1
|
Xie K, Yin D, Yan L. Synthesis of D-A-type groups modified aza-BODIPY fluorescent dye encapsulated by amphiphilic polypeptide nanoparticles for NIR-II phototheranostics. Talanta 2024; 279:126633. [PMID: 39121551 DOI: 10.1016/j.talanta.2024.126633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
An innovative organic small molecule with a D-A structure was synthesized by connecting triphenylamine to BODIPY via a thiophene bridge. Triphenylamine and thiophene units ingeniously modulate the balance between steric hindrance and π-π interactions around the flat aza-BODIPY core. The molecule exhibits near-infrared fluorescence absorption and emits at roughly 1100 nm, featuring a significant Stokes shift. Both the molecule and its nanoparticles demonstrate high stability and achieve a remarkable 35 % photothermal conversion efficiency when conjugated with the P(OEGMA)20-P(Asp)14 copolymer. In vitro assessments show low dark toxicity and outstanding biocompatibility. Moreover, in vivo studies and photothermal therapy in mice indicate substantial tumor shrinkage and reduced recurrence, confirming its potential in cancer treatment. These results highlight the promise of this organic molecule and its nanoparticles for NIR-II imaging-guided photothermal therapy, introducing a novel approach to phototheranostic applications for cancer management.
Collapse
Affiliation(s)
- Kai Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Jinzai Road 96. 230026, Anhui, PR China; Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Jinzai Road 96. 230026, Anhui, PR China
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Jinzai Road 96. 230026, Anhui, PR China
| | - Lifeng Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Jinzai Road 96. 230026, Anhui, PR China; Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Jinzai Road 96. 230026, Anhui, PR China.
| |
Collapse
|
2
|
Vishnevetskii DV, Metlin FA, Andrianova YV, Polyakova EE, Ivanova AI, Averkin DV, Mekhtiev AR. Preparation of Composite Hydrogels Based on Cysteine-Silver Sol and Methylene Blue as Promising Systems for Anticancer Photodynamic Therapy. Gels 2024; 10:577. [PMID: 39330179 PMCID: PMC11431599 DOI: 10.3390/gels10090577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024] Open
Abstract
In this study, a novel supramolecular composite, "photogels", was synthesized by mixing of cysteine-silver sol (CSS) and methylene blue (MB). A complex of modern physico-chemical methods of analysis such as viscosimetry, UV spectroscopy, dynamic and electrophoretic light scattering, scanning electron microscopy and energy-dispersive X-ray spectroscopy showed that MB molecules are uniformly localized mainly in the space between fibers of the gel-network formed by CSS particles. Molecules of the dye also bind with the surface of CSS particles by non-covalent interactions. This fact is reflected in the appearance of a synergistic anticancer effect of gels against human squamous cell carcinoma even in the absence of light irradiation. A mild toxic influence of hydrogels was observed in normal keratinocyte cells. Photodynamic exposure significantly increased gel activity, and there remained a synergistic effect. The study of free-radical oxidation in cells has shown that gels are not only capable of generating reactive oxygen species, but also have other targets of action. Flow cytometric analysis allowed us to find out that obtained hydrogels caused cell cycle arrest both without irradiation and with light exposure. The obtained gels are of considerable interest both from the point of view of academics and applied science, for example, in the photodynamic therapy of superficial neoplasms.
Collapse
Affiliation(s)
- Dmitry V. Vishnevetskii
- Department of Physical Chemistry, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia; (F.A.M.); (Y.V.A.); (E.E.P.)
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., Moscow 191121, Russia
| | - Fedor A. Metlin
- Department of Physical Chemistry, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia; (F.A.M.); (Y.V.A.); (E.E.P.)
| | - Yana V. Andrianova
- Department of Physical Chemistry, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia; (F.A.M.); (Y.V.A.); (E.E.P.)
| | - Elizaveta E. Polyakova
- Department of Physical Chemistry, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia; (F.A.M.); (Y.V.A.); (E.E.P.)
| | - Alexandra I. Ivanova
- Department of Applied Physics, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia;
| | - Dmitry V. Averkin
- Russian Metrological Institute of Technical Physics and Radio Engineering, Worker’s Settlement Mendeleevo, Building 11, Moscow 141570, Russia;
| | - Arif R. Mekhtiev
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., Moscow 191121, Russia
| |
Collapse
|
3
|
Kang Z, Bu W, Guo X, Wang L, Wu Q, Cao J, Wang H, Yu C, Gao J, Hao E, Jiao L. Synthesis and Properties of Bright Red-to-NIR BODIPY Dyes for Targeting Fluorescence Imaging and Near-Infrared Photothermal Conversion. Inorg Chem 2024; 63:3402-3410. [PMID: 38330908 DOI: 10.1021/acs.inorgchem.3c04017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
An efficient synthesis of 3-pyrrolylBODIPY dyes has been developed from a rational mixture of various aromatic aldehydes and pyrrole in a straightforward condensation reaction, followed by in situ successively oxidative nucleophilic substitution using a one-pot strategy. These resultant 3-pyrrolylBODIPYs without blocking substituents not only exhibit the finely tunable photophysical properties induced by the flexible meso-aryl substituents but also serve as a valuable synthetic framework for further selective functionalization. As a proof of such potential, one 3-pyrrolylBODIPY dye (581/603 nm) through the installation of the morpholine group is applicable for lysosome-targeting imaging. Furthermore, an ethene-bridged 3,3'-dipyrrolylBODIPY dimer was constructed, which displayed a near-infrared (NIR) emission extended to 1200 nm with a large fluorescence brightness (2840 M-1 cm-1). The corresponding dimer nanoparticles (NPs) afforded a high photothermal conversion efficiency (PCE) value of 72.5%, eventually resulting in favorable photocytotoxicity (IC50 = 9.4 μM) and efficient in vitro eradication of HeLa cells under 808 nm laser irradiation, highlighting their potential application for photothermal therapy in the NIR window.
Collapse
Affiliation(s)
- Zhengxin Kang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Weibin Bu
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xing Guo
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Long Wang
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Jingjing Cao
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Hua Wang
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Changjiang Yu
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Jiangang Gao
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Erhong Hao
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
4
|
Nagpal A, Tyagi N, Neelakandan PP. BODIPY-fused uracil: synthesis, photophysical properties, and applications. Photochem Photobiol Sci 2024; 23:365-376. [PMID: 38227134 DOI: 10.1007/s43630-023-00524-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
Fluorescent nucleobase and nucleic acid analogs are important tools in chemical and molecular biology as fluorescent labelling of nucleobases has applications in cellular imaging and anti-tumor activity. Boron-dipyrromethene (BODIPY) dyes exhibiting high brightness and good photostability are extensively used as fluorescent labelling agents and as type II photosensitizers for photodynamic therapy. Thus, the combination of nucleobases and BODIPY to obtain new compounds with both anti-tumor activity and fluorescent imaging functions is the focus of our research. We synthesized two new nucleobase analogs 1 and 2 by fusing the BODIPY core directly with uracil which resulted in favorable photophysical properties and high emission quantum efficiencies particularly in organic solvents. Further, we explored the newly synthesized derivatives, which possessed good singlet oxygen generation efficiencies and bio-compatibility, as potential PDT agents and our results show that they exhibit in vitro anti-tumor activities.
Collapse
Affiliation(s)
- Ayushi Nagpal
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, 140306, Punjab, India
| | - Nidhi Tyagi
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, 140306, Punjab, India
| | - Prakash P Neelakandan
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, 140306, Punjab, India.
| |
Collapse
|
5
|
Hu M, Dong X, Zhao W. Lysosome-targeted Aza-BODIPY photosensitizers for anti-cancer photodynamic therapy. Bioorg Med Chem 2024; 99:117583. [PMID: 38198943 DOI: 10.1016/j.bmc.2023.117583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024]
Abstract
Developing effective near-infrared (NIR) photosensitizers (PSs) has been an attractive goal of photodynamic therapy (PDT) for cancer treatment. In this study, we synthesized N, N-diethylaminomethylphenyl-containing Aza-BODIPY photosensitizers and comprehensively investigated their photophysical/photochemical properties, as well as cell-based and animal-based anti-tumor studies. Among them, BDP 1 has strong NIR absorption at 680 nm and higher singlet oxygen yield in PBS which showed favorable pH-activatable and lysosome-targeting ability. BDP 1 could be easily taken up by tumor cells and showed negligible dark activity (IC50 > 50 μM), however strong phototoxicity upon exposure to light irradiation. The acceptable fluorescence emission from BDP 1 allowed convenient in vivo fluorescence imaging for organ distribution studies in mice. After PDT treatment with upon single time PDT treatment at the beginning using relatively low light dose (54 J/ cm2), BDP 1 (2 mg/kg, 0.1 mL) was found to have strong efficacy to inhibit tumor growth and even to ablate off tumor without causing body weight loss. Therefore, pH-activatable and lysosome-targeted PS may become an effective way to develop potent PDT agent.
