1
|
Das P, Ganguly S, Marvi PK, Hassan S, Sherazee M, Mahana M, Shirley Tang X, Srinivasan S, Rajabzadeh AR. Silicene-Based Quantum Dots Nanocomposite Coated Functional UV Protected Textiles With Antibacterial and Antioxidant Properties: A Versatile Solution for Healthcare and Everyday Protection. Adv Healthc Mater 2025:e2404911. [PMID: 39757484 DOI: 10.1002/adhm.202404911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Indexed: 01/07/2025]
Abstract
The predominant adverse health effects in care delivery result from hospital-acquired (nosocomial) infections, which impose a substantial financial burden on global healthcare systems. Integrating contact-killing antibacterial action, gas permeability, and antioxidant properties into textile coatings offers a transformative solution, significantly enhancing both medical and everyday protective applications. This study presents an innovative, pollution-free physical compounding method for creating a fluorescent biopolymer composite embedded with silicene-based heteroatom-doped carbon quantum dots for the production of functional textiles. The resulting coated fabric shows superior ultraviolet (UV) protection behavior (UVA and UVB), thermal stability, breathability, mechanical strength, and antioxidant capabilities as demonstrated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) experiment (>78%) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) ABTS assay (>90%). Rigorous testing against both gram positive and gram negative bacteria confirms that the coated fabric has excellent antibacterial activity. Results from time-dependent antibacterial assays indicate that the nanocomposite can markedly inhibit bacterial proliferation within a few hours. Molecular dynamics modeling, in conjunction with experimental investigations, is employed to elucidate the intermolecular interactions influencing the components of the treated cotton fabrics. The ongoing research can result in the creation of cost-effective smart textile substrates aimed at inhibiting microbial contamination in healthcare and medical applications, possibly rendering them commercially viable.
Collapse
Affiliation(s)
- Poushali Das
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| | - Sayan Ganguly
- Department of Chemistry & Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1, Canada
| | - Parham Khoshbakht Marvi
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| | - Shiza Hassan
- W Booth School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Masoomeh Sherazee
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| | - Mohamed Mahana
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| | - Xiaowu Shirley Tang
- Department of Chemistry & Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1, Canada
| | - Seshasai Srinivasan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
- W Booth School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Amin Reza Rajabzadeh
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
- W Booth School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| |
Collapse
|
2
|
Xu W, Fu Z, Shi H, Li Q, He X, Sun J, Jiang R, Lei Z, Liu ZH. Holey etching strategy of siloxene nanosheets to improve the rate performance of photo-assisted Li-O 2 batteries. NANOSCALE 2024; 17:243-251. [PMID: 39576016 DOI: 10.1039/d4nr03850a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Improving the rate performance is of great significance to achieve high-performance photo-assisted Li-O2 batteries for developing new optimized bifunctional photocatalysts. Herein, a holey etching strategy is developed to prepare porous siloxene nanosheets with a size of 10 nm and few layers (P-siloxene NSs) by a modified Ag+-assisted chemical etching method, and the optimized pore-forming conditions are: Ag+ ion concentration 0.01 mol dm-3, HF concentration 0.565 mol dm-3, and H2O2 concentration 0.327 mol dm-3. By using P-siloxene NSs with a bandgap of 2.77 eV as a novel bifunctional photo-assisted Li-O2 system, the rate performance of the assembled P-siloxene NSs photo-assisted Li-O2 batteries is clearly improved. At a current density of 0.1 mA cm-2, the system shows a low overpotential of 0.35 V, full discharge capacity of 3270 mA h g-1, and 69% round-trip efficiency at 100 cycles. In particular, at a current density of 0.8 mA cm-2, the P-siloxene NSs photo-assisted Li-O2 batteries still give a relatively good charge potential of 3.66 V and a discharge potential of 2.97 V. This work provides a new approach for improving the rate performance of photo-assisted Li-O2 systems and will open up opportunities for the high-efficiency utilization of solar energy in electric systems.
Collapse
Affiliation(s)
- Wenpu Xu
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an, 710062, P. R. China.
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China.
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Zitai Fu
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an, 710062, P. R. China.
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China.
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Huanbao Shi
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an, 710062, P. R. China.
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China.
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Qi Li
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China.
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Xuexia He
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China.
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Jie Sun
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China.
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Ruibin Jiang
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China.
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Zhibin Lei
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an, 710062, P. R. China.
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China.
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Zong-Huai Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an, 710062, P. R. China.
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China.
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|
3
|
Georgantas Y, Giousis T, Moissinac FP, Tainton GR, Haigh SJ, Bissett MA. Faster and Safer "In situ" Synthesis of Germanane and Silicane. SMALL METHODS 2024:e2400964. [PMID: 39394817 DOI: 10.1002/smtd.202400964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Germanane (GeH) and silicane (SiH), members of the Xanes family, have garnered significant attention as 2D materials due to their diverse properties, which hold promise for applications in electronics, optoelectronics, energy storage, and sensing. Typically, highly concentrated hydrochloric acid (HCl) or hydrofluoric acid (HF) is employed in the synthesis of these Xanes, but both routes are problematic due to slow kinetics and safety concerns, respectively. Here for the first time, a faster and safer method is demonstrated for Xanes synthesis that harnesses the generation of HF "in situ" using a solution of HCl and lithium fluoride (LiF) salt, overcoming the key challenges of the conventional methods. A variety of characterization techniques to establish a baseline is utilized for both Xanes and to provide a holistic knowledge regarding this method, the possible consequences of this approach, and the possibility of applying it to other layered Zintl phases. The novel synthesis protocol results in high-quality GeH and SiH with bandgaps (Eg) of 1.75 and 2.47 eV respectively, highlighting their potential suitability for integration into semiconductor applications.
