1
|
Xu C, Deng X, Yu P. High-Throughput Computational Study and Machine Learning Prediction of Electronic Properties in Transition Metal Dichalcogenide/Two-Dimensional Layered Halide Perovskite Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39361426 DOI: 10.1021/acsami.4c11973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Heterostructures formed by transition metal dichalcogenides (TMDs) and two-dimensional layered halide perovskites (2D-LHPs) have attracted significant attention due to their unique optoelectronic properties. However, theoretical studies face challenges due to the large number of atoms and the need for lattice matching. With the discovery of more 2D-LHPs, there is an urgent need for methods to rapidly predict and screen TMDs/2D-LHPs heterostructures. This study employs first-principles calculations to perform high-throughput computations on 602 TMDs/2D-LHPs heterostructures. Results show that different combinations exhibit diverse band alignments, with MoS2 and WS2 more likely to form type-II heterostructures with 2D-LHPs. The highest photoelectric conversion efficiency of type-II structures reaches 23.26%, demonstrating potential applications in solar cells. Notably, some MoS2/2D-LHPs form type-S structures, showing promise in photocatalysis. Furthermore, we found that TMDs can significantly affect the conformation of organic molecules in 2D-LHPs, thus modulating the electronic properties of the heterostructures. To overcome computational cost limitations, we constructed a crystal graph convolutional neural network model based on the calculated data to predict the electronic properties of TMDs/2D-LHPs heterostructures. Using this model, we predicted the bandgaps and band alignment types of 9,360 TMDs/2D-LHPs heterostructures, providing a comprehensive theoretical reference for research in this field.
Collapse
Affiliation(s)
- Congsheng Xu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Xiaomei Deng
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, 518055 Shenzhen, China
| |
Collapse
|
2
|
Ansari RM, Chamola S, Ahmad S. Ruddlesden-Popper 2D Perovskite-MoS 2 Hybrid Heterojunction Photocathodes for Efficient and Scalable Photo-Rechargeable Li-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401350. [PMID: 38822720 DOI: 10.1002/smll.202401350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/21/2024] [Indexed: 06/03/2024]
Abstract
Photo-rechargeable batteries (PRBs) can provide a compact solution to power autonomous smart devices located at remote sites that cannot be connected with the grid. The study reports the Ruddlesden-Popper (RP) metal halide perovskite (MHP) and molybdenum disulfide (MoS2) hybrid heterojunction-based photocathodes for Li-ion photo-rechargeable battery (Li-PRB) applications. Hybrid Lithium-ion batteries (LIBs) have demonstrated an average discharge specific capacity of 144.46 and 129.17 mAhg-1 for 50 cycles when operating at 176 and 294 mAg-1, respectively compared to the pristine LIBs which have shown specific capacity of 37.48 and 25.60 mAhg-1 under similar conditions. Hybrid Li-PRB has achieved an average dark discharge specific capacities of 128.66 mAhg-1 (capacity retention: 96.56%) which enhanced to 180.67 mAhg-1 under illumination (capacity retention: 97.39%; photo-enhancement: 40.42%) at 64 mAg-1. Excellent performance of hybrid Li-PRB is attributed to the formation of type-II heterojunction that leads to improved crystallinity and film morphology. The PRB has demonstrated a high photo conversion and storage efficiency (PC-SE) of 0.52% under standard 1 Sun illumination, which outperforms other previously reported MHP based LIBs and PRBs. This work provides a novel approach of harnessing the potential of MHPs for PRBs and offers new avenues for MHP photocathodes for various applications beyond PRBs.
Collapse
Affiliation(s)
- Rashid M Ansari
- Advanced Energy Materials Lab, Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342030, India
| | - Shubham Chamola
- Advanced Energy Materials Lab, Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342030, India
| | - Shahab Ahmad
- Advanced Energy Materials Lab, Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342030, India
| |
Collapse
|
3
|
Pramanik M, Bera A, Karmakar S, Sinha P, Singha A, Das K. High-Performance Broadband Self-Driven Photodetector Based on MoS 2/Cs 2CuBr 4 Heterojunction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38260-38268. [PMID: 39004815 DOI: 10.1021/acsami.4c06966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Few-layer transition metal dichalcogenides and perovskites are both promising materials in high-performance optoelectronic devices. Here, we developed a self-driven photodetector by creating a heterojunction between few-layer MoS2 and lead-free perovskite Cs2CuBr4. The detector shows a unique property of very high sensitivity in a broad spectral range of 400 to 800 nm with response speed in a millisecond order. Current-voltage characteristics of the heterojunction device show rectifying behavior, in contrast to the ohmic behavior of the MoS2-based device. The rectifying behavior is attributed to the type II band alignment of the MoS2/Cs2CuBr4 heterojunction. The device shows a broadband (400 to 800 nm) photodetection with very high responsivity reaching up to 2.8 × 104 A/W and detectivity of 1.6 × 1011 Jones at a bias voltage of 3 V. The detector can also operate in self-bias mode with sufficient response. The photocurrent, photoresponsivity, detectivity, and external quantum efficiency of the device are found to be dependent on the illumination power density. The response time of the device is found to be ∼32 and ∼79 ms during the rise and fall of the photocurrent. The work proposes a MoS2/Cs2CuBr4 heterostructure to be a promising candidate for cost-effective, high-performance photodetector.
Collapse
Affiliation(s)
- Mousumi Pramanik
- Department of Physics, Jadavpur University, Kolkata 700032, India
| | - Anupam Bera
- Department of Physics, Jadavpur University, Kolkata 700032, India
| | - Sreya Karmakar
- Department of Basic Science and Humanities, Calcutta Institute of Engineering and Management, Kolkata 700040, India
| | - Pritam Sinha
- Department of Physics, Bose Institute, Kolkata 700009, India
| | - Achintya Singha
- Department of Physics, Bose Institute, Kolkata 700009, India
| | - Kaustuv Das
- Department of Physics, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
4
|
Wang X, Wei Y, Kuang Z, Wang X, Dai M, Li X, Lu R, Liu W, Chang J, Ma C, Huang W, Peng Q, Wang J. The origins of dual-peak emission and anomalous exciton decay in 2D Sn-based perovskites. J Chem Phys 2024; 161:014303. [PMID: 38953446 DOI: 10.1063/5.0200362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
Two-dimensional (2D) Sn-based perovskites exhibit significant potential in diverse optoelectronic applications, such as on-chip lasers and photodetectors. Yet, the underlying mechanism behind the frequently observed dual-peak emission in 2D Sn-based perovskites remains a subject of intense debate, and there is a lack of research on the carrier dynamics in these materials. In this study, we investigate these issues in a representative 2D Sn-based perovskite, namely, PEA2SnI4, through temperature-, excitation intensity-, angle-, and time-dependent photoluminescence studies. The results indicate that the high- and low-energy peaks originate from in-face and out-of-face dipole transitions, respectively. In addition, we observe an anomalous increase in the non-radiative recombination rate as temperature decreases. After ruling out enhanced electron-phonon coupling and Auger recombination as potential causes of the anomalous carrier dynamics, we propose that the significantly increased exciton binding energy (Eb) plays a decisive role. The increased Eb arises from enhanced electronic localization, a consequence of weakened lattice distortion at low temperatures, as confirmed by first-principles calculations and temperature-dependent x-ray diffraction measurements. These findings offer valuable insights into the electronic processes in the unique 2D Sn-based perovskites.
Collapse
Affiliation(s)
- Xinrui Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) and School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Yingqiang Wei
- The 58th Research Institute of China Electronics Technology Group 217Corporation, Wuxi, China
| | - Zhiyuan Kuang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) and School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Xing Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) and School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Mian Dai
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) and School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Xiuyong Li
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) and School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Runqing Lu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) and School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Wang Liu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) and School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Jin Chang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) and School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Chao Ma
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) and School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) and School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, China
| | - Qiming Peng
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) and School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Jianpu Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) and School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
- School of Materials Science and Engineering, Changzhou University, Changzhou, China
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, China
| |
Collapse
|
5
|
Tyagi D, Laxmi V, Basu N, Reddy L, Tian Y, Ouyang Z, Nayak PK. Recent advances in two-dimensional perovskite materials for light-emitting diodes. DISCOVER NANO 2024; 19:109. [PMID: 38954158 PMCID: PMC11219672 DOI: 10.1186/s11671-024-04044-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024]
Abstract
Light-emitting diodes (LEDs) are an indispensable part of our daily life. After being studied for a few decades, this field still has some room for improvement. In this regard, perovskite materials may take the leading role. In recent years, LEDs have become a most explored topic, owing to their various applications in photodetectors, solar cells, lasers, and so on. Noticeably, they exhibit significant characteristics in developing LEDs. The luminous efficiency of LEDs can be significantly enhanced by the combination of a poor illumination LED with low-dimensional perovskite. In 2014, the first perovskite-based LED was illuminated at room temperature. Furthermore, two-dimensional (2D) perovskites have enriched this field because of their optical and electronic properties and comparatively high stability in ambient conditions. Recent and relevant advancements in LEDs using low-dimensional perovskites including zero-dimensional to three-dimensional materials is reported. The major focus of this article is based on the 2D perovskites and their heterostructures (i.e., a combination of 2D perovskites with transition metal dichalcogenides, graphene, and hexagonal boron nitride). In comparison to 2D perovskites, heterostructures exhibit more potential for application in LEDs. State-of-the-art perovskite-based LEDs, current challenges, and prospects are also discussed.
Collapse
Affiliation(s)
- Deepika Tyagi
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education and Guangdong Province, College of Electronic Science and Technology of Shenzhen University, THz Technical Research Center of Shenzhen University, Shenzhen University, Shenzhen, 518060, China
| | - Vijay Laxmi
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education and Guangdong Province, College of Electronic Science and Technology of Shenzhen University, THz Technical Research Center of Shenzhen University, Shenzhen University, Shenzhen, 518060, China
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Nilanjan Basu
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Leelakrishna Reddy
- Department of Physics, University of Johannesburg, Johannesburg, 2006, South Africa
| | - Yibin Tian
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhengbiao Ouyang
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education and Guangdong Province, College of Electronic Science and Technology of Shenzhen University, THz Technical Research Center of Shenzhen University, Shenzhen University, Shenzhen, 518060, China.
| | - Pramoda K Nayak
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India.
- 2D Materials Research and Innovation Group, Indian Institute of Technology Madras, Chennai, 600036, India.