Collapse
Affiliation(s)
- Mei Hu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Xiaochun Dong
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Weili Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, PR China; Key Laboratory for Special Functional Materials of the Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, PR China.
| |
Collapse
|
6
|
Pewklang T, Saiyasombat W, Chueakwon P, Ouengwanarat B, Chansaenpak K, Kampaengsri S, Lai RY, Kamkaew A. Revolutionary Pyrazole-based Aza-BODIPY: Harnessing Photothermal Power Against Cancer Cells and Bacteria. Chembiochem 2024; 25:e202300653. [PMID: 38095754 DOI: 10.1002/cbic.202300653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/25/2023] [Indexed: 01/11/2024]
Abstract
In the realm of cancer therapy and treatment of bacterial infection, photothermal therapy (PTT) stands out as a potential strategy. The challenge, however, is to create photothermal agents that can perform both imaging and PTT, a so-called theranostic agent. Photothermal agents that absorb and emit in the near-infrared region (750-900 nm) have recently received a lot of attention due to the extensive penetration of NIR light in biological tissues. In this study, we combined pyrazole with aza-BODIPY (PY-AZB) to develop a novel photothermal agent. PY-AZB demonstrated great photostability with a photothermal conversion efficiency (PCE) of up to 33 %. Additionally, PY-AZB can permeate cancer cells at a fast accumulation rate in less than 6 hours, according to the confocal images. Furthermore, in vitro photothermal therapy results showed that PY-AZB effectively eliminated cancer cells by up to 70 %. Interestingly, PY-AZB exhibited antibacterial activities against both gram-negative bacteria, Escherichia coli 780, and gram-positive bacteria, Staphylococcus aureus 1466. The results exhibit a satisfactory bactericidal effect against bacteria, with a killing efficiency of up to 100 % upon laser irradiation. As a result, PY-AZB may provide a viable option for photothermal treatment.
Collapse
Affiliation(s)
- Thitima Pewklang
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand, 30000
| | - Worakrit Saiyasombat
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand, 30000
| | - Piyasiri Chueakwon
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand, 30000
| | - Bongkot Ouengwanarat
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand, 30000
| | - Kantapat Chansaenpak
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand, 12120
| | - Sastiya Kampaengsri
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand, 30000
| | - Rung-Yi Lai
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand, 30000
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand, 30000
| |
Collapse
|
7
|
Chansaenpak K, Yong GY, Prajit A, Hiranmartsuwan P, Selvapaandian S, Ouengwanarat B, Khrootkaew T, Pinyou P, Kue CS, Kamkaew A. Aza-BODIPY-based polymeric nanoparticles for photothermal cancer therapy in a chicken egg tumor model. NANOSCALE ADVANCES 2024; 6:406-417. [PMID: 38235075 PMCID: PMC10790972 DOI: 10.1039/d3na00718a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/27/2023] [Indexed: 01/19/2024]
Abstract
A new push-pull aza-BODIPY (AZB-CF3) derivative comprised of dimethylamino groups and trifluoromethyl moieties was successfully synthesized. This derivative exhibited broad absorption in the near-infrared region in the range from 798 to 832 nm. It also exhibited significant near-infrared (NIR) signals in low-polar solvents with emission peaks around 835-940 nm, while non-fluorescence in high-polar environments due to the twisted intramolecular charge transfer (TICT) phenomenon. The nanoprecipitation of this compound with phospholipid-based polyethylene glycol (DSPE-PEG) yielded AZB-CF3@DSPE-PEG nanoparticles (NPs) with a hydrodynamic size of 70 nm. The NPs exhibited good photostability, colloidal stability, biocompatibility, and excellent photothermal (PTT) competence with a conversion efficiency (η) of 44.9%. These NPs were evaluated in vitro and in ovo in a 4T1 breast cancer cell line for NIR light-trigger photothermal therapy. Proven in the chicken egg tumor model, AZB-CF3@DSPE-PEG NPs induced severe vascular damage (∼40% vascular destruction), showed great anticancer efficacy (∼75% tumor growth inhibition), and effectively inhibited distant metastasis via photothermal treatment. As such, this PTT-based nanocarrier system could be a potential candidate for a clinical cancer therapy approach.
Collapse
Affiliation(s)
- Kantapat Chansaenpak
- National Nanotechnology Center, National Science and Technology Development Agency Thailand Science Park Pathum Thani Thailand 12120
| | - Gong Yi Yong
- Faculty of Health and Life Sciences, Management and Science University Seksyen 13 Shah Alam Selangor Malaysia 40100
| | - Anawin Prajit
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima Thailand 30000
| | - Peraya Hiranmartsuwan
- National Nanotechnology Center, National Science and Technology Development Agency Thailand Science Park Pathum Thani Thailand 12120
| | - Shaamini Selvapaandian
- Faculty of Health and Life Sciences, Management and Science University Seksyen 13 Shah Alam Selangor Malaysia 40100
| | - Bongkot Ouengwanarat
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima Thailand 30000
| | - Tunyawat Khrootkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima Thailand 30000
| | - Piyanut Pinyou
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima Thailand 30000
| | - Chin Siang Kue
- Faculty of Health and Life Sciences, Management and Science University Seksyen 13 Shah Alam Selangor Malaysia 40100
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima Thailand 30000
| |
Collapse
|
8
|
Zeng S, Liu X, Kafuti YS, Kim H, Wang J, Peng X, Li H, Yoon J. Fluorescent dyes based on rhodamine derivatives for bioimaging and therapeutics: recent progress, challenges, and prospects. Chem Soc Rev 2023; 52:5607-5651. [PMID: 37485842 DOI: 10.1039/d2cs00799a] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Since their inception, rhodamine dyes have been extensively applied in biotechnology as fluorescent markers or for the detection of biomolecules owing to their good optical physical properties. Accordingly, they have emerged as a powerful tool for the visualization of living systems. In addition to fluorescence bioimaging, the molecular design of rhodamine derivatives with disease therapeutic functions (e.g., cancer and bacterial infection) has recently attracted increased research attention, which is significantly important for the construction of molecular libraries for diagnostic and therapeutic integration. However, reviews focusing on integrated design strategies for rhodamine dye-based diagnosis and treatment and their wide application in disease treatment are extremely rare. In this review, first, a brief history of the development of rhodamine fluorescent dyes, the transformation of rhodamine fluorescent dyes from bioimaging to disease therapy, and the concept of optics-based diagnosis and treatment integration and its significance to human development are presented. Next, a systematic review of several excellent rhodamine-based derivatives for bioimaging, as well as for disease diagnosis and treatment, is presented. Finally, the challenges in practical integration of rhodamine-based diagnostic and treatment dyes and the future outlook of clinical translation are also discussed.
Collapse
Affiliation(s)
- Shuang Zeng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Xiaosheng Liu
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Yves S Kafuti
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
- Provincial Key Laboratory of Interdisciplinary Medical Engineering for Gastrointestinal Carcinoma, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning 110042, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
9
|
Yu H, Tiemuer A, Zhu Y, Sun Y, Zhang Y, Liu L, Liu Y. Albumin-based near-infrared phototheranostics for frequency upconversion luminescence/photoacoustic dual-modal imaging-guided photothermal therapy. Biomater Sci 2023. [PMID: 37183589 DOI: 10.1039/d3bm00239j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Engineering versatile phototheranostics for multimodal diagnostic imaging and effective therapy has great potential in cancer treatment. However, developing an inherently versatile molecule is a huge challenge. In this work, a near-infrared organic dye (NRh) was synthesized and further bound with bovine serum albumin (BSA) to construct facile "one-for-all" phototheranostics (NRh-BSA NPs), which exhibited enhanced frequency upconversion luminescence (FUCL, λex/em = 850/825 nm) and excellent photoacoustic (PA) and photothermal properties (λ'ex = 808 nm). Additionally, the BSA-modified phototheranostics NRh-BSA NPs showed specific accumulation in the tumor region through passive targeting. Based on the FUCL/PA dual modal imaging-guidance, the NRh-BSA NPs not only can guarantee the accuracy of imaging of the U87MG tumor sites, but also can improve the therapeutic effect on ablating tumors without recurrence by photothermal therapy (PTT). Collectively, our work proposed a novel strategy to construct versatile phototheranostics with the unique FUCL/PA imaging-guided technique for accurate cancer theranostics.
Collapse
Affiliation(s)
- Hui Yu
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Aliya Tiemuer
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Yanyan Zhu
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Ye Sun
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuanyuan Zhang
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Li Liu
- Clinical Laboratory, Xiantao First People's Hospital, Xiantao, 433000, China.
| | - Yi Liu
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
- Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| |
Collapse
|
10
|
Shen J, He W. The fabrication strategies of near-infrared absorbing transition metal complexes. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
11
|
Cheng HB, Cao X, Zhang S, Zhang K, Cheng Y, Wang J, Zhao J, Zhou L, Liang XJ, Yoon J. BODIPY as a Multifunctional Theranostic Reagent in Biomedicine: Self-Assembly, Properties, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207546. [PMID: 36398522 DOI: 10.1002/adma.202207546] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Indexed: 05/05/2023]
Abstract
The use of boron dipyrromethene (BODIPY) in biomedicine is reviewed. To open, its synthesis and regulatory strategies are summarized, and inspiring cutting-edge work in post-functionalization strategies is highlighted. A brief overview of assembly model of BODIPY is then provided: BODIPY is introduced as a promising building block for the formation of single- and multicomponent self-assembled systems, including nanostructures suitable for aqueous environments, thereby showing the great development potential of supramolecular assembly in biomedicine applications. The frontier progress of BODIPY in biomedical application is thereafter described, supported by examples of the frontiers of biomedical applications of BODIPY-containing smart materials: it mainly involves the application of materials based on BODIPY building blocks and their assemblies in fluorescence bioimaging, photoacoustic imaging, disease treatment including photodynamic therapy, photothermal therapy, and immunotherapy. Lastly, not only the current status of the BODIPY family in the biomedical field but also the challenges worth considering are summarized. At the same time, insights into the future development prospects of biomedically applicable BODIPY are provided.