Collapse
Affiliation(s)
- Yiannis Georgantas
- Department of Materials, Henry Royce Institute, National Graphene Institute, University of Manchester, Ox-ford Road, Manchester, M139PL, UK
| | - Theodosis Giousis
- Department of Materials Science & Engineering, University of Ioannina, Ioannina, 45110, Greece
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Francis P Moissinac
- Department of Materials, Henry Royce Institute, National Graphene Institute, University of Manchester, Ox-ford Road, Manchester, M139PL, UK
| | - Gareth R Tainton
- Department of Materials, Henry Royce Institute, National Graphene Institute, University of Manchester, Ox-ford Road, Manchester, M139PL, UK
| | - Sarah J Haigh
- Department of Materials, Henry Royce Institute, National Graphene Institute, University of Manchester, Ox-ford Road, Manchester, M139PL, UK
| | - Mark A Bissett
- Department of Materials, Henry Royce Institute, National Graphene Institute, University of Manchester, Ox-ford Road, Manchester, M139PL, UK
| |
Collapse
|
4
|
Kim SI, Kim WJ, Kang JG, Kim DW. Boosted Lithium-Ion Transport Kinetics in n-Type Siloxene Anodes Enabled by Selective Nucleophilic Substitution of Phosphorus. NANO-MICRO LETTERS 2024; 16:219. [PMID: 38884690 PMCID: PMC11183009 DOI: 10.1007/s40820-024-01428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/22/2024] [Indexed: 06/18/2024]
Abstract
Doped two-dimensional (2D) materials hold significant promise for advancing many technologies, such as microelectronics, optoelectronics, and energy storage. Herein, n-type 2D oxidized Si nanosheets, namely n-type siloxene (n-SX), are employed as Li-ion battery anodes. Via thermal evaporation of sodium hypophosphite at 275 °C, P atoms are effectively incorporated into siloxene (SX) without compromising its 2D layered morphology and unique Kautsky-type crystal structure. Further, selective nucleophilic substitution occurs, with only Si atoms being replaced by P atoms in the O3≡Si-H tetrahedra. The resulting n-SX possesses two delocalized electrons arising from the presence of two electron donor types: (i) P atoms residing in Si sites and (ii) H vacancies. The doping concentrations are varied by controlling the amount of precursors or their mean free paths. Even at 2000 mA g-1, the n-SX electrode with the optimized doping concentration (6.7 × 1019 atoms cm-3) delivers a capacity of 594 mAh g-1 with a 73% capacity retention after 500 cycles. These improvements originate from the enhanced kinetics of charge transport processes, including electronic conduction, charge transfer, and solid-state diffusion. The approach proposed herein offers an unprecedented route for engineering SX anodes to boost Li-ion storage.
Collapse
Affiliation(s)
- Se In Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, 02841, Seoul, South Korea
| | - Woong-Ju Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, 02841, Seoul, South Korea
| | - Jin Gu Kang
- Nanophotonics Research Center, Korea Institute of Science and Technology, 02792, Seoul, South Korea.
| | - Dong-Wan Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, 02841, Seoul, South Korea.
| |
Collapse
|
5
|
Swaminathan R, Pazhamalai P, Mohan V, Krishnamoorthy K, Kim SJ. Topochemically prepared tungsten disulfide nanostructures as a novel pseudocapacitive electrode for high performance supercapacitor. J Colloid Interface Sci 2023; 652:845-855. [PMID: 37625359 DOI: 10.1016/j.jcis.2023.07.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/15/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023]
Abstract
The topochemical preparation of nanostructured materials (NMs) has received significant attention in recent years due to the exceptional electrochemical properties exhibited by the resulting NMs. This work focuses on the preparation of two-dimensional tungsten di-sulfide (WS2) nanostructures through the topochemical conversion of tungsten trioxide (WO3) nanostructures and also evaluates their potential applications as electrode materials for supercapacitors (SCs). The X-ray diffraction and photoelectron studies conducted in this research reveal the conversion of hexagonal WO3 into hexagonal WS2 nanosheets, accompanied by changes in oxidation states. The FE-SEM and HR-TEM studies confirm the formation of WS2 in the sheet-like morphologies with lateral dimensions of 100 × 100 nm. The electrochemical investigation, using techniques such as CV, galvanostatic CD, and EIS, confirmed the presence of intercalation pseudocapacitance in the WS2 electrode, with a higher electrode-specific-capacitance (260 F g-1) than that of WO3 electrode. The WS2 symmetric SC delivered high device capacitance (59.17 F g-1), energy density (8.21 Wh kg-1) and power density (3,750 W kg-1) with better cyclic stability over 5000 cycles. These experimental findings show that the topochemically synthesized WS2as novel supercapacitor electrodes might be useful for the advancement of future-generation energy storage devices.
Collapse
Affiliation(s)
- Rajavarman Swaminathan
- Nanomaterials & System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea.
| | - Parthiban Pazhamalai
- Nanomaterials & System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea; Research Institute of New Energy Industry (RINEI), Jeju National University, Jeju, 63243, South Korea.
| | - Vigneshwaran Mohan
- Nanomaterials & System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea.
| | - Karthikeyan Krishnamoorthy
- Nanomaterials & System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea; Research Institute of New Energy Industry (RINEI), Jeju National University, Jeju, 63243, South Korea; Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India.
| | - Sang-Jae Kim
- Nanomaterials & System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea; Research Institute of New Energy Industry (RINEI), Jeju National University, Jeju, 63243, South Korea; Nanomaterials & System Lab, Major of Mechanical System Engineering, College of Engineering, Jeju National University, Jeju, 63243, South Korea.
