake ratios of CO2/N2 (107 at 273 K and 129 at 298 K) and CO2/CH4 (35 at 273 K and 44 at 298 K) at 100 kPa. The in situ gas sorption PXRD experiment verifies that the gate-opening effect takes place in the atmospheric environment of CO2 but not for N2 or CH4. Molecular simulation suggests the selective gate-opening of CO2 comes from its strong electrostatic interactions with the amino groups. Furthermore, effective breakthrough performance and easy regeneration are further confirmed. Hence, combined with excellent separation performance and remarkable stability, ZnDatzBdc can serve as a potential industrial adsorbent for selective CO2 capture.
Collapse
Affiliation(s)
- Junjie Peng
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zewei Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Ying Wu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shikai Xian
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Xili, Nanshan, Shenzhen 518055, P. R. China
| | - Zhong Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- The Key Laboratory of Enhanced Heat Transfer and Energy Conversation Ministry of Education, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
23
|
Shingdilwar S, Dolui S, Banerjee S. Facile Fabrication of Functional Mesoporous Polymer Nanospheres for CO 2 Capture. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Shashikant Shingdilwar
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| | - Subrata Dolui
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| | - Sanjib Banerjee
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| |
Collapse
|
24
|
Shingdilwar S, Kumar D, Sahu B, Banerjee S. Straightforward synthesis of multifunctional porous polymer nanomaterials for CO 2 capture and removal of contaminants. Polym Chem 2022. [DOI: 10.1039/d2py00067a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A straightforward synthesis of multifunctional mesoporous polymer nanomaterials suitable for the removal of contaminants and CO2 capture is reported.
Collapse
Affiliation(s)
- Shashikant Shingdilwar
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| | - Devendra Kumar
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| | - Bhanendra Sahu
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| | - Sanjib Banerjee
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| |
Collapse
|
25
|
Cueto-Díaz EJ, Castro-Muñiz A, Suárez-García F, Gálvez-Martínez S, Torquemada-Vico MC, Valles-González MP, Mateo-Martí E. APTES-Based Silica Nanoparticles as a Potential Modifier for the Selective Sequestration of CO 2 Gas Molecules. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2893. [PMID: 34835658 PMCID: PMC8620991 DOI: 10.3390/nano11112893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022]
Abstract
In this work, we have described the characterization of hybrid silica nanoparticles of 50 nm size, showing outstanding size homogeneity, a large surface area, and remarkable CO2 sorption/desorption capabilities. A wide battery of techniques was conducted ranging from spectroscopies such as: UV-Vis and IR, to microscopies (SEM, AFM) and CO2 sorption/desorption isotherms, thus with the purpose of the full characterization of the material. The bare SiO2 (50 nm) nanoparticles modified with 3-aminopropyl (triethoxysilane), APTES@SiO2 (50 nm), show a remarkable CO2 sequestration enhancement compared to the pristine material (0.57 vs. 0.80 mmol/g respectively at 50 °C). Furthermore, when comparing them to their 200 nm size counterparts (SiO2 (200 nm) and APTES@SiO2 (200 nm)), there is a marked CO2 capture increment as a consequence of their significantly larger micropore volume (0.25 cm3/g). Additionally, ideal absorbed solution theory (IAST) was conducted to determine the CO2/N2 selectivity at 25 and 50 °C of the four materials of study, which turned out to be >70, being in the range of performance of the most efficient microporous materials reported to date, even surpassing those based on silica.
Collapse
Affiliation(s)
- Eduardo J. Cueto-Díaz
- Centro de Astrobiología, (INTA-CSIC), Ctra. Ajalvir, Km. 4, Torrejón de Ardoz, 28850 Madrid, Spain; (S.G.-M.); (E.M.-M.)
| | - Alberto Castro-Muñiz
- Instituto de Ciencia y Tecnología del Carbono (INCAR-CSIC), C/ Francisco Pintado Fe, 26, 33011 Oviedo, Spain; (A.C.-M.); (F.S.-G.)
| | - Fabián Suárez-García
- Instituto de Ciencia y Tecnología del Carbono (INCAR-CSIC), C/ Francisco Pintado Fe, 26, 33011 Oviedo, Spain; (A.C.-M.); (F.S.-G.)