Collapse
Affiliation(s)
- Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Xiaoqiao Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Shuchun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Keyue Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Yang Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jiaqi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jing Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Liming Zhou
- Henan Provincial Key Laboratory of Surface and Interface Science, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| |
Collapse
|
12
|
Zhang J, Li Y, Jiang M, Qiu H, Li Y, Gu M, Yin S. Self-Assembled Aza-BODIPY and Iron(III) Nanoparticles for Photothermal-Enhanced Chemodynamic Therapy in the NIR-II Window. ACS Biomater Sci Eng 2023; 9:821-830. [PMID: 36725684 DOI: 10.1021/acsbiomaterials.2c01539] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Despite its promising potential in cancer treatment, synergistic photothermal/chemodynamic therapy remains underdeveloped with regard to the utilization of metal-organic materials under second near-infrared (NIR-II) laser excitation. Herein, we report a three-dimensional network constructed via the metal coordination between catechol-functionalized aza-boron dipyrromethenes and iron ions (ABFe), which was further encapsulated by F127 to obtain ABFe nanoparticles (NPs) for combined photothermal/chemodynamic therapy. ABFe NPs exhibited intense absorption in the NIR-II range and negligible fluorescence. Upon 1064 nm laser irradiation, ABFe NPs showed high photothermal conversion efficiency (PCE = 55.0%) and excellent photothermal stability. The results of electron spin resonance spectra and o-phenylenediamine chromaticity spectrophotometry proved that ABFe NPs were capable of generating harmful reactive oxygen species from hydrogen peroxide for chemodynamic therapy, which was promoted by photothermal performance. Notably, in vitro and in vivo experiments demonstrated the great potential of ABFe NPs in photoacoustic imaging and photothermal-enhanced chemodynamic therapy under NIR-II laser irradiation. Therefore, the current work presents a prospective NIR-II excitation therapeutic nanomedicine for combination therapy, offering a novel strategy for simultaneously achieving extended NIR absorption of aza-BODIPY and enhanced chemodynamic therapy with metal-organic materials.
Collapse
Affiliation(s)
- Jinjin Zhang
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| | - Yaojun Li
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| | - Minling Jiang
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| | - Huayu Qiu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| | - Yang Li
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| | - Meier Gu
- Laboratory Animal Center, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Shouchun Yin
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| |
Collapse
|
13
|
The bromoporphyrins as promising anti-tumor photosensitizers in vitro. Photochem Photobiol Sci 2023; 22:427-439. [PMID: 36344865 DOI: 10.1007/s43630-022-00326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022]
Abstract
The synthesis of ideal photosensitizers (PSs) is considered to be the most significant bottleneck in photodynamic therapy (PDT). To discover novel PSs with excellent photodynamic anti-tumor activities, a series of novel photosensitizers 5,15-diaryl-10,20-dibromoporphyrins (I1-6) were synthesized by a facile method. Compared with hematoporphyrin monomethyl ether (HMME) as the representative porphyrin-based photosensitizers, it is found that not only the longest absorption wavelength of all compounds was red-shifted to therapeutic window (660 nm) of photodynamic therapy, but also the singlet oxygen quantum yields were significantly increased. Furthermore, all compounds exhibited lower dark toxicity (except I2) and stronger phototoxicity (except I4) against Eca-109 tumor cells than HMME. Among them, I3 possessed the highest singlet oxygen quantum yield (ΦΔ = 0.205), the lower dark toxicity and the strongest phototoxicity (IC50 = 3.5 μM) in vitro. The findings indicated the compounds I3 had the potential to become anti-tumor agents for PDT.
Collapse
|
14
|
Multifunctional organic nanomaterials with ultra-high photothermal conversion efficiency for photothermal therapy and inhibition of cancer metastasis. Bioorg Chem 2023; 130:106220. [DOI: 10.1016/j.bioorg.2022.106220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
|
15
|
Li R, Ren J, Zhang D, Lv M, Wang Z, Wang H, Zhang S, Du J, Jiang XD, Wang G. Attachment of −tBu groups to aza-BODIPY core at 3,5-sites with ultra-large Stokes shift to enhance photothermal therapy through apoptosis mechanism. Mater Today Bio 2022; 16:100446. [PMID: 36199559 PMCID: PMC9527945 DOI: 10.1016/j.mtbio.2022.100446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022]
Abstract
By the introduction of the −tBu groups into aza-BODIPY core, di-tert-butyl-substituted aza-BODIPYs at 3,5-sites (tBuazaBDPs) were prepared for the first time. Based on the X-ray analysis of CN-tBuazaBDP, this molecular structure is twisted. Near-infrared dye SMe-tBuazaBDP has the ultra-large Stokes shift (152 nm) in aza-BODIPY system, combining with the twisted intramolecular charge transfer and the free rotation of the −tBu groups at 3,5-sites. Although the barrier-free rotors of the distal −tBu groups in SMe-tBuazaBDP result in low fluorescence quantum yield, the photothermal conversion efficiency is markedly enhanced. SMe-tBuazaBDP nanoparticles with low power laser irradiation were proven to block cancer cell cycle, inhibit cancer cell proliferation, and induce cancer cell apoptosis in photothermal therapy (PTT). The strategy of “direct attachment of −tBu groups to aza-BODIPY core” gives a new design platform for a photothermal therapy agent. Di-tert-butyl-substituted aza-BODIPYs at 3,5-sites (tBuazaBDPs) were prepared for the first time. Near-infrared dye SMe-tBuazaBDP has the ultra-large Stokes shift (152 nm) in aza-BODIPY system. SMe-tBuazaBDP nanoparticles can photothermally induce apoptosis as a potential photothermal therapy agent.
Collapse
|
16
|
Self-Assembled BODIPY Derivative with A-D-A Structure as Organic Nanoparticles for Photodynamic/Photothermal Cancer Therapy. Int J Mol Sci 2022; 23:ijms232214473. [PMID: 36430949 PMCID: PMC9698044 DOI: 10.3390/ijms232214473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
Abstract
Organic nanomaterials have attracted considerable attention in the area of photodynamic and photothermal therapy, owing to their outstanding biocompatibility, potential biodegradability, well-defined chemical structure, and easy functionalization. However, it is still a challenge to develop a single organic molecule that obtains both photothermal and photodynamic effects. In this contribution, we synthesized a new boron-dipyrromethene (BODIPY)-based derivative (DPBDP) with an acceptor-donor-acceptor (A-D-A) structure by coupling 3,6-di(2-thienyl)-2,5-dihydropyrrolo [3,4-c] pyrrole-1,4-dione (DPP) and BODIPY. To enhance the hydrophilicity of the BODIPY derivative, the polyethylene glycol (PEG) chains were introduced to the meso- position of BODIPY core. The amphiphilic DPBDP was then self-assembled into related nanoparticles (DPBDP NPs) with improved hydrophilicity and enhanced absorbance in the NIR region. DPBDP NPs could simultaneously generate the singlet oxygen (1O2) and heat under the irradiation of a single laser (690 nm). The 1O2 quantum yield and photothermal conversion efficiency (PCE) of DPBDP NPs were calculated to be 14.2% and 26.1%, respectively. The biocompatibility and phototherapeutic effect of DPBDP NPs were evaluated through cell counting kit-8 (CCK-8) assay. Under irradiation of 690 nm laser (1.0 W/cm2), the half maximal inhibitory concentration (IC50) of DPBDP NPs was calculated to be 16.47 µg/mL. Thus, the as-prepared DPBDP NPs could be acted as excellent candidates for synergistic photodynamic/photothermal therapy.
Collapse
|
17
|
Canton-Vitoria R, Alsaleh AZ, Rotas G, Nakanishi Y, Shinohara H, D Souza F, Tagmatarchis N. Graphene performs the role of an electron donor in covalently interfaced porphyrin-boron azadipyrromethene dyads and manages photoinduced charge-transfer processes. NANOSCALE 2022; 14:15060-15072. [PMID: 36200654 DOI: 10.1039/d2nr03740h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, we introduced the versatility of free-base and zinc-metallated porphyrin (H2P and ZnP, respectively) to combine with boron azadipyrromethene (azaBDP) NIR absorbing species, for extending their photophysical interest and covalently anchored onto graphene. In particular, the covalent functionalization of graphene with those H2P-azaBDP and ZnP-azaBDP dyads ensured an invariable structure, in which both chromophores and graphene are in intimate contact, free of aggregations and impurities. Both H2P-azaBDP and ZnP-azaBDP dyads were found to perform energy transfer processes between the chromophores, however, only ZnP-azaBDP confirmed additional charge separation between the chromophores yielding the ZnP˙+-azaBDP˙- charge-separated state. On the other hand, graphene in (H2P-azaBDP)-graphene and (ZnP-azaBDP)-graphene hybrids was found to act as an electron donor, yielding (H2P-azaBDP˙-)-graphene˙+ and (ZnP-azaBDP˙-)-graphene˙+ charge-separated states at an ultrafast timescale. The creation of such donor-acceptor systems, featuring graphene as an electron donor and Vis-to-NIR electron-acceptor dyads, expands their utility when considered in optoelectronic applications.