| |
Collapse
|
6
|
Ko SB, Sun Y, Park G, Choi HJ, Kim JG, Kim JB, Jung HJ, Lee GS, Hong S, Padmajan Sasikala S, Kim SO. Scalable Solution Phase Synthesis of 2D Siloxene via a Two-Step Interlayer Expansion Process. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37377389 DOI: 10.1021/acsami.3c05289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Two-dimensional (2D) siloxene is attracting considerable research interest recently principally owing to its inherent compatibility with silicon-based semiconductor technology. -The synthesis of siloxene has been mostly limited to multilayered structures using traditional topochemical reaction procedures. Herein, we report high-yield synthesis of single to few-layer siloxene nanosheets by developing a two-step interlayer expansion and subsequent liquid phase exfoliation procedure. Our protocol enables high-yield production of few-layer siloxene nanosheets with a lateral dimension of up to 4 μm and thickness ranging from 0.8 to 4.8 nm, corresponding to single to a few layers, well stabilized in water. The atomically flat nature of exfoliated siloxene can be exploited for the construction of 2D/2D heterostructure membranes via typical solution processing. We demonstrate highly ordered graphene/siloxene heterostructure films with synergistic mechanical and electrical properties, which deliver noticeably high device capacitance when assembled into a coin cell symmetric supercapacitor device structures. Additionally, we demonstrate that the mechanically flexible exfoliated siloxene-graphene heterostructure enables its direct use in flexible and wearable supercapacitor applications.
Collapse
Affiliation(s)
- Seung-Bo Ko
- Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, KAIST, Daejeon 34141, Republic of Korea
| | - Yan Sun
- Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, KAIST, Daejeon 34141, Republic of Korea
| | - Gun Park
- Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Hee Jae Choi
- Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, KAIST, Daejeon 34141, Republic of Korea
| | - Jin Goo Kim
- Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, KAIST, Daejeon 34141, Republic of Korea
| | - June Beom Kim
- Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, KAIST, Daejeon 34141, Republic of Korea
| | - Hong Ju Jung
- Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, KAIST, Daejeon 34141, Republic of Korea
| | - Gang San Lee
- Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, KAIST, Daejeon 34141, Republic of Korea
| | - Seungbum Hong
- Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Suchithra Padmajan Sasikala
- Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Ouk Kim
- Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
7
|
Luo J, Arnot DJ, King ST, Kingan A, Nicoll A, Tong X, Bock DC, Takeuchi ES, Marschilok AC, Yan S, Wang L, Takeuchi KJ. Two-Dimensional Siloxene Nanosheets: Impact of Morphology and Purity on Electrochemistry. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24306-24318. [PMID: 37163664 DOI: 10.1021/acsami.3c00355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Two-dimensional (2D) siloxene (Si6O3H6) has shown promise as a negative electrode material for Li-ion batteries due to its high gravimetric capacity and superior mechanical properties under (de)lithiation compared to bulk Si. In this work, we prepare purified siloxene nanosheets through the removal of bulk Si contaminants, use ultrasonication to control the lateral size and thickness of the nanosheets, and probe the effects of the resulting morphology and purity on the electrochemistry. The thin siloxene nanosheets formed after 4 h of ultrasonication deliver an average capacity of 810 mA h/g under a 1000 mA/g rate over 200 cycles with a capacity retention of 76%. Interestingly, the purified siloxene shows lower initial capacity but superior capacity retention over extended cycling. The 2D morphology benefit is illustrated where the parent siloxene nanosheet morphology and structure were largely maintained based on operando optoelectrochemistry, in situ Raman, ex situ scanning electron microscopy, and ex situ transmission electron microscopy. Furthermore, the purified siloxene-based electrode free from crystalline Si impurity experiences the least expansion upon (de)lithiation as visualized by cross-section electron microscopy of samples recovered post-cycling.
Collapse
Affiliation(s)
- Jessica Luo
- Institute of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - David J Arnot
- Institute of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Steven T King
- Institute of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Arun Kingan
- Institute of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Andrew Nicoll
- Institute of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Xiao Tong
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - David C Bock
- Institute of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Esther S Takeuchi
- Institute of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Amy C Marschilok
- Institute of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Shan Yan
- Institute of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Lei Wang
- Institute of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Kenneth J Takeuchi
- Institute of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
8
|
Lv X, Li N, Li Y, Ma Q, Xie Z, Zhou S. Siloxene Nanosheets and Their Hybrid Gel Glasses for Broad-Band Optical Limiting. Molecules 2023; 28:molecules28052143. [PMID: 36903388 PMCID: PMC10003896 DOI: 10.3390/molecules28052143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
With the development of laser technology, the research of novel laser protection materials is of great significance. In this work, dispersible siloxene nanosheets (SiNSs) with a thickness of about 1.5 nm are prepared by the top-down topological reaction method. Based on the Z-scan and optical limiting testing under the visible-near IR ranges nanosecond laser, the broad-band nonlinear optical properties of the SiNSs and their hybrid gel glasses are investigated. The results show that the SiNSs have outstanding nonlinear optical properties. Meanwhile, the SiNSs hybrid gel glasses also exhibit high transmittance and excellent optical limiting capabilities. It demonstrates that SiNSs are promising materials for broad-band nonlinear optical limiting and even have potential applications in optoelectronics.
Collapse
Affiliation(s)
- Xugui Lv
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Nan Li
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yunfei Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qingyu Ma
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
- Correspondence: (Q.M.); (Z.X.)
| | - Zheng Xie
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Correspondence: (Q.M.); (Z.X.)
| | - Shuyun Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
9
|
Jia C, Zhang F, Zhang N, Li Q, He X, Sun J, Jiang R, Lei Z, Liu ZH. Bifunctional Photoassisted Li-O 2 Battery with Ultrahigh Rate-Cycling Performance Based on Siloxene Size Regulation. ACS NANO 2023; 17:1713-1722. [PMID: 36622112 DOI: 10.1021/acsnano.2c12025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Directly integrating the bifunctional photoelectrode into Li-O2 batteries has been considered an effective way to reduce the overpotential and promote electric energy saving. However, more regular investigations on various bifunctional photocatalysts have still been desired for high-performance photoassisted Li-O2 batteries. Herein, a systematic exploration of various-sized siloxene photocatalysts affected by Li-O2 batteries has been introduced. Compared with the utilization of larger-sized siloxene nanosheets (SNSs), the photoassisted Li-O2 battery with a siloxene quantum dot (SQD) photoelectrode delivers a superior round-trip efficiency of 230% based on the highest discharge potential up to 3.72 V and lowest charge potential of 1.60 V and enables the maintenance of a long-term cycling life with only 13% efficiency attenuation after 200 cycles at 0.075 mA/cm2. Furthermore, this system exhibits a record-high rate-cycling performance (162% round-trip efficiency, even at 3 mA/cm2) and a high discharge capacity of 2212 mAh/g at 1 mA/cm2. These ground-breaking performances could be attributed to the synergistic effect of the photocatalytic and electrocatalytic activities of SQD photocatalysts with the ideal conduction band/valence band values, the abundant defective sites, and the stronger O2 and lower LiO2 adsorption strengths of SQD photocatalysts. These systematic research studies highlight the significance of SQD bifunctional photocatalysts and could be extended to other photocatalysts for further high-efficiency photoelectric conversion and storage.