| | - Santos Gálvez-Martínez
- Centro de Astrobiología, (INTA-CSIC), Ctra. Ajalvir, Km. 4, Torrejón de Ardoz, 28850 Madrid, Spain; (S.G.-M.); (E.M.-M.)
| | - Mª Carmen Torquemada-Vico
- Departamento de Óptica Espacial, Instituto Nacional de Técnica Aeroespacial, Ctra. Ajalvir, Km. 4, Torrejón de Ardoz, 28850 Madrid, Spain;
| | - Mª Pilar Valles-González
- Departamento de Materiales y Estructuras, Instituto Nacional de Técnica Aeroespacial, Ctra. Ajalvir, Km. 4, Torrejón de Ardoz, 28850 Madrid, Spain;
| | - Eva Mateo-Martí
- Centro de Astrobiología, (INTA-CSIC), Ctra. Ajalvir, Km. 4, Torrejón de Ardoz, 28850 Madrid, Spain; (S.G.-M.); (E.M.-M.)
| |
Collapse
|
26
|
Abstract
Carbon capture from large sources and ambient air is one of the most promising strategies to curb the deleterious effect of greenhouse gases. Among different technologies, CO2 adsorption has drawn widespread attention mostly because of its low energy requirements. Considering that water vapor is a ubiquitous component in air and almost all CO2-rich industrial gas streams, understanding its impact on CO2 adsorption is of critical importance. Owing to the large diversity of adsorbents, water plays many different roles from a severe inhibitor of CO2 adsorption to an excellent promoter. Water may also increase the rate of CO2 capture or have the opposite effect. In the presence of amine-containing adsorbents, water is even necessary for their long-term stability. The current contribution is a comprehensive review of the effects of water whether in the gas feed or as adsorbent moisture on CO2 adsorption. For convenience, we discuss the effect of water vapor on CO2 adsorption over four broadly defined groups of materials separately, namely (i) physical adsorbents, including carbons, zeolites and MOFs, (ii) amine-functionalized adsorbents, and (iii) reactive adsorbents, including metal carbonates and oxides. For each category, the effects of humidity level on CO2 uptake, selectivity, and adsorption kinetics under different operational conditions are discussed. Whenever possible, findings from different sources are compared, paying particular attention to both similarities and inconsistencies. For completeness, the effect of water on membrane CO2 separation is also discussed, albeit briefly.
Collapse
Affiliation(s)
- Joel M Kolle
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Mohammadreza Fayaz
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Abdelhamid Sayari
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
27
|
Sardo M, Afonso R, Juźków J, Pacheco M, Bordonhos M, Pinto ML, Gomes JRB, Mafra L. Unravelling moisture-induced CO 2 chemisorption mechanisms in amine-modified sorbents at the molecular scale. JOURNAL OF MATERIALS CHEMISTRY. A 2021; 9:5542-5555. [PMID: 34671479 PMCID: PMC8459418 DOI: 10.1039/d0ta09808f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/08/2021] [Indexed: 05/03/2023]
Abstract
This work entails a comprehensive solid-state NMR and computational study of the influence of water and CO2 partial pressures on the CO2-adducts formed in amine-grafted silica sorbents. Our approach provides atomic level insights on hypothesised mechanisms for CO2 capture under dry and wet conditions in a tightly controlled atmosphere. The method used for sample preparation avoids the use of liquid water slurries, as performed in previous studies, enabling a molecular level understanding, by NMR, of the influence of controlled amounts of water vapor (down to ca. 0.7 kPa) in CO2 chemisorption processes. Details on the formation mechanism of moisture-induced CO2 species are provided aiming to study CO2 : H2O binary mixtures in amine-grafted silica sorbents. The interconversion between distinct chemisorbed CO2 species was quantitatively monitored by NMR under wet and dry conditions in silica sorbents grafted with amines possessing distinct bulkiness (primary and tertiary). Particular attention was given to two distinct carbonyl environments resonating at δ C ∼161 and 155 ppm, as their presence and relative intensities are greatly affected by moisture depending on the experimental conditions. 1D and 2D NMR spectral assignments of both these 13C resonances were assisted by density functional theory calculations of 1H and 13C chemical shifts on model structures of alkylamines grafted onto the silica surface that validated various hydrogen-bonded CO2 species that may occur upon formation of bicarbonate, carbamic acid and alkylammonium carbamate ion pairs. Water is a key component in flue gas streams, playing a major role in CO2 speciation, and this work extends the current knowledge on chemisorbed CO2 structures and their stabilities under dry/wet conditions, on amine-modified solid surfaces.