Collapse
Affiliation(s)
- Ruben Canton-Vitoria
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Ajyal Z Alsaleh
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Georgios Rotas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
- Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Yusuke Nakanishi
- Department of Chemistry, Nagoya University, Nagoya, 464-8602, Japan
- Department of Physics, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | | | - Francis D Souza
- Department of Chemistry, University of North Texas, 305070 Denton, TX 76203-5017, USA
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| |
Collapse
|
18
|
Kampaengsri S, Chansaenpak K, Yong GY, Hiranmartsuwan P, Uengwanarat B, Lai RY, Meemon P, Kue CS, Kamkaew A. PEGylated Aza-BODIPY Nanoparticles for Photothermal Therapy. ACS APPLIED BIO MATERIALS 2022; 5:4567-4577. [PMID: 36054220 DOI: 10.1021/acsabm.2c00624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Photothermal therapy is a promising treatment modality in the realm of cancer therapy. Photothermal nanomaterials that absorb and emit in the near-infrared range (750-900 nm) have drawn a lot of attention recently because of the deep penetration of NIR light in biological tissue. Most nanomaterials, however, are produced by encapsulating or altering the surface of a nanoplatform, which has limited loading capacity and long-term storage. Herein, we developed a stable polymer conjugated with aza-BODIPY that self-assembled to form nanoparticles (aza-BODIPY-mPEG) with better hydrophilicity and biocompatibility while retaining the dye's photothermal conversion characteristics. Aza-BODIPY-mPEG with a hydrodynamic size of around 170 nm exhibited great photostability and excellent photothermal therapy in vitro and in ovo. Aza-BODIPY-mPEG exhibits approximately 30% better anti-angiogenesis and antitumor activity against implanted xenograft human HCT116 tumor in the chick embryo compared to parent aza-BODIPY-A, altogether suggesting that aza-BODIPY-mPEG is a promising material for cancer photothermal therapy.
Collapse
Affiliation(s)
- Sastiya Kampaengsri
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Kantapat Chansaenpak
- National Science and Technology Development Agency, National Nanotechnology Center, Thailand Science Park, Pathum Thani 12120, Thailand
| | - Gong Yi Yong
- Faculty of Health and Life Sciences, Management and Science University, Seksyen 13, 40100 Shah Alam, Selangor, Malaysia
| | - Peraya Hiranmartsuwan
- National Science and Technology Development Agency, National Nanotechnology Center, Thailand Science Park, Pathum Thani 12120, Thailand
| | - Bongkot Uengwanarat
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Rung-Yi Lai
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Center of Excellence in Advanced Functional Materials, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Panomsak Meemon
- School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Center of Excellence in Advanced Functional Materials, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chin Siang Kue
- Faculty of Health and Life Sciences, Management and Science University, Seksyen 13, 40100 Shah Alam, Selangor, Malaysia
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Center of Excellence in Advanced Functional Materials, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
19
|
Xing X, Yang K, Li B, Tan S, Yi J, Li X, Pang E, Wang B, Song X, Lan M. Boron Dipyrromethene-Based Phototheranostics for Near Infrared Fluorescent and Photoacoustic Imaging-Guided Synchronous Photodynamic and Photothermal Therapy of Cancer. J Phys Chem Lett 2022; 13:7939-7946. [PMID: 35980815 DOI: 10.1021/acs.jpclett.2c02122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The regulation of photochemical properties of phototheranostics, especially the absorption, fluorescence, singlet oxygen (1O2) generation, and photothermal conversion efficiency, is a hot research topic. Here, we designed and synthesized four boron dipyrromethene (BODIPY) derivatives with high absorption coefficients and intense fluorescence in the near-infrared (NIR) region. The substituted electron-donating group significantly improved 1O2 generation and fluorescence of BODIPYs, whereas the electron-withdrawing group boosts photothermal conversion. These hydrophobic BODIPYs were further coated with DSPE-PEG-2000 to form water dispersible nanoparticles (NPs). Among these BODIPY NPs, the B-OMe-NPs with methoxyl substituted at the meso-position showed the highest 1O2 generation, a photothermal conversion efficiency of 66.5%, and an NIR fluorescence peak at 809 nm. In vitro and in vivo experiments demonstrated that B-OMe-NPs might be used for NIR fluorescent and photoacoustic imaging-guided photodynamic and photothermal therapy of cancer.
Collapse
Affiliation(s)
- Xuejian Xing
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Ke Yang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Baoling Li
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Siyi Tan
- Huazhi Medical Laboratory Co., Ltd., 618 Heping Road, Changsha 410125, P.R. China
| | - Jianing Yi
- Surgical Department of Breast and Thyroid Gland, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha 410005, P. R. China
| | - Xiangcao Li
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - E Pang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Benhua Wang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xiangzhi Song
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Minhuan Lan
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
20
|
Yang N, Song S, Liu C, Ren J, Wang X, Zhu S, Yu C. An aza-BODIPY-based NIR-II luminogen enables efficient phototheranostics. Biomater Sci 2022; 10:4815-4821. [PMID: 35856473 DOI: 10.1039/d2bm00670g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fabrication of a high-performance second near-infrared (NIR-II) biological window fluorophore is in urgent need for precise diagnosis and treatment of cancer. Nevertheless, the construction of phototherapeutic agents in the NIR-II region with excellent imaging performance and minimal side effects remains a big challenge due to the limited availability of core fluorophore candidates. In this study, a new NIR-II fluorescent probe, CB1, which is an aza-BODIPY core conjugated with bulky donors, was designed and synthesized. CB1 was further encapsulated in DSPE-PEG2000 to impart water solubility, which shows brighter NIR-II fluorescence and higher photostability than the clinically used indocyanine green (ICG). CB1 nanoparticles show deep tissue penetration and high imaging contrast in vivo. In addition, molecular conformation enables CB1 nanoparticles to exhibit good photothermal properties. Both in vitro and in vivo assessments confirm that CB1 nanoparticles could be utilized as distinguished theranostic agents for NIR-II fluorescence imaging and tumor growth inhibition with negligible side effects. Collectively, this work provides a promising approach for constructing a new platform for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Na Yang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China. .,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Shuang Song
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Chang Liu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China. .,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Jia Ren
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China. .,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Xin Wang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P.R. China.,State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P.R. China.,State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Cong Yu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China. .,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| |
Collapse
|
21
|
Tian Y, Zhou H, Cheng Q, Dang H, Qian H, Teng C, Xie K, Yan L. Stable twisted conformation aza-BODIPY NIR-II fluorescent nanoparticles with ultra-large Stokes shift for imaging-guided phototherapy. J Mater Chem B 2022; 10:707-716. [PMID: 35015013 DOI: 10.1039/d1tb02066h] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fluorescence imaging in the second near-infrared window (NIR-II, 1000-1700 nm) holds great promise for in vivo imaging and imaging-guided phototherapy with deep penetration and high spatiotemporal resolution. It is very appealing to obtain NIR-II fluorescent probes through simple procedures and economical substrates. Herein, we developed a D-A-D' structure NIR-II photosensitizer (triphenylamine modified aza-Bodipy, TAB) based on the strong electron-withdrawing nature of borane difluoride azadipyrromethene's center (aza-BODIPY). Subsequently, halogen atoms (Br, I) were introduced to the TAB molecule, and TAB-2Br and TAB-2I were synthesized. Compared to the TAB molecule, a significant redshift in the emission wavelength, ultra-large Stokes shift (>300 nm), and enhanced singlet oxygen production capacity were acquired for the halogenated molecules. After self-assembly of TABs and an amphiphilic polypeptide POEGMA23-PAsp20, the obtained P-TAB, P-TAB-2Br, and P-TAB-2I nanoparticles exhibited excellent water solubility and biocompatibility, remarkable photothermal conversion efficiency (beyond 40%), and good resistance to photobleaching, heat, and H2O2. Under 808 nm laser irradiation, the P-TAB-2I exhibited an efficient photothermal effect and ROS generation in vitro. And in vivo experiments revealed that P-TAB-2I displayed efficient NIR-II fluorescence imaging and remarkable tumor ablation results. All of these results make TAB-2I potential organic probes for clinical NIR-II fluorescence imaging and cancer phototherapy.