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, , Bangalore, Karnataka, 562112, India.
| |
Collapse
|
6
|
Sim J, Ryoo S, Kim JS, Jang J, Ahn H, Kim D, Jung J, Kong T, Choi H, Lee YS, Lee TW, Cho K, Kang K, Lee T. Enhanced Photodetection Performance of an In Situ Core/Shell Perovskite-MoS 2 Phototransistor. ACS NANO 2024; 18:16905-16913. [PMID: 38904449 DOI: 10.1021/acsnano.4c02775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
While two-dimensional transition metal dichalcogenides (TMDCs)-based photodetectors offer prospects for high integration density and flexibility, their thinness poses a challenge regarding low light absorption, impacting photodetection sensitivity. Although the integration of TMDCs with metal halide perovskite nanocrystals (PNCs) has been known to be promising for photodetection with a high absorption coefficient of PNCs, the low charge mobility of PNCs delays efficient photocarrier injection into TMDCs. In this study, we integrated MoS2 with in situ formed core/shell PNCs with short ligands that minimize surface defects and enhance photocarrier injection. The PNCs/MoS2 heterostructure efficiently separates electrons and holes by establishing type II band alignment and consequently inducing a photogating effect. The synergistic interplay between photoconductive and photogating effects yields a high responsivity of 2.2 × 106 A/W and a specific detectivity of 9.0 × 1011 Jones. Our findings offer a promising pathway for developing low-cost, high-performance phototransistors leveraging the advantages of two-dimensional (2D) materials.
Collapse
Affiliation(s)
- Jinwoo Sim
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - Sunggyu Ryoo
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - Joo Sung Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
- SN DISPLAY Co., Ltd., Seoul 08826, Korea
| | - Juntae Jang
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - Heebeom Ahn
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Donguk Kim
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - Joonha Jung
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Taehyun Kong
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Hyeonmin Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Yun Seog Lee
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
- SN DISPLAY Co., Ltd., Seoul 08826, Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea
- Institute of Engineering Research, Seoul National University, Seoul 08826, Korea
| | - Kyungjune Cho
- Convergence Research Center for Solutions to Electromagnetic Interference in Future-mobility, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Keehoon Kang
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea
- Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Takhee Lee
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
- Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
7
|
Ahmed A, Zahir Iqbal M, Dahshan A, Aftab S, Hegazy HH, Yousef ES. Recent advances in 2D transition metal dichalcogenide-based photodetectors: a review. NANOSCALE 2024; 16:2097-2120. [PMID: 38204422 DOI: 10.1039/d3nr04994a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have emerged as a highly promising platform for the development of photodetectors (PDs) owing to their remarkable electronic and optoelectronic properties. Highly effective PDs can be obtained by making use of the exceptional properties of 2D materials, such as their high transparency, large charge carrier mobility, and tunable electronic structure. The photodetection mechanism in 2D TMD-based PDs is thoroughly discussed in this article, with special attention paid to the key characteristics that set them apart from PDs based on other integrated materials. This review examines how single TMDs, TMD-TMD heterostructures, TMD-graphene (Gr) hybrids, TMD-MXene composites, TMD-perovskite heterostructures, and TMD-quantum dot (QD) configurations show advanced photodetection. Additionally, a thorough analysis of the recent developments in 2D TMD-based PDs, highlighting their exceptional performance capabilities, including ultrafast photo response, ultrabroad detectivity, and ultrahigh photoresponsivity, attained through cutting-edge methods is provided. The article conclusion highlights the potential for ground-breaking discoveries in this fast developing field of research by outlining the challenges faced in the field of PDs today and providing an outlook on the prospects of 2D TMD-based PDs in the future.
Collapse
Affiliation(s)
- Anique Ahmed
- Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23640, Khyber Pakhtunkhwa, Pakistan.
| | - Muhammad Zahir Iqbal
- Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23640, Khyber Pakhtunkhwa, Pakistan.
| | - Alaa Dahshan
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - Sikandar Aftab
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, South Korea
| | - Hosameldin Helmy Hegazy
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - El Sayed Yousef
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| |
Collapse
|
8
|
Dutta R, Bala A, Sen A, Spinazze MR, Park H, Choi W, Yoon Y, Kim S. Optical Enhancement of Indirect Bandgap 2D Transition Metal Dichalcogenides for Multi-Functional Optoelectronic Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303272. [PMID: 37453927 DOI: 10.1002/adma.202303272] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
The unique electrical and optical properties of transition metal dichalcogenides (TMDs) make them attractive nanomaterials for optoelectronic applications, especially optical sensors. However, the optical characteristics of these materials are dependent on the number of layers. Monolayer TMDs have a direct bandgap that provides higher photoresponsivity compared to multilayer TMDs with an indirect bandgap. Nevertheless, multilayer TMDs are more appropriate for various photodetection applications due to their high carrier density, broad spectral response from UV to near-infrared, and ease of large-scale synthesis. Therefore, this review focuses on the modification of the optical properties of devices based on indirect bandgap TMDs and their emerging applications. Several successful developments in optical devices are examined, including band structure engineering, device structure optimization, and heterostructures. Furthermore, it introduces cutting-edge techniques and future directions for optoelectronic devices based on multilayer TMDs.
Collapse
Affiliation(s)
- Riya Dutta
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Arindam Bala
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Anamika Sen
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Michael Ross Spinazze
- Waterloo Institute for Nanotechnology and the Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Heekyeong Park
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Woong Choi
- School of Materials Science & Engineering, Kookmin University, Seoul, 02707, Republic of Korea
| | - Youngki Yoon
- Waterloo Institute for Nanotechnology and the Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Sunkook Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| |
Collapse
|
9
|
Mandal A, Khuntia SK, Mondal D, Mahadevan P, Bhattacharyya S. Spin Texture Sensitive Photodetection by Dion-Jacobson Tin Halide Perovskites. J Am Chem Soc 2023. [PMID: 37906676 DOI: 10.1021/jacs.3c10195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The organic spacer molecule is known to regulate the optoelectronic properties of two-dimensional (2D) perovskites. We show that the spacer layer thickness determines the nature of optical transitions, direct or indirect, by controlling the structural properties of the inorganic layer. The spin-orbit interactions lead to different electron spin orientations for the states associated with the conduction band minimum (CBM) and the valence band maximum (VBM). This leads to a direct as well as an indirect component of the transitions, despite them being direct in momentum space. The shorter chains have a larger direct component, leading to a better optoelectronic performance. The mixed halide Sn2+ Dion-Jacobson (DJ) perovskite with the shortest 4-C diammonium spacer outshines the photodetection parameters of those having longer (6-C and 8-C) spacers and the corresponding Ruddlesden-Popper (RP) phases. The DJ system with a 4-C spacer and equimolar Br/I embodies an unprecedentedly high responsivity of 78.1 A W-1 under 3 V potential bias at 485 nm wavelength, among the DJ perovskites. Without any potential bias, this phase manifests the self-powered photodetection parameters of 0.085 A W-1 and 9.9 × 1010 jones. The unusual role of electron spin texture in these high-performance photodetectors of the lead-free DJ perovskites provides an avenue to exploit the information coded in spins for semiconductor devices without any ferromagnetic supplement or magnetic field.
Collapse
Affiliation(s)
- Arnab Mandal
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Sanuja Kumar Khuntia
- Department of Condensed Matter Physics and Material Science, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| | - Debayan Mondal
- Department of Condensed Matter Physics and Material Science, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| | - Priya Mahadevan
- Department of Condensed Matter Physics and Material Science, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| | - Sayan Bhattacharyya
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| |
Collapse
|
10
|
Ma Y, Li W, Liu Y, Guo W, Xu H, Han S, Tang L, Fan Q, Luo J, Sun Z. Mixing cage cations in 2D metal-halide ferroelectrics enhances the ferro-pyro-phototronic effect for self-driven photopyroelectric detection. Chem Sci 2023; 14:10347-10352. [PMID: 37772112 PMCID: PMC10530782 DOI: 10.1039/d3sc02946h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
The ferro-pyro-phototronic (FPP) effect, coupling photoexcited pyroelectricity and photovoltaics, paves an effective way to modulate charge-carrier behavior of optoelectronic devices. However, reports of promising FPP-active systems remain quite scarce due to a lack of knowledge on the coupling mechanism. Here, we have successfully enhanced the FPP effect in a series of ferroelectrics, BA2Cs1-xMAxPb2Br7 (BA = butylammonium, MA = methylammonium, 0 ≤ x ≤ 0.34), rationally assembled by mixing cage cations into 2D metal-halide perovskites. Strikingly, chemical alloying of Cs+/MA+ cations leads to the reduction of exciton binding energy, as verified by the x = 0.34 component; this facilitates exciton dissociation into free charge-carriers and boosts photo-activities. The crystal detector thus displays enhanced FPP current at zero bias, almost more than 10 times higher than that of the x = 0 prototype. As an innovative study on the FPP effect, this work affords new insight into the fundamental principle of ferroelectrics and creates a new strategy for self-driven photodetection.
Collapse
Affiliation(s)
- Yu Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Wenjing Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Yi Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Wuqian Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Haojie Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Shiguo Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Liwei Tang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Qingshun Fan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Zhihua Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| |
Collapse
|
11
|
Jiang L, Li Z, Dong Q, Rong X, Dong G. 2D/3D Perovskite Photodetectors with High Response Frequency and Improved Stability Based on Thiophene-2-ethylamine and Dual Additives. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37364061 DOI: 10.1021/acsami.3c07712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Organic-inorganic lead halide perovskite materials have received great attention in recent years. However, the poor stability of these materials severely limits the commercial application of perovskite devices. Here, we used thiophene-2-ethylammonium iodide (TEAI) material as the organic spacer NH4SCN and NH4Cl as the dual additives to realize high-stability two-dimensional (2D)/three-dimensional (3D) perovskite thin films for perovskite photodetectors. Then, we investigated different effects of the dual additives on the orientation and crystallinity of the perovskite films. At room temperature, the optimized 2D/3D perovskite photodetectors exhibit good performance with high external quantum efficiency (EQE) (72%), large responsivity (0.36 A/W), high detectivity (2.46 × 1012 Jones at the bias of 0 V), high response frequency (1.7 MHz), and improved stability (retains 90% photocurrent after 2000 h storage in RT and 10% RH conditions). Based on these devices, a dual-channel optical transport system and a light-intensity adder are achieved. The results of this study indicate that, with a simple process, the TEAI and dual-additives based 2D/3D perovskite photodetectors have promising applications in light-intensity adder and optical communication systems.
Collapse
Affiliation(s)
- Lixian Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhewei Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Qingshun Dong
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xin Rong
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Guifang Dong
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
12
|
Darman P, Yaghoobi A, Darbari S. Pinhole-free 2D Ruddlesden-Popper perovskite layer with close packed large crystalline grains, suitable for optoelectronic applications. Sci Rep 2023; 13:8374. [PMID: 37225784 DOI: 10.1038/s41598-023-35546-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023] Open
Abstract
Here, we achieved pinhole-free 2D Ruddlesden-Popper Perovskite (RPP) BA2PbI4 layers with close packed crystalline grains with dimension of about 30 × 30 µm2, which have been demonstrated to be favorable for optoelectronic applications, such as fast response RPP-based metal/semiconductor/metal photodetectors. We explored affecting parameters in hot casting of BA2PbI4 layers, and proved that oxygen plasma treatment prior to hot casting plays a significant role to achieve high quality close packed polycrystalline RPP layers at lower hot cast temperatures. Moreover, we demonstrate that crystal growth of 2D BA2PbI4 can be dominantly controlled by the rate of solvent evaporation through substrate temperature or rotational speed, while molarity of the prepared RPP/DMF precursor is the dominant factor that determines the RPP layer thickness, and can affect the spectral response of the realized photodetector. Benefiting from the high light absorption and inherent chemical stability of 2D RPP layers, we achieved high responsivity and stability, and fast response photodetection from perovskite active layer. We achieved a fast photoresponse with rise and fall times of 189 µs and 300 µs, and the maximum responsivity of 119 mA/W and detectivity of 2.15 × 108 Jones in response to illumination wavelength of 450 nm. The presented polycrystalline RPP-based photodetector benefits from a simple and low-cost fabrication process, suitable for large area production on glass substrate, a good stability and responsivity, and a promising fast photoresponse, even around that of exfoliated single crystal RPP-based counterparts. However, it is well known that exfoliation methods suffer from poor repeatability and scalability, which make them incompatible with mass production and large area applications.