Collapse
Affiliation(s)
- Mariana Sardo
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Rui Afonso
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Joanna Juźków
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Marlene Pacheco
- CERENA, Instituto Superior Técnico, University of Lisbon Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Marta Bordonhos
- CERENA, Instituto Superior Técnico, University of Lisbon Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Moisés L Pinto
- CERENA, Instituto Superior Técnico, University of Lisbon Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - José R B Gomes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Luís Mafra
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro Portugal
| |
Collapse
|
28
|
Cotlame-Salinas VDC, López-Olvera A, Islas-Jácome A, González-Zamora E, Ibarra IA. CO 2 capture enhancement in MOFs via the confinement of molecules. REACT CHEM ENG 2021. [DOI: 10.1039/d0re00410c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review focuses on exploring a new approach to improve the CO2 adsorption properties of MOFs by confining small amounts of molecules with different nature, such as: water, alcohols, amines, and even aromatic molecules.
Collapse
Affiliation(s)
| | - Alfredo López-Olvera
- Laboratorio de Fisicoquímica y Reactividad de Superficies
- Instituto de Investigaciones en Materiales
- Universidad Nacional Autónoma de México
- Coyoacán
- Mexico
| | | | | | - Ilich A. Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies
- Instituto de Investigaciones en Materiales
- Universidad Nacional Autónoma de México
- Coyoacán
- Mexico
| |
Collapse
|
29
|
|
30
|
Peng XX, Bao GM, Zhong YF, He JX, Zeng L, Yuan HQ. Highly selective detection of Cu 2+ in aqueous media based on Tb 3+-functionalized metal-organic framework. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118621. [PMID: 32590309 DOI: 10.1016/j.saa.2020.118621] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/01/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
In this work, a metal-organic framework UiO-66-(COOH)2 has been synthesized and is further functionalized with Tb3+ through coordination interactions. The functionalized MOF, denoted as Tb3+@UiO-66-(COOH)2, is fully characterized and further developed as an excellent fluorescent probe to monitor Cu2+ ions in aqueous media by fluorescence quenching effect. Tb3+@UiO-66-(COOH)2 exhibits high selectivity and sensitivity, broad linear concentration range (0-200 μM), low detection limits (0.23 μM), fast response speed (within 1 min), as well as in situ naked eye observation under UV light for sensing Cu2+ ion. Furthermore, this probe was successfully employed to detect Cu2+ ion in real water with good recovery. Hence, this work developed a very excellent fluorescent sensor with high potential practical applications for detection of Cu2+ ion in environmental water samples.