Collapse
Affiliation(s)
- Youliang Tian
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzairoad 96, Hefei, 230026, Anhui, China.
| | - Huiting Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzairoad 96, Hefei, 230026, Anhui, China.
| | - Quan Cheng
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzairoad 96, Hefei, 230026, Anhui, China.
| | - Huiping Dang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzairoad 96, Hefei, 230026, Anhui, China.
| | - Hongyun Qian
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzairoad 96, Hefei, 230026, Anhui, China.
| | - Changchang Teng
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzairoad 96, Hefei, 230026, Anhui, China.
| | - Kai Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzairoad 96, Hefei, 230026, Anhui, China.
| | - Lifeng Yan
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzairoad 96, Hefei, 230026, Anhui, China.
| |
Collapse
|
22
|
Tian Y, Yin D, Cheng Q, Dang H, Teng C, Yan L. Supramolecular J-aggregates of aza-BODIPY by Steric and π-π Interactions for NIR-II Phototheranostic. J Mater Chem B 2022; 10:1650-1662. [PMID: 35195126 DOI: 10.1039/d1tb02820k] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Achieving J-aggregation of a molecule is a fascinating way to construct fluorescent imaging as well as photothermal therapy agents in the second near-infrared window. Modulation of the balance between intermolecular...
Collapse
Affiliation(s)
- Youliang Tian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Quan Cheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Huiping Dang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Changchang Teng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Lifeng Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
23
|
Li FZ, Wu Z, Lin C, Wang Q, Kuang GC. Photophysical properties regulation and applications of BODIPY-based derivatives with electron donor-acceptor system. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
24
|
|
25
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 626] [Impact Index Per Article: 208.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
26
|
Su Y, Hu Q, Zhang D, Shen Y, Li S, Li R, Jiang XD, Du J. 1,7-Di-tert-butyl-Substituted aza-BODIPYs by Low-Barrier Rotation to Enhance a Photothermal-Photodynamic Effect. Chemistry 2021; 28:e202103571. [PMID: 34757667 DOI: 10.1002/chem.202103571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Indexed: 01/10/2023]
Abstract
1,7-Di-tert-butyl-substituted aza-BODIPYs (tBu-azaBDP) were successfully obtained for the first time. The structures of tBu-azaBDP and Ph-azaBDP were confirmed by X-ray crystal analysis, and tBu-azaBDP 2 is more twisted than Ph-azaBDP 5. tBu-azaBDPs have significant photo-stability and enhanced water solubility. tBu-azaBDPs possess excellent optical properties, such as high molar extinction coefficients, broad full width half maxima, and large Stokes shifts, which is comparable to those of the parent dye Ph-azaBDP. Although the low-barrier rotation of the distal -tBu groups in tBu-azaBDPs results in low quantum yield, photothermal conversion efficiency and singlet oxygen generation ability of tBu-azaBDPs are more effective than those of Ph-azaBDP, which is highly desirable for a photothermal-photodynamic therapy agent.
Collapse
Affiliation(s)
- Yajun Su
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China
| | - Qiao Hu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Dongxiang Zhang
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China
| | - Yue Shen
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China
| | - Sicheng Li
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China
| | - Ran Li
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China
| | - Xin-Dong Jiang
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| |
Collapse
|
27
|
A de novo strategy to develop NIR precipitating fluorochrome for long-term in situ cell membrane bioimaging. Proc Natl Acad Sci U S A 2021; 118:2018033118. [PMID: 33602816 DOI: 10.1073/pnas.2018033118] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cell membrane-targeted bioimaging is a prerequisite for studying the roles of membrane-associated biomolecules in various physiological and pathological processes. However, long-term in situ bioimaging on the cell membrane with conventional fluorescent probes leads to diffusion into cells from the membrane surface. Therefore, we herein proposed a de novo strategy to construct an antidiffusion probe by integrating a fluorochrome characterized by strong hydrophobicity and low lipophilicity, with an enzyme substrate to meet this challenge. This precipitating fluorochrome HYPQ was designed by conjugating the traditionally strong hydrophobic solid-state fluorochrome 6-chloro-2-(2-hydroxyphenyl) quinazolin-4(3H)-one (HPQ) with a 2-(2-methyl-4H-chromen-4-ylidene) malononitrile group to obtain closer stacking to lower lipophilicity and elongate emission to the far-red to near-infrared wavelength. As proof-of-concept, the membrane-associated enzyme γ-glutamyltranspeptidase (GGT) was selected as a model enzyme to design the antidiffusion probe HYPQG. Then, benefiting from the precipitating and stable signal properties of HYPQ, in situ imaging of GGT on the membrane was successfully realized. Moreover, after HYPQG was activated by GGT, the fluorescence signal on the cell membrane remained unchanged, with incubation time even extending to 6 h, which is significant for in situ monitoring of enzymatic activity. In vivo testing subsequently showed that the tumor region could be accurately defined by this probe after long-term in situ imaging of tumor-bearing mice. The excellent performance of HYPQ indicates that it may be an ideal alternative for constructing universal antidiffusion fluorescent probes, potentially providing an efficient tool for accurate imaging-guided surgery in the future.
Collapse
|
28
|
Nitric oxide release activated near-Infrared photothermal agent for synergistic tumor treatment. Biomaterials 2021; 276:121017. [PMID: 34280826 DOI: 10.1016/j.biomaterials.2021.121017] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 11/20/2022]
Abstract
Activatable phototherapeutic agents (PTA) in one system with synergistic gas therapy (GT) and photothermal therapy (PTT) hold great promise for highly efficient tumor treatments. In this study, an activatable multifunctional platform with photothermal conversion "turn on" features via nitric oxide (NO) release for synergistic GT and PTT was rationally designed using an aryl N-nitrosamine (NO-donating unit) functionalized aza-BODIPY framework (S-NO). As expected, after NO release from S-NO, the product (Red-S) showed obviously enhanced heat production performance under a longer excited wavelength via improved near-infrared light absorption and decreased fluorescence emission. Furthermore, water-soluble and biocompatible S-NO nanoparticles (S-NO NPs) with negligible dark cytotoxicity successfully suppressed tumor growth and enhanced the survival rate of mice via synergistic GT and PTT under the guidance of multimode imaging. The study offered rational guidance to design better platforms for synergistic tumor treatments and validated that S-NO NPs can act as potential PTAs in biological applications.
Collapse
|
29
|
Zhao M, Feng W, Li C, Xiu W, Li M, Liu S, Wang L, Huang W, Zhao Q. A photothermally-induced HClO-releasing nanoplatform for imaging-guided tumor ablation and bacterial prevention. Biomater Sci 2021; 8:7145-7153. [PMID: 33151202 DOI: 10.1039/d0bm01629b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Photothermal therapy (PTT) is a cure that can inhibit tumor growth effectively and even remove tumor via photo-induced local hyperthermia. However, its shortcoming lies in the fact that excessive heat is most likely to lead to thermal injury at the epidermis of the tumor region and even the area of the surrounding tissue. As a consequence, the exposure of the thermally-induced wound would result in the increased risk of bacterial infection. To date, few PTT platforms have attached importance to the prevention of bacterial infection at the photothermally-induced wound. Herein, we reported a thermally-sensitive liposome nanosystem (Lipo-B-TCCA) containing aza-BODIPY and trichloroisocyanuric acid, which is conductive for the PTT of tumor and the prevention of bacteria. It is observed that the designed nanoplatform could exhibit remarkable stability, high photothermal conversion efficiency (31.4%), and efficient HClO-releasing ability in vitro and in vivo. Moreover, Lipo-B-TCCA is able to eliminate tumor efficiently via near infrared fluorescence and photothermal imaging guidance with low side effects. Most importantly, Lipo-B-TCCA could prevent the growth of S. aureus in the thermal wound during the process of PTT. The imaging-guided photothermally-induced HClO-releasing PTT nanoplatform for tumor ablation and bacterial prevention shows excellent performance and great potential for biomedical applications.
Collapse
Affiliation(s)
- Menglong Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Triphenylamine-perylene diimide conjugate-based organic nanoparticles for photoacoustic imaging and cancer phototherapy. Colloids Surf B Biointerfaces 2021; 205:111841. [PMID: 33992824 DOI: 10.1016/j.colsurfb.2021.111841] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/14/2022]
Abstract
Phototherapy has gained great attention in the past decade owing to the advantages of high selectivity and low toxicity. However, it's still a challenge to develop a single photosensitizer that can achieve both photothermal and photodynamic effects. Herein, we design and synthesize a new organic compound (PIT) with a typical D-A-D structure through the covalent conjugation of perylene diimides (PDI) and triphenylamine (TPA). The amphiphilic PIT could be transformed to the nanoparticles (PIT NPs) through nanoprecipitation method. PIT NPs exhibit good water dispersibility with particle size around 70 nm. Because of the efficient NIR absorption, PIT NPs display high photothermal conversion efficiency (PCE) (η = 46.1 %) and strong photoacoustic signal under irradiation of 635 nm laser. Moreover, under the same laser irradiation, significant reactive oxygen species can be induced by PIT NPs both in aqueous solution and cancer cells. The MTT assay demonstrate the good biocompatibility and outstanding photocytotoxicity of PIT NPs. Thus, the as-prepared PIT NPs could be used as excellent candidates for photoacoustic imaging and photodynamic/photothermal therapy.