Collapse
Affiliation(s)
- Parsa Darman
- Nano-Sensors and Detectors Lab., and Nano Plasmo-Photonic Research Group, Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
| | - Amin Yaghoobi
- Nano-Sensors and Detectors Lab., and Nano Plasmo-Photonic Research Group, Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
| | - Sara Darbari
- Nano-Sensors and Detectors Lab., and Nano Plasmo-Photonic Research Group, Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
13
|
Qiao BS, Wang SY, Zhang ZH, Lian ZD, Zheng ZY, Wei ZP, Li L, Ng KW, Wang SP, Liu ZB. Photosensitive Dielectric 2D Perovskite Based Photodetector for Dual Wavelength Demultiplexing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300632. [PMID: 36916201 DOI: 10.1002/adma.202300632] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/28/2023] [Indexed: 05/26/2023]
Abstract
Stacked 2D perovskites provide more possibilities for next generation photodetector with more new features. Compared with its excellent optoelectronic properties, the good dielectric performance of metal halide perovskite rarely comes into notice. Here, a bifunctional perovskite based photovoltaic detector capable of two wavelength demultiplexing is demonstrated. In the Black Phosphorus/Perovskite/MoS2 structured photodetector, the comprehensive utilization of the photosensitive and dielectric properties of 2D perovskite allows the device to work in different modes. The device shows normal continuous photoresponse under 405 nm, while it shows a transient spike response to visible light with longer wavelengths. The linear dynamic range, rise/decay time, and self-powered responsivity under 405 nm can reach 100, 38 µs/50 µs, and 17.7 mA W-1 , respectively. It is demonstrated that the transient spike photocurrent with long wavelength exposure is related to the illumination intensity and can coexist with normal photoresponse. Two waveband-dependent signals can be identified and used to reflect more information simultaneously. This work provides a new strategy for multispectral detection and demultiplexing, which can be used to improve data transfer rates and encrypted communications. This work mode can inspire more multispectral photodetectors with different stacked 2D materials, especially to the optoelectronic application of the wide bandgap, high dielectric photosensitive materials.
Collapse
Affiliation(s)
- Bao-Shi Qiao
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P. R. China
| | - Su-Yun Wang
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Nankai University, Tianjin, 300071, P. R. China
| | - Zhi-Hong Zhang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P. R. China
- State Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Zhen-Dong Lian
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P. R. China
| | - Zhi-Yao Zheng
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun, 130033, P. R. China
| | - Zhi-Peng Wei
- State Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Lin Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics & Electron Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Kar Wei Ng
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P. R. China
| | - Shuang-Peng Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P. R. China
| | - Zhi-Bo Liu
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
14
|
Zhang Q, Yao L, Li B, Fang D, Wang D, Li J, Wang X, Han P, Qiu M, Fang X. Defect recombination suppression and carrier extraction improvement for efficient CsPbBr 3/SnO 2heterojunction photodetectors. NANOTECHNOLOGY 2023; 34:235706. [PMID: 36716478 DOI: 10.1088/1361-6528/acb713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Perovskite materials with excellent optical and electronic properties have huge potential in the research field of photodetectors. Constructing heterojunctions and promoting carrier transportation are significant for the development of perovskite-based optoelectronics devices with high performances. Herein, we demonstrated a CsPbBr3/SnO2heterojunction photodetector and improved the device performances through post-annealing treatment of SnO2film. The results indicated that the electrical properties of SnO2films will make an important impact on carrier extraction, especially for type-II heterojunction. As the electrons transfer layer in CsPbBr3/SnO2type-II heterojunction, defects related to oxygen vacancy should be the key factor to affect carrier concentration, induce carriers' limitation and recombination rate. Under proper annealing temperature for SnO2layer, the recombination rate can decrease to 1.37 × 1021cm3s and the spectral responsivity will be highly increased. This work can enhance the understanding on the photoresponse of perovskite photodetectors, and will be helpful for the further optimization and design of optoelectronic devices based on the perovskite heterojunction.
Collapse
Affiliation(s)
- Qianwen Zhang
- State Key Laboratory of High Power Semiconductor Lasers, School of Physics, Changchun University of Science and Technology, 7089 Wei-Xing Road, Changchun 130022, People's Republic of China
| | - Lijuan Yao
- State Key Laboratory of High Power Semiconductor Lasers, School of Physics, Changchun University of Science and Technology, 7089 Wei-Xing Road, Changchun 130022, People's Republic of China
| | - Bobo Li
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, Guangdong 518118, People's Republic of China
| | - Dan Fang
- State Key Laboratory of High Power Semiconductor Lasers, School of Physics, Changchun University of Science and Technology, 7089 Wei-Xing Road, Changchun 130022, People's Republic of China
| | - Dengkui Wang
- State Key Laboratory of High Power Semiconductor Lasers, School of Physics, Changchun University of Science and Technology, 7089 Wei-Xing Road, Changchun 130022, People's Republic of China
| | - Jinhua Li
- State Key Laboratory of High Power Semiconductor Lasers, School of Physics, Changchun University of Science and Technology, 7089 Wei-Xing Road, Changchun 130022, People's Republic of China
| | - Xiaohua Wang
- State Key Laboratory of High Power Semiconductor Lasers, School of Physics, Changchun University of Science and Technology, 7089 Wei-Xing Road, Changchun 130022, People's Republic of China
| | - Peigang Han
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, Guangdong 518118, People's Republic of China
| | - Mingxia Qiu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, Guangdong 518118, People's Republic of China
| | - Xuan Fang
- State Key Laboratory of High Power Semiconductor Lasers, School of Physics, Changchun University of Science and Technology, 7089 Wei-Xing Road, Changchun 130022, People's Republic of China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, People's Republic of China
| |
Collapse
|
15
|
Qiu L, Si G, Bao X, Liu J, Guan M, Wu Y, Qi X, Xing G, Dai Z, Bao Q, Li G. Interfacial engineering of halide perovskites and two-dimensional materials. Chem Soc Rev 2023; 52:212-247. [PMID: 36468561 DOI: 10.1039/d2cs00218c] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Recently, halide perovskites (HPs) and layered two-dimensional (2D) materials have received significant attention from industry and academia alike. HPs are emerging materials that have exciting photoelectric properties, such as a high absorption coefficient, rapid carrier mobility and high photoluminescence quantum yields, making them excellent candidates for various optoelectronic applications. 2D materials possess confined carrier mobility in 2D planes and are widely employed in nanostructures to achieve interfacial modification. HP/2D material interfaces could potentially reveal unprecedented interfacial properties, including light absorbance with desired spectral overlap, tunable carrier dynamics and modified stability, which may lead to several practical applications. In this review, we attempt to provide a comprehensive perspective on the development of interfacial engineering of HP/2D material interfaces. Specifically, we highlight the recent progress in HP/2D material interfaces considering their architectures, electronic energetics tuning and interfacial properties, discuss the potential applications of these interfaces and analyze the challenges and future research directions of interfacial engineering of HP/2D material interfaces. This review links the fields of HPs and 2D materials through interfacial engineering to provide insights into future innovations and their great potential applications in optoelectronic devices.
Collapse
Affiliation(s)
- Lei Qiu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China.
| | - Guangyuan Si
- Melbourne Center for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Xiaozhi Bao
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR 999078, China
| | - Jun Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China.
| | - Mengyu Guan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China.
| | - Yiwen Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China.
| | - Xiang Qi
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronic, Xiangtan University, Hunan 411105, China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR 999078, China
| | - Zhigao Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China. .,Shenzhen Institute, China University of Geosciences, Shenzhen 518057, China
| | - Qiaoliang Bao
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai 200093, China.,Nanjing kLight Laser Technology Co. Ltd., Nanjing, Jiangsu 210032, China.
| | - Guogang Li
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China. .,Zhejiang Institute, China University of Geosciences, Hangzhou 311305, China
| |
Collapse
|
16
|
Su W, Zhang S, Liu C, Tian Q, Liu X, Li K, Lv Y, Liao L, Zou X. Interlayer Transition Induced Infrared Response in ReS 2/2D Perovskite van der Waals Heterostructure Photodetector. NANO LETTERS 2022; 22:10192-10199. [PMID: 36475758 DOI: 10.1021/acs.nanolett.2c04328] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The emerging Ruddlesden-Popper two-dimensional perovskite (2D PVK) has recently joined the family of 2D semiconductors as a potential competitor for building van der Waals (vdW) heterostructures in future optoelectronics. However, to date, most of the reported heterostructures based on 2D PVKs suffer from poor spectral response that is caused by intrinsic wide bandgap of constituting materials. Herein, a direct heterointerface bandgap (∼0.4 eV) between 2D PVK and ReS2 is demonstrated. The strong interlayer coupling reduces the energy interval at the heterojunction region so that the heterostructure shows high sensitivity with the spectral response expanding to 2000 nm. The large type-II band offsets exceeding 1.1 eV ensure fast photogenerated carriers separation at the heterointerface. When this heterostructure is used as a self-driven photodetector, it exhibits a record high detectivity up to 1.8 × 1014 Jones, surpassing any reported 2D self-driven devices, and an impressive external quantum efficiency of 68%.