Collapse
Affiliation(s)
- Xiong-Xin Peng
- Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Guang-Ming Bao
- Institute of Veterinary Drug, Jiangxi Agricultural University/Jiangxi Provincial Key Laboratory for Animal Health, Nanchang 330045, PR China
| | - Yu-Fei Zhong
- Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jia-Xin He
- Institute of Veterinary Drug, Jiangxi Agricultural University/Jiangxi Provincial Key Laboratory for Animal Health, Nanchang 330045, PR China
| | - Lintao Zeng
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Hou-Qun Yuan
- Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
31
|
Gopalsamy K, Babarao R. Heterometallic Metal Organic Frameworks for Air Separation: A Computational Study. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Karuppasamy Gopalsamy
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Ravichandar Babarao
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Flagship, Clayton, Victoria 3169, Australia
| |
Collapse
|
32
|
Liu X, Wang X, Kapteijn F. Water and Metal-Organic Frameworks: From Interaction toward Utilization. Chem Rev 2020; 120:8303-8377. [PMID: 32412734 PMCID: PMC7453405 DOI: 10.1021/acs.chemrev.9b00746] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Indexed: 12/25/2022]
Abstract
The steep stepwise uptake of water vapor and easy release at low relative pressures and moderate temperatures together with high working capacities make metal-organic frameworks (MOFs) attractive, promising materials for energy efficient applications in adsorption devices for humidity control (evaporation and condensation processes) and heat reallocation (heating and cooling) by utilizing water as benign sorptive and low-grade renewable or waste heat. Emerging MOF-based process applications covered are desiccation, heat pumps/chillers, water harvesting, air conditioning, and desalination. Governing parameters of the intrinsic sorption properties and stability under humid conditions and cyclic operation are identified. Transport of mass and heat in MOF structures, at least as important, is still an underexposed topic. Essential engineering elements of operation and implementation are presented. An update on stability of MOFs in water vapor and liquid systems is provided, and a suite of 18 MOFs are identified for selective use in heat pumps and chillers, while several can be used for air conditioning, water harvesting, and desalination. Most applications with MOFs are still in an exploratory state. An outlook is given for further R&D to realize these applications, providing essential kinetic parameters, performing smart engineering in the design of systems, and conceptual process designs to benchmark them against existing technologies. A concerted effort bridging chemistry, materials science, and engineering is required.
Collapse
Affiliation(s)
- Xinlei Liu
- Catalysis
Engineering, Chemical Engineering Department, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- Chemical
Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China
- Tianjin
Key Laboratory of Membrane Science and Desalination Technology, State
Key Laboratory of Chemical Engineering, Tianjin University, 300072 Tianjin, China
| | - Xuerui Wang
- Catalysis
Engineering, Chemical Engineering Department, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- State
Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu
National Synergetic Innovation Center for Advanced Materials, College
of Chemical Engineering, Nanjing Tech University, 210009 Nanjing, China
| | - Freek Kapteijn
- Catalysis
Engineering, Chemical Engineering Department, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
33
|
Jin M, Li Y, Gu C, Liu X, Sun L. Tailoring microenvironment of adsorbents to achieve excellent
CO
2
uptakes from wet gases. AIChE J 2020. [DOI: 10.1002/aic.16645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Meng‐Meng Jin
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Yu‐Xia Li
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Chen Gu
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Xiao‐Qin Liu
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Lin‐Bing Sun
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering Nanjing Tech University Nanjing China
| |
Collapse
|
34
|
Abstract
This review focuses on the use of metal–organic frameworks (MOFs) for adsorbing gas species that are known to weaken the thermal self-regulation capacities of Earth’s atmosphere. A large section is dedicated to the adsorption of carbon dioxide, while another section is dedicated to the adsorption of other different gas typologies, whose emissions, for various reasons, represent a “wound” for Earth’s atmosphere. High emphasis is given to MOFs that have moved enough ahead in their development process to be currently considered as potentially usable in “real-world” (i.e., out-of-lab) adsorption processes. As a result, there is strong evidence of a wide gap between laboratory results and the industrial implementation of MOF-based adsorbents. Indeed, when a MOF that performs well in a specific process is commercially available in large quantities, economic observations still make designers tend toward more traditional adsorbents. Moreover, there are cases in which a specific MOF remarkably outperforms the currently employed adsorbents, but it is not industrially produced, thus strongly limiting its possibilities in large-scale use. To overcome such limitations, it is hoped that the chemical industry will be able to provide more and more mass-produced MOFs at increasingly competitive costs in the future.
