1
|
Wang Q, Gao Y, Chen Y, Wang X, Pei Q, Zhang T, Wang C, Pan J. Synergistic Enhancement of Antibacterial and Osteo-Immunomodulatory Activities of Titanium Implants via Dual-Responsive Multifunctional Surfaces. Adv Healthc Mater 2025; 14:e2404260. [PMID: 39690750 DOI: 10.1002/adhm.202404260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Bone implant-associated infections and inflammations, primarily caused by bacteria colonization, frequently result in unsuccessful procedures and pose significant health risks to patients. To mitigate these challenges, the development of engineered implants with spatiotemporal regulation capabilities, designed to inhibit bacterial survival and modulate immune responses in the early stage, while promoting bone defect healing in the late stage is proposed. The implants are functionalized with ε-poly-l-lysine-phenylboronic acid (PP) via dynamic boronic ester bonds, which facilitate its release through a reactive oxygen species (ROS) and pH-responsive strategy, thereby establishing an antibacterial microenvironment on and around the implants. Additionally, the dynamic metal coordination interaction facilitates the loading and sustained release of Sr2+ under an acidic environment, providing immunomodulatory and osteogenic effects. The ROS/pH-responsive feature, coupled with the implant-bone tissue integration process, affords precise spatiotemporal regulation of the Ti-TA-Sr-PP implants. This strategy represents a promising approach for the preparation of advanced bone implants.
Collapse
Affiliation(s)
- Qing Wang
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Ya Gao
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yanzheng Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 201100, China
| | - Xuan Wang
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Qingguo Pei
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Taiyu Zhang
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Changping Wang
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jinsong Pan
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| |
Collapse
|
2
|
Ghattavi S, Homaei A, Kamrani E. Innovative CuO-melanin hybrid nanoparticles and polytetrafluoroethylene for enhanced antifouling coatings. Colloids Surf B Biointerfaces 2025; 246:114387. [PMID: 39577146 DOI: 10.1016/j.colsurfb.2024.114387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Based on current research, a highly effective, completely biocompatible, and eco-friendly antifouling method was developed. Sepia pharaonis was used to synthesize melanin nanoparticles from its ink. To improve the anti-biofouling characteristics, CuO nanoparticles were synthesized from Padina sp., and a CuO-melanin hybrid nanoparticle complex was created under reflux. The XRD spectrum of the hybrid nanoparticles revealed several prominent peaks, indicating the crystalline structure of the nanoparticles. An EDS analysis identified copper, carbon, and oxygen in the hybrid nanoparticles. According to FE-SEM analysis, CuO-melanin hybrid nanoparticles displayed spherical morphology, with sizes ranging from 15 nm to 55 nm. DLS analysis showed that the hydrodynamic diameter of CuO-melanin hybrid nanoparticles was 187.5 nm. The biological test showed that CuO-melanin nanoparticles had the highst effect on marine bacteria (Phaeobacter sp. (6.25 μg/mL), Alteromonas sp. (12.5 μg/mL)), and algae (Isochrysis galbana Parke) (99 %) after 48 h. The CuO-melanin (3 wt%) exhibited the lowest pseudo-barnacle adhesion strength at 0.021 MPa and the lowest surface free energy, measuring 14.22 mN/m. The field immersion study in a marine environment showed that among the panels tested, the one containing 3 wt% CuO-melanin hybrid nanoparticles with polytetrafluoroethylene yielded the most favorable and efficient outcome, since it led to the lowest measured weight of biofouling at 26.44 g. The findings of this study show that CuO-melanin hybrid nanoparticles combined with polytetrafluoroethylene exhibit highly promising characteristics, make them appealing for antifouling applications.