Collapse
Affiliation(s)
- Wanhan Su
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha410082, China
| | - Sen Zhang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha410082, China
| | - Chang Liu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha410082, China
| | - Qianlei Tian
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha410082, China
| | - Xingqiang Liu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha410082, China
| | - Kenli Li
- China National Supercomputing Center in Changsha, HunanChangsha410082, China
| | - Yawei Lv
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha410082, China
| | - Lei Liao
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha410082, China
- School of Physics and Electronic Engineering, Harbin Normal University, Harbin150025, China
| | - Xuming Zou
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha410082, China
| |
Collapse
|
17
|
Liu S, Li H, Lu H, Wang Y, Wen X, Deng S, Li MY, Liu S, Wang C, Li X. High Performance 0D ZnO Quantum Dot/2D (PEA) 2PbI 4 Nanosheet Hybrid Photodetectors Fabricated via a Facile Antisolvent Method. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4217. [PMID: 36500840 PMCID: PMC9738548 DOI: 10.3390/nano12234217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Two-dimensional (2D) organic-inorganic perovskites have great potential for the fabrication of next-generation photodetectors owing to their outstanding optoelectronic features, but their utilization has encountered a bottleneck in anisotropic carrier transportation induced by the unfavorable continuity of the thin films. We propose a facile approach for the fabrication of 0D ZnO quantum dot (QD)/2D (PEA)2PbI4 nanosheet hybrid photodetectors under the atmospheric conditions associated with the ZnO QD chloroform antisolvent. Profiting from the antisolvent, the uniform morphology of the perovskite thin films is obtained owing to the significantly accelerated nucleation site formation and grain growth rates, and ZnO QDs homogeneously decorate the surface of (PEA)2PbI4 nanosheets, which spontaneously passivate the defects on perovskites and enhance the carrier separation by the well-matched band structure. By varying the ZnO QD concentration, the Ion/Ioff ratio of the photodetectors radically elevates from 78.3 to 1040, and a 12-fold increase in the normalized detectivity is simultaneously observed. In addition, the agglomeration of perovskite grains is governed by the annealing temperature, and the photodetector fabricated at a relatively low temperature of 120 °C exhibits excellent stability after a 50-cycle test in the air condition without any encapsulation.
Collapse
Affiliation(s)
- Shijie Liu
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Hao Li
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Haifei Lu
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Yanran Wang
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaoyan Wen
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Shuo Deng
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Ming-Yu Li
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Sisi Liu
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Cong Wang
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiao Li
- Hisense Visual Technology Co., Ltd., Qingdao 266555, China
| |
Collapse
|
18
|
Canet-Albiach R, Kreĉmarová M, Bailach JB, Gualdrón-Reyes AF, Rodríguez-Romero J, Gorji S, Pashaei-Adl H, Mora-Seró I, Martínez Pastor JP, Sánchez-Royo JF, Muñoz-Matutano G. Revealing Giant Exciton Fine-Structure Splitting in Two-Dimensional Perovskites Using van der Waals Passivation. NANO LETTERS 2022; 22:7621-7627. [PMID: 36074722 DOI: 10.1021/acs.nanolett.2c02729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organic-inorganic layered perovskites are currently some of the most promising 2D van der Waals materials. Low crystal quality usually broadens the exciton line width, obscuring the fine structure of the exciton in conventional photoluminescence experiments. Here, we propose a mechanical approach to reducing the effect of spectral diffusion by means of hBN capping on layered perovskites, revealing the exciton fine structure. We used a stochastic model to link the reduction of the spectral line width with the population of charge fluctuation centers present in the organic spacer. van der Waals forces between both lattices cause the partial clamping of the perovskite organic spacer molecules, and hence the amplitude of the overall spectral diffusion effect is reduced. Our work provides a low-cost solution to the problem of accessing important fine-structure excitonic state information, along with an explanation of the important carrier dynamics present in the organic spacer that affect the quality of the optical emission.
Collapse
Affiliation(s)
- Rodolfo Canet-Albiach
- Instituto de Ciencia de Materiales, Universidad de Valencia (ICMUV), 46071 Valencia, Spain
| | - Marie Kreĉmarová
- Instituto de Ciencia de Materiales, Universidad de Valencia (ICMUV), 46071 Valencia, Spain
| | - José Bosch Bailach
- Instituto de Ciencia de Materiales, Universidad de Valencia (ICMUV), 46071 Valencia, Spain
| | - Andrés F Gualdrón-Reyes
- Institute of Advanced Materials (INAM), Universitat Jaume I, Avenida de Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain
- Facultad de Ciencias, Instituto de Ciencias Químicas, Isla Teja, Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - Jesús Rodríguez-Romero
- Institute of Advanced Materials (INAM), Universitat Jaume I, Avenida de Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain
- Facultad de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U., Coyoacán, 04510 Mexico City, Mexico
| | - Setatira Gorji
- Instituto de Ciencia de Materiales, Universidad de Valencia (ICMUV), 46071 Valencia, Spain
| | - Hamid Pashaei-Adl
- Instituto de Ciencia de Materiales, Universidad de Valencia (ICMUV), 46071 Valencia, Spain
| | - Iván Mora-Seró
- Institute of Advanced Materials (INAM), Universitat Jaume I, Avenida de Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain
| | - Juan P Martínez Pastor
- Instituto de Ciencia de Materiales, Universidad de Valencia (ICMUV), 46071 Valencia, Spain
| | | | | |
Collapse
|
19
|
Nazim M, Parwaz Khan AA, Khan F, Cho SK, Ahmad R. Insertion of metal cations into hybrid organometallic halide perovskite nanocrystals for enhanced stability: eco-friendly synthesis, lattice strain engineering, and defect chemistry studies. NANOSCALE ADVANCES 2022; 4:2729-2743. [PMID: 36132281 PMCID: PMC9419879 DOI: 10.1039/d2na00053a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/11/2022] [Indexed: 06/12/2023]
Abstract
In this work, we developed a facile and environmentally friendly synthesis strategy for large-scale preparation of Cr-doped hybrid organometallic halide perovskite nanocrystals. In the experiment, methylammonium lead bromide, CH3NH3PbBr3, was efficiently doped with Cr3+ cations by eco-friendly method at low temperatures to grow crystals via antisolvent-crystallization. The as-synthesized Cr3+ cation-doped perovskite nanocrystals displayed ∼45.45% decrease in the (100) phase intensity with an enhanced Bragg angle (2θ) of ∼15.01° compared to ∼14.92° of pristine perovskites while retaining their cubic (221/Pm-cm, ICSD no. 00-069-1350) crystalline phase of pristine perovskites. During synthesis, an eco-friendly solvent, ethanol, was utilized as an antisolvent to grow nanometer-sized rod-like crystals. However, Cr3+ cation-doped perovskite nanocrystals display a reduced crystallinity of ∼67% compared to pristine counterpart with ∼75% crystallinity with an improved contact angle of ∼72° against water in thin films. Besides, as-grown perovskite nanocrystals produced crystallite size of ∼48 nm and a full-width-at-half-maximum (FWHM) of ∼0.19° with an enhanced lattice-strain of ∼4.52 × 10-4 with a dislocation-density of ∼4.24 × 1014 lines per m2 compared to pristine perovskite nanocrystals, as extracted from the Williamson-Hall plots. The as-obtained stable perovskite materials might be promising light-harvesting candidates for optoelectronic applications in the future.
Collapse
Affiliation(s)
- Mohammed Nazim
- Department of Chemical Engineering, Kumoh National Institute of Technology 61 Daehak-ro, Gumi-si Gyeongbuk-do 39177 Republic of Korea
| | - Aftab Aslam Parwaz Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Firoz Khan
- Interdisciplinary Research Center for Renewable Energy and Power System (IRC-REPS), King Fahd University of Petroleum & Minerals (KFUPM) Dhahran 31261 Saudi Arabia
| | - Sung Ki Cho
- Department of Chemical Engineering, Kumoh National Institute of Technology 61 Daehak-ro, Gumi-si Gyeongbuk-do 39177 Republic of Korea
- Department of Energy Engineering Convergence, Kumoh National Institute of Technology 61 Daehak-ro, Gumi-si Gyeongsangbuk-do 39177 Republic of Korea
| | - Rafiq Ahmad
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia New Delhi-110025 India
| |
Collapse
|
20
|
Zou C, Liu Q, Chen K, Chen F, Zhao Z, Cao Y, Deng C, Wang X, Li X, Zhan S, Gao F, Li S. A high-performance polarization-sensitive and stable self-powered UV photodetector based on a dendritic crystal lead-free metal-halide CsCu 2I 3/GaN heterostructure. MATERIALS HORIZONS 2022; 9:1479-1488. [PMID: 35262131 DOI: 10.1039/d1mh02073k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polarization-sensitive photodetectors are the core of optics applications and have been successfully demonstrated in photodetectors based on the newly-emerging metal-halide perovskites. However, achieving high polarization sensitivity is still extremely challenging. In addition, most of the previously reported photodetectors were concentrated on 1D lead-halide perovskites and 2D asymmetric intrinsic structure materials, but suffered from being external bias driven, lead-toxicity, poor stability and complex processes, severely limiting their practical applications. Here, we demonstrate a high-performance polarization-sensitive and stable polarization-sensitive UV photodetector based on a dendritic crystal lead-free metal-halide CsCu2I3/GaN heterostructure. By combining the anisotropic morphology and asymmetric intrinsic structure of CsCu2I3 dendrites with the isotropic material GaN film, a high specific surface area and built-in electric field are achieved, exhibiting an ultra-high polarization selectivity up to 28.7 and 102.8 under self-driving mode and -3 V bias, respectively. To our knowledge, such a high polarization selectivity has exceeded those of all of the reported perovskite-based devices, and is comparable to, or even superior to, those of the conventional 2D heterostructure materials. Interestingly, the unsealed device shows outstanding stability, and can be stored for over 2 months, and effectively maintained the performance even after repeated heating (373K)-cooling (300K) for different periods of time in ambient air, indicating a remarkable temperature tolerance and desired compatibility for applications under harsh conditions. Such excellent performance and simple method strongly show that the CsCu2I3/GaN heterojunction photodetector has great potential in practical applications with high polarization-sensitivity. This work provides a new insight into designing novel high-performance polarization-sensitive optoelectronic devices.
Collapse
Affiliation(s)
- Can Zou
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Qing Liu
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Kai Chen
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Fei Chen
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Zixuan Zhao
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Yunxuan Cao
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Congcong Deng
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Xingfu Wang
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Xiaohang Li
- King Abdullah University of Science and Technology (KAUST), Advanced Semiconductor Laboratory, Thuwal 23955, Saudi Arabia
| | - Shaobin Zhan
- Shenzhen Institute of Information Technology, Innovation and Entrepreneurship School, Shenzhen, 518172, P. R. China.
| | - Fangliang Gao
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Shuti Li
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
- 21C Innovation Laboratory, Contemporary Amperex Technology Ltd, Ningde, Fujian, 352100, P. R. China.
| |
Collapse
|
21
|
Fang F, Wan Y, Li H, Fang S, Huang F, Zhou B, Jiang K, Tung V, Li LJ, Shi Y. Two-Dimensional Cs 2AgBiBr 6/WS 2 Heterostructure-Based Photodetector with Boosted Detectivity via Interfacial Engineering. ACS NANO 2022; 16:3985-3993. [PMID: 35179036 DOI: 10.1021/acsnano.1c09513] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) transition metal dichalcogenide (TMDC) monolayers have been widely used for optoelectronic devices because of their ultrasensitivity to light detection acquired from their direct gap properties. However, the small cross-section of photon absorption in the atomically thin layer thickness significantly limits the generation of photocarriers, restricting their performance. Here, we integrate monolayer WS2 with 2D perovskites Cs2AgBiBr6, which serve as the light absorption layer, to greatly enhance the photosensitivity of WS2. The efficient charge transfer at the Cs2AgBiBr6/WS2 heterojunction is evidenced by the shortened photoluminescence (PL) decay time of Cs2AgBiBr6. Scanning photocurrent microscopy of Cs2AgBiBr6/WS2/graphene reveals that improved charge extraction from graphene leads to an enhanced photoresponse. The 2D Cs2AgBiBr6/WS2/graphene vertical heterostructure photodetector exhibits a high detectivity (D*) of 1.5 × 1013 Jones with a fast response time of 52.3 μs/53.6 μs and an on/off ratio of 1.02 × 104. It is worth noting that this 2D heterostructure photodetector can realize self-powered light detection behavior with an open-circuit voltage of ∼0.75 V. The results suggest that the 2D perovskites can effectively improve the TMDC layer-based photodetectors for low-power consumption photoelectrical applications.