Collapse
|
31
|
Piyanuch P, Patawanich P, Sirirak J, Suwatpipat K, Kamkaew A, Burgess K, Wanichacheva N. Rapid and visual detection of Cd 2+ based on aza-BODIPY near infrared dye and its application in real and biological samples for environmental contamination screening. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124487. [PMID: 33199148 DOI: 10.1016/j.jhazmat.2020.124487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/27/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Cadmium highly toxic and hazardous, and it can adversely affect human health leading to serious disorders. Herein, a water-soluble near-infrared sensor based on aza-BODIPY (1) was developed for dual determination of Cd2+ in environmental and biological media. This sensor exhibited color change from colorless to green along with a fluorescence enhancement in the near-infrared (NIR) region via photoinduced electron transfer (PET) after complexation with Cd2+. Sensor 1 can be employed in aqueous media at physiological pH for quantitative monitoring. It shows rapid response with high sensitivity (detection limit of 2.8 ppb; linear correlation over [Cd2+] 1.33 - 6.67 µM) and selectivity over potentially interfering ions. NIR sensor 1 can be used to determine [Cd2+] in living cells and environmental samples.
Collapse
Affiliation(s)
- Pornthip Piyanuch
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Pramsak Patawanich
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Jitnapa Sirirak
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Kullatat Suwatpipat
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842, USA
| | - Nantanit Wanichacheva
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| |
Collapse
|
32
|
Xu Y, Wang S, Chen Z, Hu R, Li S, Zhao Y, Liu L, Qu J. Highly stable organic photothermal agent based on near-infrared-II fluorophores for tumor treatment. J Nanobiotechnology 2021; 19:37. [PMID: 33541369 PMCID: PMC7863535 DOI: 10.1186/s12951-021-00782-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The aim to develop a highly stable near-infrared (NIR) photoinduced tumor therapy agent stems from its considerable potential for biological application. Due to its long wavelength, biological imaging exhibits a high signal-to-background ratio, deep tissue penetration and maximum permissible light power, which can minimize damage to an organism during photoinduced tumor therapy. RESULTS A class of stable NIR-II fluorophores (NIR998, NIR1028, NIR980, NIR1030, and NIR1028-S) based on aza-boron-dipyrromethene (aza-BODIPY) dyes with donor-acceptor-donor structures have been rationally designed and synthesized by harnessing the steric relaxation effect and intramolecular photoinduced electron transfer (IPET). These fluorophores exhibit an intense range of NIR-II emission, large Stokes shift (≥ 100 nm), excellent photothermal conversion performance, and superior stability against photobleaching. Among the NIR-II fluorophores, NIR998 possesses better NIR-II emission and photothermal conversion performance. NIR998 nanoparticles (NIR998 NPs) can be encapsulated by liposomes. NIR998 NPs show superior stability in the presence of light, heat, and reactive oxygen nitrogen species than that of indocyanine green NPs, as well as a higher photothermal conversion ability (η = 50.5%) compared to other photothermal agents. Finally, under the guidance of photothermal imaging, NIR998 NPs have been proven to effectively eliminate tumors via their excellent photothermal conversion performance while presenting negligible cytotoxicity. CONCLUSIONS Utilizing IPET and the steric relaxation effect can effectively induce NIR-II emission of aza-BODIPY dyes. Stable NIR998 NPs have excellent photothermal conversion performance and negligible dark cytotoxicity, so they have the potential to act as photothermal agents in biological applications.
Collapse
Affiliation(s)
- Yunjian Xu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University, Shenzhen, 518060, Guangdong Province, People's Republic of China
| | - Shiqi Wang
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University, Shenzhen, 518060, Guangdong Province, People's Republic of China
| | - Zhenjiang Chen
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University, Shenzhen, 518060, Guangdong Province, People's Republic of China
| | - Rui Hu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University, Shenzhen, 518060, Guangdong Province, People's Republic of China
| | - Shaoqiang Li
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University, Shenzhen, 518060, Guangdong Province, People's Republic of China
| | - Yihua Zhao
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University, Shenzhen, 518060, Guangdong Province, People's Republic of China
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University, Shenzhen, 518060, Guangdong Province, People's Republic of China.
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University, Shenzhen, 518060, Guangdong Province, People's Republic of China
| |
Collapse
|
33
|
Zhao X, Liu J, Fan J, Chao H, Peng X. Recent progress in photosensitizers for overcoming the challenges of photodynamic therapy: from molecular design to application. Chem Soc Rev 2021; 50:4185-4219. [PMID: 33527104 DOI: 10.1039/d0cs00173b] [Citation(s) in RCA: 494] [Impact Index Per Article: 164.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Photodynamic therapy (PDT), a therapeutic mode involving light triggering, has been recognized as an attractive oncotherapy treatment. However, nonnegligible challenges remain for its further clinical use, including finite tumor suppression, poor tumor targeting, and limited therapeutic depth. The photosensitizer (PS), being the most important element of PDT, plays a decisive role in PDT treatment. This review summarizes recent progress made in the development of PSs for overcoming the above challenges. This progress has included PSs developed to display enhanced tolerance of the tumor microenvironment, improved tumor-specific selectivity, and feasibility of use in deep tissue. Based on their molecular photophysical properties and design directions, the PSs are classified by parent structures, which are discussed in detail from the molecular design to application. Finally, a brief summary of current strategies for designing PSs and future perspectives are also presented. We expect the information provided in this review to spur the further design of PSs and the clinical development of PDT-mediated cancer treatments.
Collapse
Affiliation(s)
- Xueze Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
| | | | | | | | | |
Collapse
|
34
|
Gulzar A, He F, Gulzar A, Kuang Y, Zhang F, Gai S, Yang P, Wang C. In situ oxygenating and 808 nm light-sensitized nanocomposite for multimodal imaging and mitochondria-assisted cancer therapy. J Mater Chem B 2021; 9:131-146. [PMID: 33226055 DOI: 10.1039/d0tb01967d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The efficiency of photodynamic therapy (PDT) is severely constrained due to the innate hypoxic environment, besides the elevated level of glutathione (GSH). To get rid of the hypoxic environment and higher concentrations of GSH in the solid tumors, we propose an approach of oxygen self-sufficient multimodal imaging-guided nanocomposite CaO2-MnO2-UCNPs-Ce6/DOX (abbreviated as CaMn-NUC), in which CaO2 nanoparticles in the hydrophobic layer were seated on the hydrophilic MnO2 sheet and conjugated with chlorin e6 (Ce6) loaded upconversion nanoparticles (UCNPs-Ce6) via the click chemistry approach. CaMn-NUC was presented to overcome hypoxia and GSH-associated photodynamic resistance due to in situ oxygen generation and GSH reduction of MnO2 upon endocytosis, and a bulk amount of Mn2+ ions generated in the process under acidic tumor environment acts as the MRI contrast agent. Moreover, the MnO2 sheet protects Ce6 from self-degradation under irradiation; thus, it can be used to switch control of cellular imaging. Afterwards, in a regulated and targeted manner, the chemotherapeutic drug (doxorubicin hydrochloride, DOX) can be released with the degradation of CaMn-NUC in the acidic tumor microenvironment (TME). Thus, we testify a competent nanoplatform employing 808 nm-excited UCNPs-Ce6 for concurrent imaging and PDT in consideration of the large anti-Stokes shifts, deep penetration into biological tissues, narrow emission bands, and high spatial-temporal resolution of the UCNPs. Thus, our proposed nanoplatform postulates a strategy to efficiently kill cancer cells in a concentration- and time-dependent manner via the in situ oxygenation of solid tumor hypoxia to enhance the efficiency of multimodal imaging-guided chemo-photodynamic therapy.
Collapse
Affiliation(s)
- Arif Gulzar
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Bismillah AN, Aprahamian I. Fundamental studies to emerging applications of pyrrole-BF2 (BOPHY) fluorophores. Chem Soc Rev 2021; 50:5631-5649. [DOI: 10.1039/d1cs00122a] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review highlights the up-and-coming pyrrole-BF2 (BOPHY) fluorophores, with a focus on synthetic procedures, photophysical properties – including structure–property analyses – as well as emerging applications.
Collapse
|
36
|
D'Alessandro S, Priefer R. Non-porphyrin dyes used as photosensitizers in photodynamic therapy. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
37
|
Yılmaz H, Sevinç G, Hayvalı M. 3, 3,5 and 2,6 Expanded Aza-BODIPYs Via Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling Reactions: Synthesis and Photophysical Properties. J Fluoresc 2020; 31:151-164. [PMID: 33170409 DOI: 10.1007/s10895-020-02646-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/30/2020] [Indexed: 10/23/2022]
Abstract
Novel symmetrical aza-borondipyrromethene (aza-BODIPY) compounds bearing 4-methoxyphenyl, 4-methoxybiphenyl, 2,4-dimethoxybipheny, 4-bromophenyl and N,N-diphenyl-4-biphenylamine groups on the 3, 3,5 and 2,6 positions of aza-BODIPY core were synthesized via Suzuki-Miyaura coupling reactions while unsymmetrical analogues were obtained from the starting mono Br-substituted aza-BODIPY material which was obtained from nitrosolated pyrrole derivative. The characterizations were performed by means of 1H-NMR, 13C-NMR, FTIR and HRMS-TOF-ESI techniques. The spectral properties of the aza-BODIPY derivatives were investigated using absorption and fluorescence spectroscopy. The novel compounds with extended conjugation have broadband absorption in near infrared region and show significant shifts on their absorption and fluorescence spectra compared to unsubstituted analogues. The highest bathochromic shifts were observed π-extended and strong electron donating groups at 3,5 positions of the aza-BODIPY scaffold. Depend on substitution positions of attached groups to the indacene core, the fluorescence quantum yields of chromophores were determined to be drastic changes. The singlet oxygen generation capability of the compounds were evaluated and 2,6-bromine substituted compounds AA1 and CC1 showed high singlet oxygen quantum yields (71% and 74%, respectively). Enhanced photophysical properties such as intense absorption, extended conjugation and singlet oxygen production make the investigated aza-BODIPYs promising candidates for photodynamic therapy applications and organic photovoltaic cells in NIR region.