Collapse
Affiliation(s)
- Saba Ghattavi
- Fisheries Department, Faculty of Marine Sciences, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Ehsan Kamrani
- Fisheries Department, Faculty of Marine Sciences, University of Hormozgan, Bandar Abbas, Iran.
| |
Collapse
|
3
|
Daneshgar H, Fatahi Y, Salehi G, Bagherzadeh M, Rabiee N. Highly sensitive and selective detection of SARS-CoV-2 spike protein S1 using optically-active nanocomposite-coated melt-blown masks. Anal Chim Acta 2025; 1336:343534. [PMID: 39788686 DOI: 10.1016/j.aca.2024.343534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Detection of viruses, including coronavirus (SARS-CoV-2), via facile, fast, and optical methods is highly important to control pandemics. In this regard, optically-active nanomaterials and nanoparticles (NPs) are a wise choice due to their long-term stability, ease of functionalization, and modifications. In this work, a nanocomposite based on NiFe layered double hydroxide (LDH) and ZIF-67 metal-organic framework (MOF) was designed and synthesized, and decorated on the surface of the melt-blown mask. The developed nanocomposite has a fluorescence emission at 625 nm. The selectivity of the nanocomposite towards the SARS-CoV-2 spike protein S1 was increased by adding CuO NPs. The limit of detection (LOD) of 1.5 nM and 24.5 nM against SARS-CoV-2 spike protein S1 was recorded by NiFe LDH@ZIF-67@CuO nanocomposite, and NiFe LDH@ZIF-67@CuO decorated on the surface of melt-blown. Also, in the presence of potential competitors and other types of pathogens, including Influenza virus types A and B, Staphylococcus aureus bacteria, and even cations/macromolecules, the fluorescence intensity changes had more than 40 % difference.
Collapse
Affiliation(s)
- Hossein Daneshgar
- Department of Chemistry, Sharif University of Technology, Tehran, Iran; Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14155-6451, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14155-6451, Iran
| | - Ghazal Salehi
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077, India.
| |
Collapse
|
4
|
Gudkov SV, Burmistrov DE, Fomina PA, Validov SZ, Kozlov VA. Antibacterial Properties of Copper Oxide Nanoparticles (Review). Int J Mol Sci 2024; 25:11563. [PMID: 39519117 PMCID: PMC11547097 DOI: 10.3390/ijms252111563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The use of metal and metal oxide nanoparticles is frequently regarded as a potential solution to the issue of bacterial antibiotic resistance. Among the proposed range of nanoparticles with antibacterial properties, copper oxide nanoparticles are of particular interest. Although the antibacterial properties of copper have been known for a considerable period of time, studies on the effects of copper oxide nanomaterials with respect to biological systems have attracted considerable attention in recent years. This review presents a summary of the antibacterial properties of copper oxide nanoparticles, the mechanisms by which the antibacterial effect is realized, and the key reported methods of modifying these nanoparticles to improve their antibacterial activity. A comparative analysis of the effectiveness of these nanoparticles is presented depending on the type of microorganism, the shape of the nanoparticles, and the Gram classification of bacteria based on data from published sources. In addition, the review addresses the biological activities of copper oxide nanoparticles, including their antifungal and cytotoxic properties, as well as their "antioxidant" activity. According to the conducted analysis of the literature data, it can be concluded that copper oxide nanoparticles have a significant bacteriostatic potential with respect to a wide range of microorganisms and, in some cases, contribute to the inhibition of fungal growth. At the same time, the sensitivity of Gram-positive bacteria to the effect of copper oxide nanoparticles was often higher than that of Gram-negative bacteria.
Collapse
Affiliation(s)
- Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.E.B.); (P.A.F.); (V.A.K.)