Collapse
Affiliation(s)
- Feier Fang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yi Wan
- Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Henan Li
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shaofan Fang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Fu Huang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Bo Zhou
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ke Jiang
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Vincent Tung
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Lain-Jong Li
- Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong
| | - Yumeng Shi
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
22
|
Zhang Z, Yang S, Hu J, Peng H, Li H, Tang P, Jiang Y, Tang L, Zou B. One-pot synthesis of novel ligand-free tin(II)-based hybrid metal halide perovskite quantum dots with high anti-water stability for solution-processed UVC photodetectors. NANOSCALE 2022; 14:4170-4180. [PMID: 35230370 DOI: 10.1039/d1nr07893c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recently, lead-based halide perovskites have gained extensive attention due to their outstanding optoelectronic properties. However, the toxicity of lead would seriously limit its future application. To address these issues, in this work novel ligand-free organic-inorganic hybrid metal halide TBASnCl3 (C16H36NSnCl3) quantum dots are synthesized by a one-pot method at room temperature, and they showed high anti-water stability and high potential applications for high-performance UVC photodetectors. Our experimental data showed that the responsivity of the lateral photodetectors Au/TBASnCl3/Au, in which the active layer (i.e. TBASnCl3) was synthesized by further introducing SnF2 as a precursor besides SnCl2, reached 7.3 mA W-1 with a specific detectivity of 1.67 × 1011 Jones under 0.36 mW cm-2 254 nm illumination at -5 V, and it showed a long lifetime even in an environment with an air humidity of 60%. Therefore, it laid a solid foundation for further fabricating lead-free metal halide optoelectronic devices.
Collapse
Affiliation(s)
- Zhenheng Zhang
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Shengyi Yang
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China.
- Kunming Institute of Physics, Kunming 650223, P. R. China
| | - Jinming Hu
- Centre for Artificial-Intelligence Nanophotonics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Hui Peng
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Hailong Li
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Peiyun Tang
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Yurong Jiang
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Libin Tang
- Kunming Institute of Physics, Kunming 650223, P. R. China
| | - Bingsuo Zou
- School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
| |
Collapse
|
23
|
Li Z, Hong E, Zhang X, Deng M, Fang X. Perovskite-Type 2D Materials for High-Performance Photodetectors. J Phys Chem Lett 2022; 13:1215-1225. [PMID: 35089041 DOI: 10.1021/acs.jpclett.1c04225] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodetectors are light sensors in widespread use in image sensing, optical communication, and consumer electronics. In current smart optoelectronic technology, conventional semiconductors have encountered a bottleneck caused by inflexibility and opacity. With the ever-increasing demands for versatile optoelectronic applications, perovskite-type 2D materials demonstrate great potential for advanced photodetectors inspired by molecularly thin 2D materials. Through the reduction of thickness to thin or molecularly thin levels, single-crystalline 2D perovskites can exhibit superior optoelectronic performance characteristics, such as tunable absorption property by chemical design, enhanced carrier separation by remarkable photosensing capability, and improved carrier extraction by versatile band engineering. More importantly, perovskite-type 2D materials exhibit great potential for large-scale monolithic integration to achieve all-in-one sensing-memory-computing optoelectronic devices. In this Perspective, recent progress in 2D perovskite-based photodetectors is presented in detail. The focus is on growth strategies for reducing thickness, thickness-dependent optical and electrical properties, device engineering, heterojunction fabrication, and device performance. Finally, the current challenges and future prospects in this field are presented.
Collapse
Affiliation(s)
- Ziqing Li
- Institute of Optoelectronics, Fudan University, Shanghai 200433, P.R. China
- Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| | - Enliu Hong
- Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| | - Xinyu Zhang
- Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| | - Ming Deng
- Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| | - Xiaosheng Fang
- Institute of Optoelectronics, Fudan University, Shanghai 200433, P.R. China
- Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
24
|
Pham PV, Bodepudi SC, Shehzad K, Liu Y, Xu Y, Yu B, Duan X. 2D Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportunities, and Challenges. Chem Rev 2022; 122:6514-6613. [PMID: 35133801 DOI: 10.1021/acs.chemrev.1c00735] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A grand family of two-dimensional (2D) materials and their heterostructures have been discovered through the extensive experimental and theoretical efforts of chemists, material scientists, physicists, and technologists. These pioneering works contribute to realizing the fundamental platforms to explore and analyze new physical/chemical properties and technological phenomena at the micro-nano-pico scales. Engineering 2D van der Waals (vdW) materials and their heterostructures via chemical and physical methods with a suitable choice of stacking order, thickness, and interlayer interactions enable exotic carrier dynamics, showing potential in high-frequency electronics, broadband optoelectronics, low-power neuromorphic computing, and ubiquitous electronics. This comprehensive review addresses recent advances in terms of representative 2D materials, the general fabrication methods, and characterization techniques and the vital role of the physical parameters affecting the quality of 2D heterostructures. The main emphasis is on 2D heterostructures and 3D-bulk (3D) hybrid systems exhibiting intrinsic quantum mechanical responses in the optical, valley, and topological states. Finally, we discuss the universality of 2D heterostructures with representative applications and trends for future electronics and optoelectronics (FEO) under the challenges and opportunities from physical, nanotechnological, and material synthesis perspectives.
Collapse
Affiliation(s)
- Phuong V Pham
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Srikrishna Chanakya Bodepudi
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Khurram Shehzad
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Yuan Liu
- School of Physics and Electronics, Hunan University, Hunan 410082, China
| | - Yang Xu
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Bin Yu
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, California 90095-1569, United States
| |
Collapse
|
25
|
Kripalani DR, Cai Y, Lou J, Zhou K. Strong Edge Stress in Molecularly Thin Organic-Inorganic Hybrid Ruddlesden-Popper Perovskites and Modulations of Their Edge Electronic Properties. ACS NANO 2022; 16:261-270. [PMID: 34978421 DOI: 10.1021/acsnano.1c06158] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organic-inorganic hybrid Ruddlesden-Popper perovskites (HRPPs) have gained much attention for optoelectronic applications due to their high moisture resistance, good processability under ambient conditions, and long functional lifetimes. Recent success in isolating molecularly thin hybrid perovskite nanosheets and their intriguing edge phenomena have raised the need for understanding the role of edges and the properties that dictate their fundamental behaviors. In this work, we perform a prototypical study on the edge effects in ultrathin hybrid perovskites by considering monolayer (BA)2PbI4 as a representative system. On the basis of first-principles simulations of nanoribbon models, we show that in addition to significant distortions of the octahedra network at the edges, strong edge stresses are also present in the material. Structural instabilities that arise from the edge stress could drive the relaxation process and dominate the morphological response of edges in practice. A clear downward shift of the bands at the narrower ribbons, as indicative of the edge effect, facilitates the separation of photoexcited carriers (electrons move toward the edge and holes move toward the interior part of the nanosheet). Moreover, the desorption energy of the organic molecule can also be much lower at the free edges, making it easier for functionalization and/or substitution events to take place. The findings reported in this work elucidate the underlying mechanisms responsible for edge states in HRPPs and will be important in guiding the rational design and development of high-performance layer-edge devices.
Collapse
Affiliation(s)
- Devesh R Kripalani
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yongqing Cai
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| | - Jun Lou
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Kun Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Environmental Process Modelling Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| |
Collapse
|
26
|
Baranowski M, Surrente A, Plochocka P. Two Dimensional Perovskites/Transition Metal Dichalcogenides Heterostructures: Puzzles and Challenges. Isr J Chem 2021. [DOI: 10.1002/ijch.202100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Michal Baranowski
- Department of Experimental Physics Faculty of Fundamental Problems of Technology Wroclaw University of Science and Technology 50-370 Wroclaw Poland
| | - Alessandro Surrente
- Department of Experimental Physics Faculty of Fundamental Problems of Technology Wroclaw University of Science and Technology 50-370 Wroclaw Poland
| | - Paulina Plochocka
- Department of Experimental Physics Faculty of Fundamental Problems of Technology Wroclaw University of Science and Technology 50-370 Wroclaw Poland
- Laboratoire National des Champs Magnétiques Intenses UPR 3228 CNRS-UGA-UPS-INSA 38042, 31400 Grenoble, Toulouse France
| |
Collapse
|
27
|
Wang H, Ma J, Li D. Two-Dimensional Hybrid Perovskite-Based van der Waals Heterostructures. J Phys Chem Lett 2021; 12:8178-8187. [PMID: 34415173 DOI: 10.1021/acs.jpclett.1c02290] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) hybrid perovskites, as newly emerging materials, have become the center of attention in optoelectronic fields within a few years because of their unique optoelectronic properties, including tunable bandgap, long carrier diffusion length, and high absorption coefficient. 2D perovskite-based van der Waals heterostructures via integration of 2D perovskites with other layered materials provide new platforms for many optoelectronic devices with prominent performance, such as photodetectors, light-emitting diodes (LEDs), and phototransistors. In this Perspective, the unique properties of 2D perovskites will be first introduced to explore why this material is attractive and popular. Subsequently, various types of heterostructures based on 2D perovskites will be illustrated, including the heterostructure construction approaches as well as their optical and optoelectronic applications. Finally, potential research directions based on 2D perovskite heterostructures are also proposed.
Collapse
Affiliation(s)
- Haizhen Wang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jiaqi Ma
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dehui Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
28
|
Min L, Tian W, Cao F, Guo J, Li L. 2D Ruddlesden-Popper Perovskite with Ordered Phase Distribution for High-Performance Self-Powered Photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101714. [PMID: 34302390 DOI: 10.1002/adma.202101714] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/04/2021] [Indexed: 06/13/2023]
Abstract
2D Ruddlesden-Popper perovskites exhibit great potential in optoelectronic devices for superior stability compared with their 3D counterparts. However, to achieve a high level of device performance, it is crucial but challenging to regulate the phase distribution of 2D perovskites to facilitate charge carrier transfer. Herein, using a solvent additive method (adding a small amount of dimethyl sulfoxide (DMSO) in N,N-dimethylformamide (DMF)) combined with a hot-casting process, the phase distribution of (PEA)2 MA3 Pb4 I13 (PEA+ = C6 H5 CH2 CH2 NH3 + , MA+ = CH3 NH3 + ) perovskite can be well controlled and the Fermi level of perovskites along the film thickness direction can achieve gradient distribution. The increased built-in potential, oriented crystal, and improved crystal quality jointly contribute to the high photoresponse of devices in the entire response spectrum range. The optimum device exhibits a characteristic detection peak at 570 nm with large responsivity/detectivity (0.44 A W-1 /3.38 × 1012 Jones), ultrafast response speed with a rise/fall time of 20.8/20.6 µs, and improved stability. This work suggests the possibility of manipulating the ordered phase distribution of 2D perovskites toward high-performance and stable optoelectronic conversion devices.