Collapse
|
35
|
Vervoorts P, Schneemann A, Hante I, Pirillo J, Hijikata Y, Toyao T, Kon K, Shimizu KI, Nakamura T, Noro SI, Fischer RA. Coordinated Water as New Binding Sites for the Separation of Light Hydrocarbons in Metal-Organic Frameworks with Open Metal Sites. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9448-9456. [PMID: 31986002 DOI: 10.1021/acsami.9b21261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metal-organic frameworks with open metal sites are promising materials for gas separations. Particularly, the M2(dobdc) (dobdc4- = 2,5-dioxidobenzenedicarboxylate, M2+ = Co2+, Mn2+, Fe2+, ...) framework has been the Drosophila of this research field and has delivered groundbreaking results in terms of sorption selectivity. However, many studies focus on perfect two-component mixtures and use theoretical models, e.g., the ideal adsorbed solution theory, to calculate selectivities. Within this work, we shed light on the comparability of these selectivities with values obtained from propane/propene multicomponent measurements on the prototypical Co2(dobdc) framework, and we study the impact of impurities like water on the selectivity. Despite the expected capacity loss, the presence of water does not necessarily lead to a decreased selectivity. Density functional theory calculations of the binding energies prove that the water molecules adsorbed to the metal centers introduce new binding sites for the adsorbates.
Collapse
Affiliation(s)
- Pia Vervoorts
- Inorganic and Metal-Organic Chemistry , Technical University of Munich , Lichtenbergstrasse 4 , 85748 Garching , Germany
- Inorganic Chemistry II , Ruhr-University Bochum , Universitätsstrasse 150 , 44801 Bochum , Germany
| | - Andreas Schneemann
- Inorganic and Metal-Organic Chemistry , Technical University of Munich , Lichtenbergstrasse 4 , 85748 Garching , Germany
| | - Inke Hante
- Inorganic Chemistry II , Ruhr-University Bochum , Universitätsstrasse 150 , 44801 Bochum , Germany
| | - Jenny Pirillo
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) , Hokkaido University , Sapporo 001-0021 , Japan
| | - Yuh Hijikata
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) , Hokkaido University , Sapporo 001-0021 , Japan
| | - Takashi Toyao
- Institute for Catalysis , Hokkaido University , Sapporo 001-0020 , Japan
- Elements Strategy Initiative for Catalysis and Batteries , Kyoto University , Katsura, Kyoto 615-8520 , Japan
| | - Kenichi Kon
- Institute for Catalysis , Hokkaido University , Sapporo 001-0020 , Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis , Hokkaido University , Sapporo 001-0020 , Japan
- Elements Strategy Initiative for Catalysis and Batteries , Kyoto University , Katsura, Kyoto 615-8520 , Japan
| | - Takayoshi Nakamura
- Research Institute for Electronic Science , Hokkaido University , Sapporo 001-0020 , Japan
| | - Shin-Ichiro Noro
- Faculty of Environmental Earth Science , Hokkaido University , Sapporo 060-0810 , Japan
| | - Roland A Fischer
- Inorganic and Metal-Organic Chemistry , Technical University of Munich , Lichtenbergstrasse 4 , 85748 Garching , Germany
| |
Collapse
|
36
|
Zhang C, Shi H, Yan Y, Sun L, Ye Y, Lu Y, Liang Z, Li J. A zwitterionic ligand-based water-stable metal–organic framework showing photochromic and Cr(vi) removal properties. Dalton Trans 2020; 49:10613-10620. [DOI: 10.1039/c9dt04679h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A water-stable In-MOF based on the zwitterionic viologen ligand was synthesized. It exhibits photochromic property and Cr(vi) removal performance.
Collapse
Affiliation(s)
- Chenghui Zhang
- State Key Lab of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- P. R. China
- School of Materials Science and Engineering
| | - Huaizhong Shi
- State Key Lab of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Yan Yan
- State Key Lab of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Libo Sun
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Yu Ye
- State Key Lab of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Yizhong Lu
- School of Materials Science and Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Zhiqiang Liang
- State Key Lab of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Jiyang Li
- State Key Lab of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
37
|
Gao W, Liang S, Wang R, Jiang Q, Zhang Y, Zheng Q, Xie B, Toe CY, Zhu X, Wang J, Huang L, Gao Y, Wang Z, Jo C, Wang Q, Wang L, Liu Y, Louis B, Scott J, Roger AC, Amal R, He H, Park SE. Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chem Soc Rev 2020; 49:8584-8686. [DOI: 10.1039/d0cs00025f] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review covers the sustainable development of advanced improvements in CO2 capture and utilization.