Collapse
Affiliation(s)
- Congying Jia
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an 710062, P.R. China
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, P.R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
| | - Feng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an 710062, P.R. China
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, P.R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
| | - Nan Zhang
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, P.R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
| | - Qi Li
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, P.R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
| | - Xuexia He
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, P.R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
| | - Jie Sun
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, P.R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
| | - Ruibin Jiang
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, P.R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
| | - Zhibin Lei
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an 710062, P.R. China
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, P.R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
| | - Zong-Huai Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an 710062, P.R. China
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, P.R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
| |
Collapse
|
10
|
Su Y, Wang S, Ji L, Zhang C, Cai H, Zhang H, Sun W. High surface area siloxene for photothermal and electrochemical catalysis. NANOSCALE 2022; 15:154-161. [PMID: 36478182 DOI: 10.1039/d2nr05140k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Catalysis based on two-dimensional silicon has been under intense investigation recently. However, its substandard catalytic activity is far from industrialization. In this work, we demonstrate a new solution to this problem formulated on the batch synthesis of siloxene with an enhanced specific surface area (217.8 m2 g-1). A two-dimensional porous structure was prepared, enabling great support and dispersion of metal nanoparticles. Catalytic evaluations of such hybrid structures for the (photo)thermal CO2 hydrogenation reaction and the electrochemical hydrogen evolution reaction revealed a significant performance advantage over the benchmark two-dimensional silicon structures synthesized via the conventional method. This work may confer notable viability on two-dimensional silicon for advanced energy, catalytic, and environmental applications.
Collapse
Affiliation(s)
- Yize Su
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.
| | - Shenghua Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.
| | - Liang Ji
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.
| | - Chengcheng Zhang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.
| | - Haiting Cai
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hui Zhang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.
| | - Wei Sun
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.
| |
Collapse
|
11
|
Fang T, Liu H, Luo X, Gong N, Sun M, Peng W, Li Y, Zhang F, Fan X. Accommodation of Two-Dimensional SiO x in a Point-to-Plane Conductive Network Composed of Graphene and Nitrogen-Doped Carbon for Robust Lithium Storage. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53658-53666. [PMID: 36400752 DOI: 10.1021/acsami.2c13824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Silicon oxides (SiOx) are one of the most promising anode materials for next-generation lithium-ion batteries owing to their abundant reserve and low lost and high reversible capacity. However, the practical application of SiOx is still hindered by their intrinsically low conductivity and huge volume change. In this regard, we design a novel anode material in which sheet-like SiOx nanosheets are encapsulated in a unique point-to-plane conductive network composed of graphene flakes and nitrogen-doped carbon spheres. This unique composite structure demonstrates high specific capacity (867.7 mAh g-1 at 0.1 A g-1), superior rate performance, and stable cycle life. The electrode delivers a superior reversible discharge capacity of 595.8 mAh g-1 after 200 cycles at 1.0 A g-1 and 287.5 mAh g-1 after 500 cycles at 5.0 A g-1. This work may shed light on the rational design of SiOx-based anode materials for next-generation high-performance lithium-ion batteries.
Collapse
Affiliation(s)
- Tiantian Fang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Huibin Liu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Xinyu Luo
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Ning Gong
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Mengru Sun
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - WenChao Peng
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Yang Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Fengbao Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin300192, China
- Institute of Shaoxing, Tianjin University, Zhejiang312300, China
| |
Collapse
|
12
|
Chen C, Fu Z, Qi F, Chen Y, Meng G, Chang Z, Kong F, Zhu L, Tian H, Huang H, Cui X, Shi J. Fe
2+
/Fe
3+
Cycling for Coupling Self‐Powered Hydrogen Evolution and Preparation of Electrode Catalysts. Angew Chem Int Ed Engl 2022; 61:e202207226. [DOI: 10.1002/anie.202207226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Chang Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Zhengqian Fu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
| | - Fenggang Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Yafeng Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering Collaborative Innovation Center of Steel Technology University of Science and Technology Beijing Beijing 100083 P.R. China
| | - Ge Meng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Ziwei Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
| | - Fantao Kong
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
| | - Libo Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Han Tian
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
| | - Haitao Huang
- Department of Applied Physics Hong Kong Polytechnic University 11 Yucai Road Kowloon, Hongkong China
| | - Xiangzhi Cui
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P.R. China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 P.R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P.R. China
| |
Collapse
|
13
|
Chen C, Fu Z, Qi F, Chen Y, Meng G, Chang Z, Kong F, Zhu L, Tian H, Huang H, Cui X, Shi J. Fe
2+
/Fe
3+