Collapse
Affiliation(s)
- Liangliang Min
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| | - Wei Tian
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| | - Fengren Cao
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| | - Jun Guo
- Analysis and Testing Center, Soochow University, Suzhou, 215006, P. R. China
| | - Liang Li
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| |
Collapse
|
29
|
Li D, Li D, Yang A, Zhang H, Lai X, Liang C. Electronic and Optical Properties of van der Waals Heterostructures Based on Two-Dimensional Perovskite (PEA) 2PbI 4 and Black Phosphorus. ACS OMEGA 2021; 6:20877-20886. [PMID: 34423195 PMCID: PMC8374907 DOI: 10.1021/acsomega.1c02264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Combining two-dimensional (2D) perovskites with other 2D materials to form a van der Waals (vdW) heterostructure has emerged as an intriguing way of designing electronic and optoelectronic devices. The structural, electronic, and optical properties of the 2D (PEA)2PbI4/black phosphorus (BP) [PEA:(C4H9NH3)+] vdW heterostructure have been investigated using first-principles calculations. We found that the (PEA)2PbI4/BP heterostructure shows a high stability at room temperature. It is demonstrated that the (PEA)2PbI4/BP heterostructure exhibits a type-I band arrangement with high carrier mobility. Moreover, the band gap and band offset of (PEA)2PbI4/BP can be effectively modulated by an external electric field, and a transition from semiconductor to metal is observed. The band edges of (PEA)2PbI4 and BP in the (PEA)2PbI4/BP heterostructure, which show significant changes with the external electric field, provide further support. Furthermore, the BP layers can enhance the light absorption of the (PEA)2PbI4/BP heterostructures. Our results indicate that the 2D perovskite and BP vdW heterostructures are competitive candidates for the application of low-dimensional photovoltaic and optoelectronic devices.
Collapse
Affiliation(s)
- Dong Li
- Department
of Physics, Beijing Jiaotong University, Beijing 100044, China
| | - Dan Li
- Department
of Physics, Beijing Jiaotong University, Beijing 100044, China
| | - Anqi Yang
- Department
of Physics, Beijing Jiaotong University, Beijing 100044, China
| | - He Zhang
- Department
of Physics, Beijing Jiaotong University, Beijing 100044, China
| | - Xinxin Lai
- Department
of Physics, Beijing Jiaotong University, Beijing 100044, China
| | - Chunjun Liang
- Key
Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
30
|
Pawar MS, Kadam SR, Kale BB, Late DJ. MoS 2 and CdMoS 4 nanostructure-based UV light photodetectors. NANOSCALE ADVANCES 2021; 3:4799-4803. [PMID: 36134324 PMCID: PMC9417253 DOI: 10.1039/d1na00326g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/03/2021] [Indexed: 05/24/2023]
Abstract
We have developed MoS2 nanosheets and CdMoS4 hierarchical nanostructures based on a UV light photodetector. The surface morphologies of the as-prepared samples were investigated via field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The performance parameters for the present photodetectors are investigated under the illumination of UV light having a wavelength of ∼385 nm. Upon the illumination of UV light, the CdMoS4-based photodetector device showed a better response to UV light compared to the MoS2 device in terms of photoresponsivity, response time (∼72 s) and recovery time (∼94 s). Our results reveal that CdMoS4 hierarchical nanostructures are practical for enhancing the device performance.
Collapse
Affiliation(s)
- Mahendra S Pawar
- Physical and Material Chemistry Division, CSIR - National Chemical Laboratory Pune 411008 Maharashtra India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sunil R Kadam
- Centre for Materials for Electronics Technology (C-MET), Department of Electronics and Information and Technology (DeitY) Pune 411008 Maharashtra India
| | - Bharat B Kale
- Centre for Materials for Electronics Technology (C-MET), Department of Electronics and Information and Technology (DeitY) Pune 411008 Maharashtra India
| | - Dattatray J Late
- Physical and Material Chemistry Division, CSIR - National Chemical Laboratory Pune 411008 Maharashtra India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Centre for Nanoscience & Nanotechnology, Amity University Maharashtra Mumbai-Pune Expressway, Bhatan, Post - Somathne, Panvel Mumbai Maharashtra 410206 India
| |
Collapse
|
31
|
Ghimire S, Klinke C. Two-dimensional halide perovskites: synthesis, optoelectronic properties, stability, and applications. NANOSCALE 2021; 13:12394-12422. [PMID: 34240087 DOI: 10.1039/d1nr02769g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Halide perovskites are promising materials for light-emitting and light-harvesting applications. In this context, two-dimensional perovskites such as nanoplatelets or Ruddlesden-Popper and Dion-Jacobson layered structures are important because of their structural flexibility, electronic confinement, and better stability. This review article brings forth an extensive overview of the recent developments of two-dimensional halide perovskites both in the colloidal and non-colloidal forms. We outline the strategy to synthesize and control the shape and discuss different crystalline phases and optoelectronic properties. We review the applications of two-dimensional perovskites in solar cells, light-emitting diodes, lasers, photodetectors, and photocatalysis. Besides, we also emphasize the moisture, thermal, and photostability of these materials in comparison to their three-dimensional analogs.
Collapse
Affiliation(s)
- Sushant Ghimire
- Institute of Physics, University of Rostock, 18059 Rostock, Germany.
| | | |
Collapse
|
32
|
Zhou X, Yu G. Preparation Engineering of Two-Dimensional Heterostructures via Bottom-Up Growth for Device Applications. ACS NANO 2021; 15:11040-11065. [PMID: 34264631 DOI: 10.1021/acsnano.1c02985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional heterostructures with tremendous electronic and optoelectronic properties hold great promise for nanodevice integrations and applications owing to the wide tunable characteristics. Toward this end, developing construction strategies in allusion to large-scale production of high-quality heterostructures is critical. The mainstream preparation routes are representatively classified into two categories of top-down and bottom-up approaches. Nonetheless, the relatively low reproductivity and the limitation for lateral heterostructure formations of top-down methods at the present stage inherently impeded their further developments. To surmount these obstacles, assembling heterostructures via miscellaneous bottom-up preparation protocols has emerged as a potential solution, attributed to the controllability and clean interface. Three typical approaches of chemical/physical vapor deposition, solution synthesis, and growth under ultrahigh vacuum conditions have shown promise due to the possibilities for preparing heterostructures with predesigned structures, clean interfaces, and the like. Therefore, bottom-up preparation engineering of heterostructures in two dimensions for further device applications is of vital importance. Moreover, heterostructure integrations by these methods have experienced a period of flourishing development in the past few years. In this review, the classical bottom-up growth routes, characterization methods, and latest progress of diverse heterostructures and further device applications are overviewed. Finally, the challenges and opportunities are discussed.
Collapse
Affiliation(s)
- Xiahong Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
33
|
Zhang Y, Ma Y, Wang Y, Zhang X, Zuo C, Shen L, Ding L. Lead-Free Perovskite Photodetectors: Progress, Challenges, and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006691. [PMID: 34028107 DOI: 10.1002/adma.202006691] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/04/2021] [Indexed: 05/24/2023]
Abstract
State-of-the-art photodetectors which apply hybrid perovskite materials have emerged as powerful candidates for next-generation light sensing. Among them, lead-based ones are the most popular beyond doubt on account of their unique and superior optoelectronic properties. Nevertheless, trade-off toward commercialization exists between nontoxicity and high performance, with the poor stability of lead-based perovskites, indicating that it is indispensable to substitute lead with nontoxic element meanwhile bringing about a comparable figure of merit of photodetectors and relatively long-term stability. Herein, recent advances in lead-free perovskite photodetectors are reviewed, analyzing the principle while designing new materials and highlighting some remarkable progress, which are comparable, even superior, to lead-based photodetectors. Furthermore, their potential strategy in optical communication, image sensing, narrowband photodetection, etc., is examined and a perspective on developing new materials and photodetectors with superior properties for more practical applications is provided.
Collapse
Affiliation(s)
- Yiqi Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yao Ma
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yaxi Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Xindong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Chuantian Zuo
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Liang Shen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
34
|
Zhang Z, Wang S, Liu X, Chen Y, Su C, Tang Z, Li Y, Xing G. Metal Halide Perovskite/2D Material Heterostructures: Syntheses and Applications. SMALL METHODS 2021; 5:e2000937. [PMID: 34927847 DOI: 10.1002/smtd.202000937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/20/2020] [Indexed: 05/24/2023]
Abstract
The past decade has witnessed the great success achieved by metal halide perovskites (MHPs) in photovoltaic and related fields. However, challenges still remain in further improving their performance, as well as, settling the stability issue for future commercialization. Recently, MHP/2D material heterostructures that combining MHPs with the low-cost and solution-processable 2D materials have demonstrated unprecedented improvement in both performance and stability due to the distinctive features at hetero-interface. The diverse fabrication techniques of MHPs and 2D materials allow them to be assembled as heterostructures with different configurations in a variety of ways. Moreover, the large families of MHPs and 2D materials provide the opportunity for the rational design and modification on compositions and functionalities of MHP/2D materials heterostructures. Herein, a comprehensive review of MHP/2D material heterostructures from syntheses to applications is presented. First, various fabrication techniques for MHP/2D material heterostructures are introduced by classifying them into solid-state methods and solution-processed methods. Then the applications of MHP/2D heterostructures in various fields including photodetectors, solar cells, and photocatalysis are summarized in detail. Finally, current challenges for the development of MHP/2D material heterostructures are highlighted, and future opportunities for the advancements in this research field are also provided.