Collapse
|
38
|
Lv D, Chen J, Chen Y, Liu Z, Xu Y, Duan C, Wu H, Wu Y, Xiao J, Xi H, Li Z, Xia Q. Moisture stability of ethane‐selective Ni(II), Fe(III), Zr(IV)‐based metal–organic frameworks. AIChE J 2019. [DOI: 10.1002/aic.16616] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Daofei Lv
- School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou People's Republic of China
| | - Jiayu Chen
- School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou People's Republic of China
| | - Yongwei Chen
- School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou People's Republic of China
| | - Zewei Liu
- School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou People's Republic of China
| | - Yuzhi Xu
- School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou People's Republic of China
| | - Chongxiong Duan
- School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou People's Republic of China
| | - Houxiao Wu
- School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou People's Republic of China
| | - Ying Wu
- School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou People's Republic of China
| | - Jing Xiao
- School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou People's Republic of China
| | - Hongxia Xi
- School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou People's Republic of China
| | - Zhong Li
- School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou People's Republic of China
| | - Qibin Xia
- School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou People's Republic of China
| |
Collapse
|
39
|
Shi W, Wang R, Liu H, Chang B, Yang B, Zhang Z. Biowaste-derived 3D honeycomb-like N and S dual-doped hierarchically porous carbons for high-efficient CO2 capture. RSC Adv 2019; 9:23241-23253. [PMID: 35514486 PMCID: PMC9067295 DOI: 10.1039/c9ra03659h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/15/2019] [Indexed: 01/04/2023] Open
Abstract
Considering the characteristics of abundant narrow micropores of <1 nm, appropriate proportion of mesopores/macropores and suitable surface functionalization for a highly-efficient carbon-based CO2 adsorbent, we proposed a facile and cost-effective strategy to prepare N and S dual-doped carbons with well-interconnected hierarchical pores. Benefiting from the unique structural features, the resultant optimal material showed a prominent CO2 uptake of up to 7.76 and 5.19 mmol g−1 at 273 and 298 K under 1 bar, and importantly, a superb CO2 uptake of 1.51 mmol g−1 at 298 K and 0.15 bar was achieved, which was greatly significant for CO2 capture from the post-combustion flue gases in practical application. A systematic study demonstrated that the synergetic effect of ultramicroporosity and surface functionalization determined the CO2 capture properties of porous carbons, and the synergistic influence mechanism of nitrogen/sulfur dual-doping on CO2 capture performance was also investigated in detail. Importantly, such as-prepared carbon-based CO2 adsorbents also showed an outstanding recyclability and CO2/N2 selectivity. In view of cost-effective fabrication, the excellent adsorption capacity, high selectivity and simple regeneration, our developed strategy was valid and convenient to design a novel and highly-efficient carbonaceous adsorbent for large-scale CO2 capture and separation from post-combustion flue gases. We proposed a facile and cost-effective strategy to prepare N/S dual-doped carbons with abundant micropores of <1 nm, appropriate proportion of meso/macropores and suitable surface functionalization for highly efficient CO2 capture.![]()
Collapse
Affiliation(s)
- Weiwei Shi
- Henan Key Laboratory of Nanocomposites and Applications
- Institute of Nanostructured Functional Materials
- Huanghe Science and Technology College
- Zhengzhou
- China
| | - Rongzhen Wang
- Henan Key Laboratory of Nanocomposites and Applications
- Institute of Nanostructured Functional Materials
- Huanghe Science and Technology College
- Zhengzhou
- China
| | - Huili Liu
- Henan Key Laboratory of Nanocomposites and Applications
- Institute of Nanostructured Functional Materials
- Huanghe Science and Technology College
- Zhengzhou
- China
| | - Binbin Chang
- Henan Key Laboratory of Nanocomposites and Applications
- Institute of Nanostructured Functional Materials
- Huanghe Science and Technology College
- Zhengzhou
- China
| | - Baocheng Yang
- Henan Key Laboratory of Nanocomposites and Applications
- Institute of Nanostructured Functional Materials
- Huanghe Science and Technology College
- Zhengzhou
- China
| | - Zuling Zhang
- Henan Provincial Chemi-Industries Research Station Co., Ltd
- Zhengzhou 450000
- China
| |
Collapse
|