Cycling for Coupling Self‐Powered Hydrogen Evolution and Preparation of Electrode Catalysts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chang Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Zhengqian Fu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
| | - Fenggang Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Yafeng Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering Collaborative Innovation Center of Steel Technology University of Science and Technology Beijing Beijing 100083 P.R. China
| | - Ge Meng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Ziwei Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
| | - Fantao Kong
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
| | - Libo Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Han Tian
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
| | - Haitao Huang
- Department of Applied Physics Hong Kong Polytechnic University 11 Yucai Road Kowloon, Hongkong China
| | - Xiangzhi Cui
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P.R. China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 P.R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P.R. China
| |
Collapse
|
14
|
Hui X, Sharma S, Sharifuzzaman M, Zahed MA, Shin YD, Seonu SK, Song HS, Park JY. Siloxene-Functionalized Laser-Induced Graphene via COSi Bonding for High-Performance Heavy Metal Sensing Patch Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201247. [PMID: 35595710 DOI: 10.1002/smll.202201247] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Here, 2D Siloxene nanosheets are newly applied to functionalize porous laser-induced graphene (LIG) on polydimethylsiloxane, modify the surface chemical properties of LIG, and improve the heterogeneous electron transfer rate. Meanwhile, the newly generated COSi crosslink boosts the binding of LIG and Siloxene. Thus, the Siloxene/LIG composite is used as the basic electrode material for the multifunctional detection of copper (Cu) ions, pH, and temperature in human perspiration. Moreover, to enhance the sensing performance of Cu ions, Siloxene/LIG is further modified by carbon nanotubes (CNTs). The fabricated Siloxene-CNT/LIG-based Cu-ion sensor shows linear response within a wide range of 10-500 ppb and a low detection limit of 1.55 ppb. In addition, a pH sensor is integrated to calibrate for determining the accurate concentration of Cu ions due to pH dependency of the Cu-ion sensor. The polyaniline-deposited pH sensor demonstrates a good sensitivity of -64.81 mV pH-1 over the pH range of 3-10. Furthermore, a temperature sensor for accurate skin temperature monitoring is also integrated and exhibits a stable linear resistance response with an excellent sensitivity of 9.147 Ω °C-1 (correlation coefficient of 0.139% °C-1 ). The flexible hybrid sensor is promising in applications of noninvasive heavy-metal ion detection and prediction of related diseases.
Collapse
Affiliation(s)
- Xue Hui
- Department of Electronic Engineering, Kwangwoon University, Seoul, 139-701, Republic of Korea
| | - Sudeep Sharma
- Department of Electronic Engineering, Kwangwoon University, Seoul, 139-701, Republic of Korea
| | - Md Sharifuzzaman
- Department of Electronic Engineering, Kwangwoon University, Seoul, 139-701, Republic of Korea
| | - Md Abu Zahed
- Department of Electronic Engineering, Kwangwoon University, Seoul, 139-701, Republic of Korea
| | - Young Do Shin
- Department of Electronic Engineering, Kwangwoon University, Seoul, 139-701, Republic of Korea
| | - Soo Kyeong Seonu
- Department of Electronic Engineering, Kwangwoon University, Seoul, 139-701, Republic of Korea
| | - Hye Su Song
- Department of Electronic Engineering, Kwangwoon University, Seoul, 139-701, Republic of Korea
| | - Jae Yeong Park
- Department of Electronic Engineering, Kwangwoon University, Seoul, 139-701, Republic of Korea
| |
Collapse
|
15
|
Zhang Y, Wu Y, An Y, Wei C, Tan L, Xi B, Xiong S, Feng J. Ultrastable and High-Rate 2D Siloxene Anode Enabled by Covalent Organic Framework Engineering for Advanced Lithium-Ion Batteries. SMALL METHODS 2022; 6:e2200306. [PMID: 35478385 DOI: 10.1002/smtd.202200306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Siloxene as a new type of 2D material has wide potential applications due to its special structure. Especially, as anode for lithium-ion batteries, siloxene shows promising prospect due to its small volume change and low diffusion pathway. However, the unstable solid electrolyte interphase and low electronic conductivity lead to the low Coulombic efficiency, poor rate capability, and limited cycling performance. To settle the problems, a thin porous covalent organic framework (COF) coating layer is designed by in situ growth on micro-sized siloxene. With the inherent ionic conductive and electrolyte compatible advantages of COF, the engineered siloxene demonstrates superior electrochemical performance with 96% capacity retention at 8 A g-1 for 1500 cycles.
Collapse
Affiliation(s)
- Yuchan Zhang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Research Center for Carbon Nanomaterials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Yang Wu
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Research Center for Carbon Nanomaterials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Yongling An
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Research Center for Carbon Nanomaterials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Chuanliang Wei
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Research Center for Carbon Nanomaterials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Liwen Tan
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Research Center for Carbon Nanomaterials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Baojuan Xi
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Shenglin Xiong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Jinkui Feng
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Research Center for Carbon Nanomaterials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| |
Collapse
|
16
|
Liu XX, Deng W, Liu LM, Wang YF, Huang CF, Wang Z. Passion fruit-like microspheres of FeS2 wrapped with carbon as excellent fast charging materials for supercapacitors. NEW J CHEM 2022. [DOI: 10.1039/d2nj01749k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pyrite (FeS2) has attracted growing attention as pseudocapacitance electrode materials for supercapacitors. However, the fast capacity fading and the poor cycling performance, greatly hinder its practical application. Herein, a facile...