Collapse
Affiliation(s)
- Zhipeng Zhang
- International Collaborative Laboratory of 2D materials for Optoelectronic Science & Technology (ICL-2D MOST), Shenzhen University, Shenzhen, 518060, China
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| | - Sisi Wang
- International Collaborative Laboratory of 2D materials for Optoelectronic Science & Technology (ICL-2D MOST), Shenzhen University, Shenzhen, 518060, China
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center of Excellence for Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yonghua Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Chenliang Su
- International Collaborative Laboratory of 2D materials for Optoelectronic Science & Technology (ICL-2D MOST), Shenzhen University, Shenzhen, 518060, China
| | - Zikang Tang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| | - Ying Li
- International Collaborative Laboratory of 2D materials for Optoelectronic Science & Technology (ICL-2D MOST), Shenzhen University, Shenzhen, 518060, China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| |
Collapse
|
35
|
Wang HP, Li S, Liu X, Shi Z, Fang X, He JH. Low-Dimensional Metal Halide Perovskite Photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003309. [PMID: 33346383 DOI: 10.1002/adma.202003309] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/21/2020] [Indexed: 05/24/2023]
Abstract
Metal halide perovskites (MHPs) have been a hot research topic due to their facile synthesis, excellent optical and optoelectronic properties, and record-breaking efficiency of corresponding optoelectronic devices. Nowadays, the development of miniaturized high-performance photodetectors (PDs) has been fueling the demand for novel photoactive materials, among which low-dimensional MHPs have attracted burgeoning research interest. In this report, the synthesis, properties, photodetection performance, and stability of low-dimensional MHPs, including 0D, 1D, 2D layered and nonlayered nanostructures, as well as their heterostructures are reviewed. Recent advances in the synthesis approaches of low-dimensional MHPs are summarized and the key concepts for understanding the optical and optoelectronic properties related to the PD applications of low-dimensional MHPs are introduced. More importantly, recent progress in novel PDs based on low-dimensional MHPs is presented, and strategies for improving the performance and stability of perovskite PDs are highlighted. By discussing recent advances, strategies, and existing challenges, this progress report provides perspectives on low-dimensional MHP-based PDs in the future.
Collapse
Affiliation(s)
- Hsin-Ping Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Siyuan Li
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xinya Liu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Zhifeng Shi
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Jr-Hau He
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| |
Collapse
|
36
|
Shen H, Ren J, Li J, Chen Y, Lan S, Wang J, Wang H, Li D. Multistate Memory Enabled by Interface Engineering Based on Multilayer Tungsten Diselenide. ACS APPLIED MATERIALS & INTERFACES 2020; 12:58428-58434. [PMID: 33332079 DOI: 10.1021/acsami.0c19443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The diversification of data types and the explosive increase of data size in the information era continuously required to miniaturize the memory devices with high data storage capability. Atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) are promising candidates for flexible and transparent electronic and optoelectronic devices with high integration density. Multistate memory devices based on TMDs could possess high data storage capability with a large integration density and thus exhibit great potential applications in the field of data storage. Here, we report the multistate data storage based on multilayer tungsten diselenide (WSe2) transistors by interface engineering. The multiple resistance states of the WSe2 transistors are achieved by applying different gate voltage pulses, and the switching ratio of the memory can be as large as 105 with high cycling endurance. The water and oxygen molecules (H2O/O2) trapped at the interface between the SiO2 substrate and WSe2 introduce the trap states and thus the large hysteresis of the transfer curves, which leads to the multistate data storage. In addition, the laminated Au thin film electrodes make the contact interface between the electrodes and WSe2 free of dangling bond and Fermi level pinning, thus giving rise to the excellent performance of memory devices. Importantly, the interface trap states can be easily controlled by a simple oxygen plasma treatment of the SiO2 substrate, and subsequently, the performance of the multistate memory devices can be manipulated. Our findings provide a simple and efficient strategy to engineer the interface states for the multistate data storage applications and would motivate more investigations on the trap state-associated applications.
Collapse
Affiliation(s)
- Hongzhi Shen
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Junwen Ren
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Junze Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yingying Chen
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shangui Lan
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiaqi Wang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haizhen Wang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dehui Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
37
|
Bai D, Wang H, Bai Y, Najar A, Saleh N, Wang L, Liu SF. ASnX
3
—Better than Pb‐based Perovskite. NANO SELECT 2020. [DOI: 10.1002/nano.202000172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Dongliang Bai
- Shaanxi Normal University No. 620, West Chang'an Street, Chang'an district Xi'an Shaanxi 710119 China
| | - Haoxu Wang
- Shaanxi Normal University No. 620, West Chang'an Street, Chang'an district Xi'an Shaanxi 710119 China
- The University of Queensland, Queensland, Brisbane 4072 Australia
| | - Yang Bai
- The University of Queensland, Queensland, Brisbane 4072 Australia
| | - Adel Najar
- United Arab Emirates University Al Ain Abu Dhabi United Arab Emirates
| | - Na'il Saleh
- United Arab Emirates University Al Ain Abu Dhabi United Arab Emirates
| | - Lianzhou Wang
- The University of Queensland, Queensland, Brisbane 4072 Australia
| | - Shengzhong Frank Liu
- Shaanxi Normal University No. 620, West Chang'an Street, Chang'an district Xi'an Shaanxi 710119 China
- Dalian Institute of Chemical Physics Dalian China
| |
Collapse
|
38
|
Zhang X, Li J, Ma Z, Zhang J, Leng B, Liu B. Design and Integration of a Layered MoS 2/GaN van der Waals Heterostructure for Wide Spectral Detection and Enhanced Photoresponse. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47721-47728. [PMID: 32960031 DOI: 10.1021/acsami.0c11021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Molybdenum disulfide (MoS2) as a typical two-dimensional (2D) transition-metal dichalcogenide exhibits great potential applications for the next-generation nanoelectronics such as photodetectors. However, most MoS2-based photodetectors hold obvious disadvantages including a narrow spectral response in the visible region, poor photoresponsivity, and slow response speed. Here, for the first time, we report the design of a two-dimensional MoS2/GaN van der Waals (vdWs) heterostructure photodetector consisting of few-layer p-type MoS2 and very thin n-type GaN flakes. Thanks to the good crystal quality of the 2D-GaN flake and the built-in electric field in the interface depletion region of the MoS2/GaN p-n junction, photogenerated carriers can be rapidly separated and more excitons are collected by electrodes toward the high photoresponsivity of 328 A/W and a fast response time of 400 ms under the illumination of 532 nm light, which is seven times faster than pristine MoS2 flake. Additionally, the response spectrum of the photodetector is also broadened to the UV region with a high photoresponsivity of 27.1 A/W and a fast response time of 300 ms after integrating with the 2D-GaN flake, exhibiting an advantageous synergetic effect. These excellent performances render MoS2/GaN vdWs heterostructure photodetectors as promising and competitive candidates for next-generation optoelectronic devices.
Collapse
Affiliation(s)
- Xinglai Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
| | - Jing Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
| | - Zongyi Ma
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
| | - Jian Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
| | - Bing Leng
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang 110001, China
| | - Baodan Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
39
|
Li J, Wang H, Li D. Self-trapped excitons in two-dimensional perovskites. FRONTIERS OF OPTOELECTRONICS 2020; 13:225-234. [PMID: 36641579 PMCID: PMC9743880 DOI: 10.1007/s12200-020-1051-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/08/2020] [Indexed: 05/25/2023]
Abstract
With strong electron-phonon coupling, the self-trapped excitons are usually formed in materials, which leads to the local lattice distortion and localized excitons. The self-trapping strongly depends on the dimensionality of the materials. In the three-dimensional case, there is a potential barrier for self-trapping, whereas no such barrier is present for quasi-one-dimensional systems. Two-dimensional (2D) systems are marginal cases with a much lower potential barrier or nonexistent potential barrier for the self-trapping, leading to the easier formation of self-trapped states. Self-trapped excitons emission exhibits a broadband emission with a large Stokes shift below the bandgap. 2D perovskites are a class of layered structure material with unique optical properties and would find potential promising optoelectronic. In particular, self-trapped excitons are present in 2D perovskites and can significantly influence the optical and electrical properties of 2D perovskites due to the soft characteristic and strong electron-phonon interaction. Here, we summarized the luminescence characteristics, origins, and characterizations of self-trapped excitons in 2D perovskites and finally gave an introduction to their applications in optoelectronics.
Collapse
Affiliation(s)
- Junze Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Haizhen Wang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Dehui Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
40
|
Nalwa HS. A review of molybdenum disulfide (MoS 2) based photodetectors: from ultra-broadband, self-powered to flexible devices. RSC Adv 2020; 10:30529-30602. [PMID: 35516069 PMCID: PMC9056353 DOI: 10.1039/d0ra03183f] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/17/2020] [Indexed: 12/23/2022] Open
Abstract
Two-dimensional transition metal dichalcogenides (2D TMDs) have attracted much attention in the field of optoelectronics due to their tunable bandgaps, strong interaction with light and tremendous capability for developing diverse van der Waals heterostructures (vdWHs) with other materials. Molybdenum disulfide (MoS2) atomic layers which exhibit high carrier mobility and optical transparency are very suitable for developing ultra-broadband photodetectors to be used from surveillance and healthcare to optical communication. This review provides a brief introduction to TMD-based photodetectors, exclusively focused on MoS2-based photodetectors. The current research advances show that the photoresponse of atomic layered MoS2 can be significantly improved by boosting its charge carrier mobility and incident light absorption via forming MoS2 based plasmonic nanostructures, halide perovskites-MoS2 heterostructures, 2D-0D MoS2/quantum dots (QDs) and 2D-2D MoS2 hybrid vdWHs, chemical doping, and surface functionalization of MoS2 atomic layers. By utilizing these different integration strategies, MoS2 hybrid heterostructure-based photodetectors exhibited remarkably high photoresponsivity raging from mA W-1 up to 1010 A W-1, detectivity from 107 to 1015 Jones and a photoresponse time from seconds (s) to nanoseconds (10-9 s), varying by several orders of magnitude from deep-ultraviolet (DUV) to the long-wavelength infrared (LWIR) region. The flexible photodetectors developed from MoS2-based hybrid heterostructures with graphene, carbon nanotubes (CNTs), TMDs, and ZnO are also discussed. In addition, strain-induced and self-powered MoS2 based photodetectors have also been summarized. The factors affecting the figure of merit of a very wide range of MoS2-based photodetectors have been analyzed in terms of their photoresponsivity, detectivity, response speed, and quantum efficiency along with their measurement wavelengths and incident laser power densities. Conclusions and the future direction are also outlined on the development of MoS2 and other 2D TMD-based photodetectors.
Collapse
Affiliation(s)
- Hari Singh Nalwa
- Advanced Technology Research 26650 The Old Road Valencia California 91381 USA
| |
Collapse
|
41
|
Abdelhamied MM, Song Y, Liu W, Li X, Long H, Wang K, Wang B, Lu P. Improved photoemission and stability of 2D organic-inorganic lead iodide perovskite films by polymer passivation. NANOTECHNOLOGY 2020; 31:42LT01. [PMID: 32604081 DOI: 10.1088/1361-6528/aba140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
2D organic-inorganic lead iodide perovskites hold great promise for functional optoelectronic devices. However, their performances have been seriously limited by poor long-term stability in ambient environment. Here, we perform a systematic study for the stability improvement of a typical 2D organic-inorganic lead iodide perovskite (PEA)2PbI4. The degradation of the (PEA)2PbI4 films can be attributed to the interaction with the humidity in environment, which leads to decomposition of the perovskite components. Then, we demonstrate that polymer passivation provides an effective approach for improving the crystal quality and stability of the (PEA)2PbI4 films. Correspondingly, the photoemission of the polymer-passivated (PEA)2PbI4 films has been enhanced due to the decreased trap states. More importantly, a hydrophobic polymer (Poly(4-Vinylpyridine), PVP) will protect the (PEA)2PbI4 films from humidity in ambient environment, which can greatly improve the physical and chemical stability of the 2D perovskite films. As a result, the PVP-passivated (PEA)2PbI4 films can produce a bright emission even after long-term (>15 d) exposure to ambient environment (25 °C, 80% RH) and continuous UV illumination. This work provides a convenient and effective approach for improving the long-term stability of 2D organic-inorganic lead iodide perovskites, which shows great promise for fabricating large-area and versatile optoelectronic devices.