Collapse
Affiliation(s)
- Halil Yılmaz
- Department of Chemistry, Faculty of Science, Ankara University, Anadolu, 06100, Ankara, Turkey
| | - Gökhan Sevinç
- Department of Chemistry, Faculty of Science and Literature, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| | - Mustafa Hayvalı
- Department of Chemistry, Faculty of Science, Ankara University, Anadolu, 06100, Ankara, Turkey.
| |
Collapse
|
38
|
Liu N, Zhu M, Niu N, Ren J, Yang N, Yu C. Aza-BODIPY Probe-Decorated Mesoporous Black TiO 2 Nanoplatform for the Highly Efficient Synergistic Phototherapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41071-41078. [PMID: 32806896 DOI: 10.1021/acsami.0c10531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As an important noninvasive tumor treatment method, phototherapy has drawn extensive research interest. However, the requirements of separate excitation wavelengths, high degree of electron-hole recombination, and low reactive oxygen species (ROS) production capability are still the major barriers. This work reports the construction of a novel nanoplatform: design and synthesis of an aza-BODIPY (AB) probe-decorated mesoporous black titanium dioxide (TiO2) (MT) nanoparticles (NPs) for enhanced photodynamic therapy and photothermal therapy under single-wavelength near-infrared (NIR) laser irradiation for the first time. AB probe-decorated MT NPs (abbreviated as MTAB) were synthesized through the Al reduction of mesoporous anatase TiO2 NPs and subsequent adsorption of the AB probe. The mesoporous structure of MT ensured AB loading capacity and avoided the complicated modification and synthesis processes. Heterogeneous MTAB, which possessed staggered energy levels, were assessed for their capability for effective separation of photogenerated electrons and holes for the first time. Upon NIR laser light irradiation, MTAB exhibited sufficient ROS generation, resulting in distinct tumor cell killing and tumor tissue elimination. This unique heterogeneous nanoplatform with staggered energy levels provides a new strategy to enhance ROS generation and improve the therapeutic efficacy.
Collapse
Affiliation(s)
- Ning Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022 China
| | - Ming Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022 China
| | - Niu Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022 China
- University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Jia Ren
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022 China
- University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Na Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022 China
| | - Cong Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022 China
- University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
39
|
Rattanopas S, Chansaenpak K, Siwawannapong K, Ngamchuea K, Wet‐osot S, Treekoon J, Pewklang T, Jinaphon T, Sagarik K, Lai R, Cheng L, Kamkaew A. Synthesis and Characterization of Push‐Pull Aza‐BODIPY Dyes Towards Application in NIR‐II Photothermal Therapy. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sopita Rattanopas
- School of Chemistry Institute of Science Suranaree University of Technology 111 University Avenue, Muang Nakhon Ratchasima 30000 Thailand
| | - Kantapat Chansaenpak
- National Nanotechnology Center National Science and Technology Development Agency Thailand Science Park Pathum Thani 12120 Thailand
| | - Kittipan Siwawannapong
- School of Chemistry Institute of Science Suranaree University of Technology 111 University Avenue, Muang Nakhon Ratchasima 30000 Thailand
| | - Kamonwad Ngamchuea
- School of Chemistry Institute of Science Suranaree University of Technology 111 University Avenue, Muang Nakhon Ratchasima 30000 Thailand
| | - Sirawit Wet‐osot
- School of Chemistry Institute of Science Suranaree University of Technology 111 University Avenue, Muang Nakhon Ratchasima 30000 Thailand
| | - Jongjit Treekoon
- School of Chemistry Institute of Science Suranaree University of Technology 111 University Avenue, Muang Nakhon Ratchasima 30000 Thailand
| | - Thitima Pewklang
- School of Chemistry Institute of Science Suranaree University of Technology 111 University Avenue, Muang Nakhon Ratchasima 30000 Thailand
| | - Thanachit Jinaphon
- School of Chemistry Institute of Science Suranaree University of Technology 111 University Avenue, Muang Nakhon Ratchasima 30000 Thailand
| | - Kritsana Sagarik
- School of Chemistry Institute of Science Suranaree University of Technology 111 University Avenue, Muang Nakhon Ratchasima 30000 Thailand
| | - Rung‐Yi Lai
- School of Chemistry Institute of Science Suranaree University of Technology 111 University Avenue, Muang Nakhon Ratchasima 30000 Thailand
| | - Liang Cheng
- Institute of Functional Nano and Soft Materials (FUNSOM) Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou Jiangsu 215123 China
| | - Anyanee Kamkaew
- School of Chemistry Institute of Science Suranaree University of Technology 111 University Avenue, Muang Nakhon Ratchasima 30000 Thailand
| |
Collapse
|
40
|
On-demand drug release nanoplatform based on fluorinated aza-BODIPY for imaging-guided chemo-phototherapy. Biomaterials 2020; 256:120211. [PMID: 32634718 DOI: 10.1016/j.biomaterials.2020.120211] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Intelligent drug delivery systems (DDS), integrating with multi-modal imaging guidance and controlled drug release, have practical significance in enhancing the therapeutic efficiency of tumors. Herein, fluorinated aza-boron-dipyrromethene (NBF) with high near-infrared absorption is synthesized by introducing nonadecafluorodecanoic acid into aza-BODIPY via the amide bond. Through the co-precipitation methods, nanoparticles (NPs) based on NBF are fabricated and the obtained NBF NPs can not only load with DOX with a high loading efficiency (25%, DNBF NPs), but also absorb PFC droplets (1H-perfluoropentane) with bp of 42 °C because of the fluorinated chains inside NBF NPs (PDNBF NPs). Under 808-nm laser irradiation, the hyperthermia effect of NBF could induce the liquid-gas phase transition of PFC droplets, triggering the burst release of DOX and enhancing echo signals for ultrasound imaging as well. With efficient enrichment of PDNBF NPs at tumor site as revealed by in vivo ultrasound imaging and photoacoustic imaging, significant improvement in inhibiting tumor growth is achieved with PDNBF NPs under laser irradiation without noticeable side effects. The work presents a multifunctional organic DDS with great biocompatibility, high drug loading efficiency and light-stimuli-responsive drug release, which provides a new strategy for the manufacture of intelligent composite theranostic nanoplatform.
Collapse
|
41
|
Shao J, Huang PZ, Chen QY, Zheng QL. Nano adamantane-conjugated BODIPY for lipase affinity and light driven antibacterial. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 234:118252. [PMID: 32208354 DOI: 10.1016/j.saa.2020.118252] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
The increasing number of resistant bacterial strains has raised efforts in developing alternative treatment strategies. Lipase is highly expressed in most bacteria and lipase targeting dyes will be non-sacrificed materials for a sustainable method against microorganism. The combination of chemotherapy and antimicrobial photodynamic inactivation (aPDI) method will be an effective method due to enhanced antibacterial activity. Here we reported the spectroscopic features of five boron dipyrrolylmethene (BODIPY) derivatives with different functional groups for lipase affinity and antibacterial activity. Lipase affinity tests and antibacterial assays were conducted by spectroscopic methods. Adamantane-conjugated BODIPY (BDP-2) was found to be the active compound against E. coli. Next, BDP-2 was brominated, and then assembled with PEG resulting biocompatible BDP2-Br2@mPEG nanoparticles. The MTT assay indicated that BDP2-Br2@mPEG was less toxicity on BGC-823 cancer cells without irradiation. The BDP2-Br2@mPEG can inhibit the proliferation of E. coli and damage the membrane of bacterial cell under green LED light irradiation. The results proved BDP2-Br2@mPEG can be a very promising green LED light driven antibacterial material.