Collapse
|
17
|
Kumar A, Dillip GR, Bharti A, Maitra U, Bhattacharyya AJ. A bile‐salt derived porous hierarchical MnO
2
nanoflowers as electrodes for symmetric supercapacitors. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Ajay Kumar
- Department of Organic Chemistry Indian Institute of Science Bengaluru India
| | | | - Abhishek Bharti
- Solid State and Structural Chemistry Unit Indian Institute of Science Bengaluru India
| | - Uday Maitra
- Department of Organic Chemistry Indian Institute of Science Bengaluru India
| | | |
Collapse
|
18
|
Zhang L, Xia H, Liu S, Zhou Y, Zhao Y, Xie W. Nickel-Cobalt Hydroxides with Tunable Thin-Layer Nanosheets for High-Performance Supercapacitor Electrode. NANOSCALE RESEARCH LETTERS 2021; 16:83. [PMID: 33978836 PMCID: PMC8116422 DOI: 10.1186/s11671-021-03543-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Layered double hydroxides as typical supercapacitor electrode materials can exhibit superior energy storage performance if their structures are well regulated. In this work, a simple one-step hydrothermal method is used to prepare diverse nickel-cobalt layered double hydroxides (NiCo-LDHs), in which the different contents of urea are used to regulate the different nanostructures of NiCo-LDHs. The results show that the decrease in urea content can effectively improve the dispersibility, adjust the thickness and optimize the internal pore structures of NiCo-LDHs, thereby enhancing their capacitance performance. When the content of urea is reduced from 0.03 to 0.0075 g under a fixed precursor materials mass ratio of nickel (0.06 g) to cobalt (0.02 g) of 3:1, the prepared sample NiCo-LDH-1 exhibits the thickness of 1.62 nm, and the clear thin-layer nanosheet structures and a large number of surface pores are formed, which is beneficial to the transmission of ions into the electrode material. After being prepared as a supercapacitor electrode, the NiCo-LDH-1 displays an ultra-high specific capacitance of 3982.5 F g-1 under the current density of 1 A g-1 and high capacitance retention above 93.6% after 1000 cycles of charging and discharging at a high current density of 10 A g-1. The excellent electrochemical performance of NiCo-LDH-1 is proved by assembling two-electrode asymmetric supercapacitor with carbon spheres, displaying the specific capacitance of 95 F g-1 at 1 A g-1 with the capacitance retention of 78% over 1000 cycles. The current work offers a facile way to control the nanostructure of NiCo-LDHs, confirms the important affection of urea on enhancing capacitive performance for supercapacitor electrode and provides the high possibility for the development of high-performance supercapacitors.
Collapse
Affiliation(s)
- Luomeng Zhang
- School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Hui Xia
- School of Physics and Electronics, Central South University, Changsha, 410083, China.
| | - Shaobo Liu
- School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Yishan Zhou
- School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Yuefeng Zhao
- Collaborative Innovation Center of Light Manipulations and Applications, Shangdong Normal University, Jinan, 250358, China
| | - Wenke Xie
- School of Physics and Electronics, Central South University, Changsha, 410083, China.
| |
Collapse
|
19
|
Jia C, Zhang F, She L, Li Q, He X, Sun J, Lei Z, Liu ZH. Ultra-Large Sized Siloxene Nanosheets as Bifunctional Photocatalyst for a Li-O 2 Battery with Superior Round-Trip Efficiency and Extra-Long Durability. Angew Chem Int Ed Engl 2021; 60:11257-11261. [PMID: 33655589 DOI: 10.1002/anie.202101991] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Indexed: 11/07/2022]
Abstract
Developing new optimized bifunctional photocatalyst is of great significant for achieving the high-performance photo-assisted Li-O2 batteries. Herein, a novel bifunctional photo-assisted Li-O2 system is constructed by using siloxene nanosheets with ultra-large size and few-layers due to its superior light harvesting, semiconductor characteristic, and low recombination rate. An ultra-low charge potential of 1.90 V and ultra-high discharge of 3.51 V have been obtained due to the introduction of this bifunctional photocatalyst into Li-O2 batteries, and these results have realized the round-trip efficiency up to 185 %. In addition, this photo-assisted Li-O2 batteries exhibits a high rate (129 % round-trip efficiency at 1 mA cm-2 ), a prolonged cycling life with 92 % efficiency retention after 100 cycles, and the highly reversible capacity of 1170 mAh g-1 at 0.75 mA cm-2 . This work will open the vigorous opportunity for high-efficiency utilization of solar energy into electric system.
Collapse
Affiliation(s)
- Congying Jia
- Key Laboratory of Applied Surface and Colloid Chemistry, Shaanxi Normal University), Ministry of Education, Xi'an, 710062, P. R. China.,Key Laboratory for Advanced Energy Devices, Shaanxi Normal University, Xi'an, P. R. China.,School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, P. R. China
| | - Feng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Shaanxi Normal University), Ministry of Education, Xi'an, 710062, P. R. China.,Key Laboratory for Advanced Energy Devices, Shaanxi Normal University, Xi'an, P. R. China.,School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, P. R. China
| | - Liaona She
- Key Laboratory of Applied Surface and Colloid Chemistry, Shaanxi Normal University), Ministry of Education, Xi'an, 710062, P. R. China.,Key Laboratory for Advanced Energy Devices, Shaanxi Normal University, Xi'an, P. R. China.,School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, P. R. China
| | - Qi Li
- Key Laboratory for Advanced Energy Devices, Shaanxi Normal University, Xi'an, P. R. China.,School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, P. R. China
| | - Xuexia He
- Key Laboratory for Advanced Energy Devices, Shaanxi Normal University, Xi'an, P. R. China.,School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, P. R. China
| | - Jie Sun
- Key Laboratory for Advanced Energy Devices, Shaanxi Normal University, Xi'an, P. R. China.,School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, P. R. China
| | - Zhibin Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Shaanxi Normal University), Ministry of Education, Xi'an, 710062, P. R. China.,Key Laboratory for Advanced Energy Devices, Shaanxi Normal University, Xi'an, P. R. China.,School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, P. R. China