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod Institute, Gagarin Av. 23, 603105 Nizhny Novgorod, Russia
| | - Dmitry E. Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.E.B.); (P.A.F.); (V.A.K.)
| | - Polina A. Fomina
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.E.B.); (P.A.F.); (V.A.K.)
| | - Shamil Z. Validov
- Federal Research Center Kazan Scientific Center of the Russian Academy of Sciences, ul. Lobachevskogo 2/31, Tatarstan, 420088 Kazan, Russia;
| | - Valery A. Kozlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.E.B.); (P.A.F.); (V.A.K.)
| |
Collapse
|
5
|
Zhan Y, Hu H, Yu Y, Chen C, Zhang J, Jarnda KV, Ding P. Therapeutic strategies for drug-resistant Pseudomonas aeruginosa: Metal and metal oxide nanoparticles. J Biomed Mater Res A 2024; 112:1343-1363. [PMID: 38291785 DOI: 10.1002/jbm.a.37677] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/25/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Pseudomonas aeruginosa (PA) is a widely prevalent opportunistic pathogen. Multiple resistant strains of PA have emerged from excessive or inappropriate use of antibiotics, making their eradication increasingly difficult. Therefore, the search for highly efficient and secure novel antimicrobial agents is crucial. According to reports, there is an increasing exploration of nanometals for antibacterial purposes. The antibacterial mechanisms involving the nanomaterials themselves, the release of ions, and the induced oxidative stress causing leakage and damage to biomolecules are widely accepted. Additionally, the study of the cytotoxicity of metal nanoparticles is crucial for their antibacterial applications. This article summarizes the types of metal nanomaterials and metal oxide nanomaterials that can be used against PA, their respective unique antibacterial mechanisms, cytotoxicity, and efforts made to improve antibacterial performance and reduce toxicity, including combination therapy with other materials and antibiotics, as well as green synthesis approaches.
Collapse
Affiliation(s)
- Yujuan Zhan
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Huiting Hu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Ying Yu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Cuimei Chen
- School of Public Health, Xiangnan University, Chenzhou, Hunan, China
| | - Jingwen Zhang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Kermue Vasco Jarnda
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| |
Collapse
|
6
|
Tang H, Chu W, Xiong J, Wu H, Cheng L, Cheng L, Luo J, Yin H, Li J, Li J, Yang J, Li J. Seeking Cells, Targeting Bacteria: A Cascade-Targeting Bacteria-Responsive Nanosystem for Combating Intracellular Bacterial Infections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311967. [PMID: 38712482 DOI: 10.1002/smll.202311967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/26/2024] [Indexed: 05/08/2024]
Abstract
Intracellular bacteria pose a great challenge to antimicrobial therapy due to various physiological barriers at both cellular and bacterial levels, which impede drug penetration and intracellular targeting, thereby fostering antibiotic resistance and yielding suboptimal treatment outcomes. Herein, a cascade-target bacterial-responsive drug delivery nanosystem, MM@SPE NPs, comprising a macrophage membrane (MM) shell and a core of SPE NPs. SPE NPs consist of phenylboronic acid-grafted dendritic mesoporous silica nanoparticles (SP NPs) encapsulated with epigallocatechin-3-gallate (EGCG), a non-antibiotic antibacterial component, via pH-sensitive boronic ester bonds are introduced. Upon administration, MM@SPE NPs actively home in on infected macrophages due to the homologous targeting properties of the MM shell, which is subsequently disrupted during cellular endocytosis. Within the cellular environment, SPE NPs expose and spontaneously accumulate around intracellular bacteria through their bacteria-targeting phenylboronic acid groups. The acidic bacterial microenvironment further triggers the breakage of boronic ester bonds between SP NPs and EGCG, allowing the bacterial-responsive release of EGCG for localized intracellular antibacterial effects. The efficacy of MM@SPE NPs in precisely eliminating intracellular bacteria is validated in two rat models of intracellular bacterial infections. This cascade-targeting responsive system offers new solutions for treating intracellular bacterial infections while minimizing the risk of drug resistance.