Collapse
Affiliation(s)
- Jian Shao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Pu-Zhen Huang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qiu-Yun Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Qing-Lin Zheng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; THOR Specialty Chemical (Zhenjiang) Company Limited, No. 182 Jingang Avenue, New District, Zhenjiang, Jiangsu 212132, China
| |
Collapse
|
42
|
Malacarne MC, Banfi S, Caruso E. In vitro photodynamic treatment of cancer cells induced by aza-BODIPYs. Photochem Photobiol Sci 2020; 19:790-799. [PMID: 33856674 DOI: 10.1039/d0pp00026d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/17/2020] [Indexed: 11/21/2022]
Abstract
Two aza-BODIPY photosensitizes (PSs, compounds 7 and 8), featuring an iodine atom on each pyrrolic unit of their structure, were synthesized in fairly good yields starting from commercial products and tested in vitro on two human cancer cell lines (HCT116 and SKOV3) to assess their photodynamic efficacy. After treating the cell cultures with variable concentrations of 7 or 8 and incubating for the desired incubation time, the cells were irradiated for two hours with a red-light emitting diode (LED) device; afterwards the extent of cell death was determined by MTT assay. Besides the killing effect, the new PSs were also studied to determine further parameters related to photodynamic efficacy, such as the resistance towards photobleaching, the rate of singlet oxygen production, the fluorescence quantum yields, the cellular uptake and the localization inside the cells and, finally, flow cytometric analysis for apoptosis. Considering the results as a whole, these aza-BODIPYs can be considered to be promising photosensitizers because of their IC50 values being below micromolar concentrations and for more rather interesting features. Actually, these molecules have proved to be: (a) quite stable towards photobleaching; (b) good producers of singlet oxygen and (c) highly penetrating the cells with a wide distribution in the cytosol. Furthermore, in accordance with the good rate of singlet oxygen production, the apoptotic cells reach 30% and this allows us to assume a low inflammatory effect of the in vivo PDT treatment; thus a possible in vivo application of these aza-BODIPYs might be plausible.
Collapse
Affiliation(s)
- Miryam Chiara Malacarne
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100, Varese, VA, Italy
| | - Stefano Banfi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100, Varese, VA, Italy
| | - Enrico Caruso
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100, Varese, VA, Italy.
| |
Collapse
|
43
|
Li G, Zhang X, Zhao W, Zhao W, Li F, Xiao K, Yu Q, Liu S, Zhao Q. Stable and Well-Organized Near-Infrared Platinum(II)-Acetylide-Based Metallacycles-Mediated Cancer Phototherapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20180-20190. [PMID: 32281784 DOI: 10.1021/acsami.0c01695] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of metallacycles with high stability and intense near-infrared (NIR) absorption is important for biomedical applications. However, very few molecular design strategies have been developed on such metallacycles. Herein, we report a new series of stable and well-defined NIR-absorbing metallacycles (M1-M3) through the Pt-acetylide coordination with highly efficient photoconversion performance for cancer phototherapy. The metallacycles showed high stability and strong NIR absorption, and the absorption peaks were red shifted approximately 30 nm in comparison with their corresponding precursors. The introduction of Pt into metallacycles promotes significant photoconversions, including the singlet-to-triplet and nonradiative transitions. Moreover, the fabricated M3 nanoparticles (M3-NPs) showed favorable photoconversions into both thermal effect and singlet oxygen generation upon NIR irradiation, achieving tumor ablation. This novel design of Pt-acetylide metallacycles possesses not only complex topological architectures but also a valuable paradigm for precise cancer phototherapy, which is important for grafting stimuli-responsive functional groups into metallacycles for the development of high-performance biomedical supramolecular materials.
Collapse
Affiliation(s)
- Guo Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China
| | - Xiangxiang Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China
| | - Weili Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China
| | - Weiwei Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China
| | - Feiyang Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China
| | - Kang Xiao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China
| | - Qi Yu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China
| |
Collapse
|
44
|
Lin W, Colombani-Garay D, Huang L, Duan C, Han G. Tailoring nanoparticles based on boron dipyrromethene for cancer imaging and therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1627. [PMID: 32164043 DOI: 10.1002/wnan.1627] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/29/2023]
Abstract
Boron dipyrromethene (BODIPY), as a traditional fluorescent dye, has drawn increasing attention because of its excellent photophysical properties like adjustable spectra and outstanding photostability. BODIPY dyes could be assembled into nanoparticles for cancer imaging and therapy via rational design. In this review, the bio-applications of BODIPY-containing nanoparticles are introduced in detail, such as cellular imaging, near-infrared fluorescence imaging, computed tomography imaging, photoacoustic imaging, phototherapy, and theranostics. The construction strategies of BODIPY-containing nanoparticles are emphasized so the review has three sections-self-assembly of small molecules, chemical conjugation with hydrophilic compounds, and physical encapsulation. This review not only summarizes various and colorific bio-applications of BODIPY-containing nanoparticles, but also provides reasonable design methods of BODIPY-containing nanoparticles for cancer theranostics. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Wenhai Lin
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, P.R. China
| | - Daniel Colombani-Garay
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ling Huang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, P.R. China
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
45
|
Bodio E, Denat F, Goze C. BODIPYS and aza-BODIPY derivatives as promising fluorophores for in vivo molecular imaging and theranostic applications. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619501268] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since their discovery in 1968, the BODIPYs dyes (4,4-difluoro-4-bora-3a, 4a diaza-s-indacene) have found an exponentially increasing number of applications in a large variety of scientific fields. In particular, studies reporting bioapplications of BODIPYs have increased dramatically. However, most of the time, only in vitro investigations have been reported. The in vivo potential of BODIPYs and aza-BODIPYs is more recent, but considering the number of in vivo studies with BODIPY and aza-BODIPY which have been reported in the last five years, we can now affirm that this family of fluorophores can be considered important as cyanine dyes for future in vivo and even clinical applications. This review aims to present representative examples of recent in vivo applications of BODIPYs or aza-BODIPYs, and to highlight the potential of these dyes for optical molecular imaging.
Collapse
Affiliation(s)
- Ewen Bodio
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 9 Avenue A. Savary, 21078 Dijon Cedex, France
| | - Franck Denat
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 9 Avenue A. Savary, 21078 Dijon Cedex, France
| | - Christine Goze
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 9 Avenue A. Savary, 21078 Dijon Cedex, France
| |
Collapse
|
46
|
|
47
|
Li G, Hu W, Zhao M, Zhao W, Li F, Liu S, Huang W, Zhao Q. Rational design of near-infrared platinum(ii)-acetylide conjugated polymers for photoacoustic imaging-guided synergistic phototherapy under 808 nm irradiation. J Mater Chem B 2020; 8:7356-7364. [DOI: 10.1039/d0tb01107j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have developed a novel near-infrared Pt-acetylide conjugated polymer CP3 with highly efficient photoconversion behaviors for synergistic cancer phototherapy.
Collapse
Affiliation(s)
- Guo Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Wenbo Hu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Menglong Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Weili Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Feiyang Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| |
Collapse
|
48
|
Li G, Zhou R, Zhao W, Yu B, Zhou J, Liu S, Huang W, Zhao Q. Photothermally Responsive Conjugated Polymeric Singlet Oxygen Carrier for Phase Change-Controlled and Sustainable Phototherapy for Hypoxic Tumor. RESEARCH (WASHINGTON, D.C.) 2020; 2020:5351848. [PMID: 33103118 PMCID: PMC7569507 DOI: 10.34133/2020/5351848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/25/2020] [Indexed: 01/10/2023]
Abstract
Hypoxia significantly compromises the therapeutic performance of photodynamic therapy (PDT) owing to the oxygen level which plays a key role in the production of singlet oxygen (1O2). Herein, the photothermally responsive phase change materials (PCM) are used to encapsulate 1,4-dimethylnaphthalene-functionalized platinum(II)-acetylide conjugated polymer (CP1) with intense near-infrared (NIR) absorption to prepare new 1O2 nanocarriers (CP1-NCs). The 1,4-dimethylnaphthalene moieties in CP1-NCs can trap the 1O2 produced from CP1 under irradiation and form a stable endoperoxide. Then, the endoperoxide undergoes cycloreversion to controllably release 1O2 via the NIR light-triggered photothermal effect of CP1 and controllable phase change of PCM, which can be used for oxygen-independent PDT for hypoxic tumor. Furthermore, the in vivo luminescence imaging-guided synergistic PDT and photothermal therapy showed better efficiency in tumor ablation. The smart design shows the potent promise of CP1-NCs in PCM-controlled and sustainable phototherapy under tumor hypoxic microenvironment, providing new insights for constructing oxygen-independent precise cancer phototherapeutic platform.
Collapse
Affiliation(s)
- Guo Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, China
| | - Ruyi Zhou
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, China
| | - Weili Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, China
| | - Bo Yu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, China
| | - Jie Zhou
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, China
| |
Collapse
|
49
|
Zhang Y, Yang Z, Zheng X, Chen L, Xie Z. Highly efficient near-infrared BODIPY phototherapeutic nanoparticles for cancer treatment. J Mater Chem B 2020; 8:5305-5311. [DOI: 10.1039/d0tb00991a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A highly efficient NIR BODIPY nano-photosensitizer constructed by multi-intersection effects provides beneficial guidance for photodynamic and photothermal therapy.
Collapse
Affiliation(s)
- Yuandong Zhang
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Zhiyu Yang
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Xiaohua Zheng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Li Chen
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
50
|
Huang X, Gu R, Li J, Yang N, Cheng Z, Si W, Chen P, Huang W, Dong X. Diketopyrrolopyrrole-Au(I) as singlet oxygen generator for enhanced tumor photodynamic and photothermal therapy. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9531-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|