| | - Zong-Huai Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Shaanxi Normal University), Ministry of Education, Xi'an, 710062, P. R. China.,Key Laboratory for Advanced Energy Devices, Shaanxi Normal University, Xi'an, P. R. China.,School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, P. R. China
| |
Collapse
|
20
|
Jia C, Zhang F, She L, Li Q, He X, Sun J, Lei Z, Liu Z. Ultra‐Large Sized Siloxene Nanosheets as Bifunctional Photocatalyst for a Li‐O
2
Battery with Superior Round‐Trip Efficiency and Extra‐Long Durability. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Congying Jia
- Key Laboratory of Applied Surface and Colloid Chemistry Shaanxi Normal University) Ministry of Education Xi'an 710062 P. R. China
- Key Laboratory for Advanced Energy Devices Shaanxi Normal University Xi'an P. R. China
- School of Materials Science and Engineering Shaanxi Normal University Xi'an P. R. China
| | - Feng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Shaanxi Normal University) Ministry of Education Xi'an 710062 P. R. China
- Key Laboratory for Advanced Energy Devices Shaanxi Normal University Xi'an P. R. China
- School of Materials Science and Engineering Shaanxi Normal University Xi'an P. R. China
| | - Liaona She
- Key Laboratory of Applied Surface and Colloid Chemistry Shaanxi Normal University) Ministry of Education Xi'an 710062 P. R. China
- Key Laboratory for Advanced Energy Devices Shaanxi Normal University Xi'an P. R. China
- School of Materials Science and Engineering Shaanxi Normal University Xi'an P. R. China
| | - Qi Li
- Key Laboratory for Advanced Energy Devices Shaanxi Normal University Xi'an P. R. China
- School of Materials Science and Engineering Shaanxi Normal University Xi'an P. R. China
| | - Xuexia He
- Key Laboratory for Advanced Energy Devices Shaanxi Normal University Xi'an P. R. China
- School of Materials Science and Engineering Shaanxi Normal University Xi'an P. R. China
| | - Jie Sun
- Key Laboratory for Advanced Energy Devices Shaanxi Normal University Xi'an P. R. China
- School of Materials Science and Engineering Shaanxi Normal University Xi'an P. R. China
| | - Zhibin Lei
- Key Laboratory of Applied Surface and Colloid Chemistry Shaanxi Normal University) Ministry of Education Xi'an 710062 P. R. China
- Key Laboratory for Advanced Energy Devices Shaanxi Normal University Xi'an P. R. China
- School of Materials Science and Engineering Shaanxi Normal University Xi'an P. R. China
| | - Zong‐Huai Liu
- Key Laboratory of Applied Surface and Colloid Chemistry Shaanxi Normal University) Ministry of Education Xi'an 710062 P. R. China
- Key Laboratory for Advanced Energy Devices Shaanxi Normal University Xi'an P. R. China
- School of Materials Science and Engineering Shaanxi Normal University Xi'an P. R. China
| |
Collapse
|
21
|
Kumar R, Singh BK, Soam A, Parida S, Sahajwalla V, Bhargava P. In situ carbon-supported titanium dioxide (ICS-TiO 2) as an electrode material for high performance supercapacitors. NANOSCALE ADVANCES 2020; 2:2376-2386. [PMID: 36133368 PMCID: PMC9419035 DOI: 10.1039/d0na00014k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/16/2020] [Indexed: 06/13/2023]
Abstract
Supercapacitors have attracted significant attention in the last few years as they have the capability to fulfill the demand for both power and energy density in many energy storage applications. In this study, an in situ carbon-supported titanium oxide (ICS-TiO2) electrode has been prepared using sucrose and TiO2 powder. The ICS-TiO2 powder was prepared by slipcasting, followed by the annealing of the TiO2 slurry. Sucrose was added to the TiO2 slurry as a soluble carbon source, and was converted into carbon at 600 °C then coated on the TiO2 particles. The morphological and structural evolution of the electrode was investigated by FEG-SEM, FEG-TEM, XRD, BET, FTIR, XPS and Raman spectroscopy. The electrochemical characterization of ICS-TiO2 demonstrated that this material exhibits an efficient value of specific capacitance (277.72 F g-1 at 25 mV s-1) for charge storage. ISC-TiO2 also exhibits a specific capacitance of 180 F g-1 at 2 A g-1 in a 1 M Na2SO4 aqueous electrolyte. The results suggest that ICS-TiO2 can be utilized as a high-performance electrode material for supercapacitors with desirable electrochemical properties.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay Mumbai 400076 India
- Centre for Sustainable Materials Research and Technology (SMaRT), School of Materials Science and Engineering, University of New South Wales NSW 2052 Australia
| | - Balwant Kumar Singh
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay Mumbai 400076 India
| | - Ankur Soam
- Department of Mechanical Engineering, Siksha 'O' Anusandhan University Khandagiri Square Bhubaneswar-751030 Odisha India
| | - Smrutiranjan Parida
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay Mumbai 400076 India
| | - Veena Sahajwalla
- Centre for Sustainable Materials Research and Technology (SMaRT), School of Materials Science and Engineering, University of New South Wales NSW 2052 Australia
| | - Parag Bhargava
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay Mumbai 400076 India
| |
Collapse
|
22
|
Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy. Nat Commun 2020; 11:2351. [PMID: 32393749 PMCID: PMC7214414 DOI: 10.1038/s41467-020-15808-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 03/18/2020] [Indexed: 11/08/2022] Open
Abstract
The design and development of self-charging supercapacitor power cells are rapidly gaining interest due to their ability to convert and store energy in an integrated device. Here, we have demonstrated the fabrication of a self-charging supercapacitor using siloxene sheets as electrodes and siloxene-based polymeric piezofiber separator immobilized with an ionogel electrolyte. The self-charging properties of the fabricated device subjected to various levels of compressive forces showed their ability to self-charge up to a maximum of 207 mV. The mechanism of self-charging process in the fabricated device is discussed via "piezoelectrochemical effect" with the aid of piezoelectrochemical spectroscopy measurements. These studies revealed the direct evidence of the piezoelectrochemical phenomenon involved in the energy conversion and storage process in the fabricated device. This study can provide insight towards understanding the energy conversion process in self-charging supercapacitors, which is of significance considering the state of the art of piezoelectric driven self-charging supercapacitors.