Collapse
Affiliation(s)
- Mostafa M Abdelhamied
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China. Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo, Egypt
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Fang C, Xu M, Ma J, Wang J, Jin L, Xu M, Li D. Large Optical Anisotropy in Two-Dimensional Perovskite [CH(NH 2) 2][C(NH 2) 3]PbI 4 with Corrugated Inorganic Layers. NANO LETTERS 2020; 20:2339-2347. [PMID: 32163293 DOI: 10.1021/acs.nanolett.9b04777] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Optical anisotropy plays an indispensable role in a variety of optical components. Organic halide perovskites often rely on artificially oriented nanostructures to enhance optical anisotropy due to their in-plane isotropic crystal structure, which results in unnecessary optical losses and fabrication difficulties. Here, we report the large optical anisotropy in two-dimensional perovskite [CH(NH2)2][C(NH2)3]PbI4 crystals. Without specially designing their morphology, we achieved a large photoresponse linear dichroic ratio of 2 and a photoluminescence linear dichroic ratio of 4.7. Furthermore, we identified that the polarization orientation is parallel to the corrugated inorganic layers on every crystal plane by density functional theory calculations. The anisotropy of the ab-plane and ac-plane changes in opposite trend with temperature, suggesting that the perovskite can selectively generate polarized light or unpolarized light from different crystal planes by tuning the temperature. Our studies provide a new platform toward two-dimensional perovskite-based optical polarization devices.
Collapse
Affiliation(s)
- Chen Fang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Meng Xu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiaqi Ma
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Wang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Long Jin
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ming Xu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dehui Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
43
|
Wang S, Gong Z, Li G, Du Z, Ma J, Shen H, Wang J, Li W, Ren J, Wen X, Li D. The strain effects in 2D hybrid organic-inorganic perovskite microplates: bandgap, anisotropy and stability. NANOSCALE 2020; 12:6644-6650. [PMID: 32186312 DOI: 10.1039/d0nr00657b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Strain engineering provides an efficient strategy to modulate the fundamental properties of semiconducting structures for use in functional electronic and optoelectronic devices. Here, we report on how the strain affects the bandgap, optical anisotropy and stability of two-dimensional (2D) perovskite (BA)2(MA)n-1PbnI3n+1 (n = 1-3) microplates, using photoluminescence spectroscopy. Upon applying external strain, the bandgap decreases at a rate of -5.60/-2.74/-1.38 meV per % for n = 1, 2, and 3 2D perovskites, respectively. This change of the bandgap can be ascribed to the distortion of the octahedra (Pb-I bond contraction) in 2D perovskites, supported by a study on emission anisotropy, which increases with the increase of strain. In addition, the external strain can significantly deteriorate the stability of 2D perovskites due to the strain induced distortion which would make the penetration of moisture and oxygen into the perovskite microplates easier, resulting in much faster degradation rates. Our findings not only provide insights into the design and optimization of functional devices, but also provide a new approach to improve the stability of 2D perovskite based devices.
Collapse
Affiliation(s)
- Shuai Wang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wei Y, Feng G, Mao P, Luan Y, Zhuang J, Chen N, Yang H, Li W, Yang S, Wang J. Lateral Photodetectors Based on Double-Cable Polymer/Two-Dimensional Perovskite Heterojunction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8826-8834. [PMID: 31984740 DOI: 10.1021/acsami.9b19467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Double-cable conjugated polymers and two-dimensional (2D) perovskites are both promising materials for next-generation photodetectors (PDs) due to their solution processibility and tunable optoelectronic properties. In this work, a lateral PD is designed by layering a double-cable conjugated polymer film atop a 2D Ruddlesden-Popper perovskite film. Compared to the corresponding single-layer polymer and perovskite PDs, the heterojunction device exhibits greatly improved performance with a high responsivity of 27.06 A W-1, an on/off ratio of 1379, and a short rise/decay time of 3.53/3.78 ms. In addition, a flexible device using polyimide as the substrate is successfully fabricated and exhibits comparable performance with the device on glass. This work demonstrates the great potential of double-cable polymer/2D perovskite heterojunctions in future flexible optoelectronics.
Collapse
Affiliation(s)
- Yuanzhi Wei
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guitao Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Peng Mao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yigang Luan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jing Zhuang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ningli Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Haixia Yang
- Laboratory of Advanced Polymer Materials , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Weiwei Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Shiyong Yang
- Laboratory of Advanced Polymer Materials , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Jizheng Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
45
|
Shi R, Long R. Hole Localization Inhibits Charge Recombination in Tin-Lead Mixed Perovskites: Time-Domain ab Initio Analysis. J Phys Chem Lett 2019; 10:6604-6612. [PMID: 31608643 DOI: 10.1021/acs.jpclett.9b02786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Using time domain density functional theory combined with nonadiabatic molecular dynamics, we demonstrate that the Sn dopants favor forming localized hole states with different extent at low and high doping concentrations, mimicking the small and large polarons, while retain the electron wave functions comparable with the pristine system, leading to nonadiabatic coupling decreasing by a factor of 45% and 38% and bandgap reduction by 0.04 and 0.27 eV, respectively. Furthermore, replacing heavier Pb with lighter Sn increases atomic fluctuations and accelerates loss of quantum coherence, in particular even faster at higher Sn doping concentration. As a result, the interplay among the bandgap, NA coupling, and decoherence time delays the electron-hole recombination by a factor of 3.5 and 1.3 at low and high doping concentration. Our study reveals the atomistic mechanisms of suppressed recombination dependence on Sn doping concentration, providing a new way to design high performance mixed perovskites.
Collapse
Affiliation(s)
- Ran Shi
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education , Beijing Normal University , Beijing 100875 , People's Republic of China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education , Beijing Normal University , Beijing 100875 , People's Republic of China
| |
Collapse
|
46
|
Fu Q, Wang X, Liu F, Dong Y, Liu Z, Zheng S, Chaturvedi A, Zhou J, Hu P, Zhu Z, Bo F, Long Y, Liu Z. Ultrathin Ruddlesden-Popper Perovskite Heterojunction for Sensitive Photodetection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902890. [PMID: 31390149 DOI: 10.1002/smll.201902890] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/05/2019] [Indexed: 06/10/2023]
Abstract
Thanks to their unique optical and electric properties, 2D materials have attracted a lot of interest for optoelectronic applications. Here, the emerging 2D materials, organic-inorganic hybrid perovskites with van der Waals interlayer interaction (Ruddlesden-Popper perovskites), are synthesized and characterized. Photodetectors based on the few-layer Ruddlesden-Popper perovskite show good photoresponsivity as well as good detectivity. In order to further improve the photoresponse performance, 2D MoS2 is chosen to construct the perovskite-MoS2 heterojunction. The performance of the hybrid photodetector is largely improved with 6 and 2 orders of magnitude enhancement for photoresponsivity (104 A W-1 ) and detectivity (4 × 1010 Jones), respectively, which demonstrates the facile charge separation at the interface between perovskite and MoS2 . Furthermore, the contribution of back gate tuning is proved with a greatly reduced dark current. The results demonstrated here will open up a new field for the investigation of 2D perovskites for optoelectronic applications.
Collapse
Affiliation(s)
- Qundong Fu
- Centre for Programmed Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, Singapore, 637553, Singapore
| | - Xiaolei Wang
- Institute of Modern Optics, Key Laboratory of Optical Information Science and Technology, Nankai University, Tianjin, 300350, China
| | - Fucai Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yuxin Dong
- Institute of Modern Optics, Key Laboratory of Optical Information Science and Technology, Nankai University, Tianjin, 300350, China
| | - Zirui Liu
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shoujun Zheng
- Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences and The Photonics Institute, Nanyang Technological University, Singapore, 637371, Singapore
| | - Apoorva Chaturvedi
- Centre for Programmed Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jiadong Zhou
- Centre for Programmed Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Peng Hu
- School of Physics, Northwest University, Xi'an, 710069, P. R. China
| | - Zhuqing Zhu
- Key Laboratory of Optoelectronic Technology of Jiangsu Province, School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Fang Bo
- The MOE Key Laboratory of Weak Light Nonlinear Photonics, TEDA Applied Physics Institute, and School of Physics, Nankai University, Tianjin, 300457, China
| | - Yi Long
- Centre for Programmed Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zheng Liu
- Centre for Programmed Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
47
|
Hong Z, Tan D, John RA, Tay YKE, Ho YKT, Zhao X, Sum TC, Mathews N, García F, Soo HS. Completely Solvent-free Protocols to Access Phase-Pure, Metastable Metal Halide Perovskites and Functional Photodetectors from the Precursor Salts. iScience 2019; 16:312-325. [PMID: 31203187 PMCID: PMC6581789 DOI: 10.1016/j.isci.2019.05.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 05/22/2019] [Accepted: 05/30/2019] [Indexed: 12/22/2022] Open
Abstract
Mechanochemistry is a green, solid-state, re-emerging synthetic technique that can rapidly form complex molecules and materials without exogenous heat or solvent(s). Herein, we report the application of solvent-free mechanochemical ball milling for the synthesis of metal halide perovskites, to overcome problems with solution-based syntheses. We prepared phase-pure, air-sensitive CsSnX3 (X = I, Br, Cl) and its mixed halide perovskites by mechanochemistry for the first time by reactions between cesium and tin(II) halides. Notably, we report the sole examples where metastable, high-temperature phases like cubic CsSnCl3, cubic CsPbI3, and trigonal FAPbI3 were accessible at ambient temperatures and pressures without post-synthetic processing. The perovskites can be prepared up to "kilogram scales." Lead-free, all-inorganic photodetector devices were fabricated using the mechanosynthesized CsSnBr1.5Cl1.5 under solvent-free conditions and showed 10-fold differences between on-off currents. We highlight an essentially solvent-free, general approach to synthesize metastable compounds and fabricate photodetectors from commercially available precursors.
Collapse
Affiliation(s)
- Zonghan Hong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Davin Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Rohit Abraham John
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yong Kang Eugene Tay
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yan King Terence Ho
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Xin Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Nripan Mathews
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Energy Research Institute @NTU (ERI@N), Research Techno Plaza, X-Frontier Block, Level 5, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Felipe García
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Han Sen Soo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore; Solar Fuels Laboratory, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|