Collapse
|
23
|
Free-Standing PVDF/Reduced Graphene Oxide Film for All-Solid-State Flexible Supercapacitors towards Self-Powered Systems. MICROMACHINES 2020; 11:mi11020198. [PMID: 32075070 PMCID: PMC7074646 DOI: 10.3390/mi11020198] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 11/17/2022]
Abstract
The development of polymer-based devices has attracted much attention due to their miniaturization, flexibility, lightweight and sustainable power sources with high efficiency in the field of wearable/portable electronics, and energy system. In this work, we proposed a polyvinylidene fluoride (PVDF)-based composite matrix for both energy harvesting and energy storage applications. The physicochemical characterizations, such as X-ray diffraction, laser Raman, and field-emission scanning electron microscopy (FE-SEM) analyses, were performed for the electrospun PVDF/sodium niobate and PVDF/reduced graphene oxide composite film. The electrospun PVDF/sodium niobate nanofibrous mat has been utilized for the energy harvester which shows an open circuit voltage of 40 V (peak to peak) at an applied compressive force of 40 N. The PVDF/reduced graphene oxide composite film acts as the electrode for the symmetric supercapacitor (SSC) device fabrication and investigated for their supercapacitive properties. Finally, the self-charging system has been assembled using PVDF/sodium niobate (energy harvester), and PVDF/reduced graphene oxide SSC (energy storage) and the self-charging capability is investigated. The proposed self-charging system can create a pathway for the all-polymer based composite high-performance self-charging system.
Collapse
|
24
|
Dai Q, Meng Q, Du C, Ding F, Huang J, Nie J, Zhang X, Chen J. Spontaneous deposition of Ir nanoparticles on 2D siloxene as a high-performance HER electrocatalyst with ultra-low Ir loading. Chem Commun (Camb) 2020; 56:4824-4827. [DOI: 10.1039/d0cc00245c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on the reducibility of siloxene, Ir nanoparticles were spontaneously deposited on siloxene and showed excellent performance for the HER.
Collapse
Affiliation(s)
- Qi Dai
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Provincial Hunan Key Laboratory for Cost-effective Utilization of Fossil Fuel Aimed at Reducing Carbon-dioxide Emissions
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| | - Qin Meng
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Provincial Hunan Key Laboratory for Cost-effective Utilization of Fossil Fuel Aimed at Reducing Carbon-dioxide Emissions
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| | - Cuicui Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Provincial Hunan Key Laboratory for Cost-effective Utilization of Fossil Fuel Aimed at Reducing Carbon-dioxide Emissions
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| | - Feng Ding
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Provincial Hunan Key Laboratory for Cost-effective Utilization of Fossil Fuel Aimed at Reducing Carbon-dioxide Emissions
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| | - Junlin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Provincial Hunan Key Laboratory for Cost-effective Utilization of Fossil Fuel Aimed at Reducing Carbon-dioxide Emissions
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| | - Jianhang Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Provincial Hunan Key Laboratory for Cost-effective Utilization of Fossil Fuel Aimed at Reducing Carbon-dioxide Emissions
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Provincial Hunan Key Laboratory for Cost-effective Utilization of Fossil Fuel Aimed at Reducing Carbon-dioxide Emissions
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Provincial Hunan Key Laboratory for Cost-effective Utilization of Fossil Fuel Aimed at Reducing Carbon-dioxide Emissions
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| |
Collapse
|
25
|
Sahoo S, Pazhamalai P, Mariappan VK, Veerasubramani GK, Kim NJ, Kim SJ. Hydrothermally synthesized chalcopyrite platelets as an electrode material for symmetric supercapacitors. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01335k] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel chalcopyrite (CuFeS2) platelet like open-pored micro-flower nanostructure investigated as an electrode material for supercapacitors.
Collapse
Affiliation(s)
- Surjit Sahoo
- Nanomaterials and System Lab
- Major of Mechatronics Engineering
- Faculty of Applied Energy System
- Jeju National University
- Jeju-63243
| | - Parthiban Pazhamalai
- Nanomaterials and System Lab
- Major of Mechatronics Engineering
- Faculty of Applied Energy System
- Jeju National University
- Jeju-63243
| | - Vimal Kumar Mariappan
- Nanomaterials and System Lab
- Major of Mechatronics Engineering
- Faculty of Applied Energy System
- Jeju National University
- Jeju-63243
| | | | - Nam-Jin Kim
- Department of Nuclear & Energy Engineering
- Jeju National University
- Jeju 63243
- South Korea
| | - Sang-Jae Kim
- Nanomaterials and System Lab
- Major of Mechatronics Engineering
- Faculty of Applied Energy System
- Jeju National University
- Jeju-63243
| |
Collapse
|
26
|
Suganya P, Venkadesh A, Mathiyarasu J, Radhakrishnan S. MOF assisted synthesis of new porous nickel phosphate nanorods as an advanced electrode material for energy storage application. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04446-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Pazhamalai P, Krishnamoorthy K, Sahoo S, Mariappan VK, Kim SJ. Supercapacitive properties of amorphous MoS3 and crystalline MoS2 nanosheets in an organic electrolyte. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00623k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amorphous-MoS3 and crystalline-MoS2 prepared via thermal decomposition of ammonium tetrathiomolybdate and their electrochemical energy-storage properties reveals better capacitive and charge-transfer nature for MoS2 SSC over amorphous-MoS3 SSC.
Collapse
Affiliation(s)
- Parthiban Pazhamalai
- Nanomaterials and System Lab
- Department of Mechatronics Engineering
- Jeju National University
- Jeju 63243
- Republic of Korea
| | - Karthikeyan Krishnamoorthy
- Nanomaterials and System Lab
- Department of Mechatronics Engineering
- Jeju National University
- Jeju 63243
- Republic of Korea
| | - Surjit Sahoo
- Nanomaterials and System Lab
- Department of Mechatronics Engineering
- Jeju National University
- Jeju 63243
- Republic of Korea
| | - Vimal Kumar Mariappan
- Nanomaterials and System Lab
- Department of Mechatronics Engineering
- Jeju National University
- Jeju 63243
- Republic of Korea
| | - Sang-Jae Kim
- Nanomaterials and System Lab
- Department of Mechatronics Engineering
- Jeju National University
- Jeju 63243
- Republic of Korea
| |
Collapse
|