Collapse
Affiliation(s)
- Haiqin Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Wenlin Chu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jingdi Xiong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hongkun Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Li Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jun Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Han Yin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jinlin Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jianshu Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
7
|
Tageldin A, Omolo CA, Nyandoro VO, Elhassan E, Kassam SZF, Peters XQ, Govender T. Engineering dynamic covalent bond-based nanosystems for delivery of antimicrobials against bacterial infections. J Control Release 2024; 371:237-257. [PMID: 38815705 DOI: 10.1016/j.jconrel.2024.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Nanodrug delivery systems (NDDS) continue to be explored as novel strategies enhance therapy outcomes and combat microbial resistance. The need for the formulation of smart drug delivery systems for targeting infection sites calls for the engineering of responsive chemical designs such as dynamic covalent bonds (DCBs). Stimuli response due to DCBs incorporated into nanosystems are emerging as an alternative way to target infection sites, thus enhancing the delivery of antibacterial agents. This leads to the eradication of bacterial infections and the reduction of antimicrobial resistance. Incorporating DCBs on the backbone of the nanoparticles endows the systems with several properties, including self-healing, controlled disassembly, and stimuli responsiveness, which are beneficial in the delivery and release of the antimicrobial at the infection site. This review provides a comprehensive and current overview of conventional DCBs-based nanosystems, stimuli-responsive DCBs-based nanosystems, and targeted DCBs-based nanosystems that have been reported in the literature for antibacterial delivery. The review emphasizes the DCBs used in their design, the nanomaterials constructed, the drug release-triggering stimuli, and the antibacterial efficacy of the reported DCBs-based nanosystems. Additionally, the review underlines future strategies that can be used to improve the potential of DCBs-based nanosystems to treat bacterial infections and overcome antibacterial resistance.
Collapse
Affiliation(s)
- Abdelrahman Tageldin
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, P. O. Box 14634-00800, Nairobi, Kenya.
| | - Vincent O Nyandoro
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Eman Elhassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Sania Z F Kassam
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Xylia Q Peters
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
8
|
Shang X, Wang H, Yu Y, Gu J, Zeng J, Hou S. Cur@ZIF-8@BA nanomaterials with pH-responsive and photodynamic therapy properties promotes antimicrobial activity. Front Chem 2024; 12:1417715. [PMID: 38979404 PMCID: PMC11228171 DOI: 10.3389/fchem.2024.1417715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) has emerged as a highly promising strategy for non-antibiotic treatment of infections due to its unique advantages in efficient bactericidal action and reduction of drug resistance. The natural photosensitizing properties of curcumin (Cur) are widely acknowledged; however, its limited bioavailability has impeded its practical application. In this study, we developed a nanomaterial called Cur@ZIF-8@BA by encapsulating Cur within ZIF-8 and modifying the surface with boric acid (BA). The Cur@ZIF-8@BA exhibits pH-responsive properties and enhances bacterial binding, thereby effectively promoting photodynamic therapy. Moreover, its antibacterial activity against E. coli, Staphylococcus aureus and A. baumannii is significantly increased in the presence of light compared to a dark environment. The mechanism behind this may be that BA increases the affinity of Cur@ZIF-8@BA towards bacteria, and making released Zn2+ and BA from the nanomaterial increase bacterial cell membrane permeability. This facilitates efficient delivery of Cur into bacterial cells, resulting in generation of abundant reactive oxygen species (ROS) and subsequent bactericidal activity. In conclusion, our prepared Cur@ZIF-8@BA holds great promise as a photodynamically mediated antimicrobial strategy.
Collapse
Affiliation(s)
- Xiujuan Shang
- Department of Laboratory Medicine, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, Jiangsu, China
| | - Hongdong Wang
- Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu, China
| | - Yongbo Yu
- Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Jin Gu
- Department of Laboratory Medicine, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, Jiangsu, China
| | - Jian Zeng
- Department of Laboratory Medicine, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, Jiangsu, China
| | - Sinan Hou
- Department of Laboratory Medicine, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, Jiangsu, China
| |
Collapse
|
9
|
Su C, Chen A, Liang W, Xie W, Xu X, Zhan X, Zhang W, Peng C. Copper-based nanomaterials: Opportunities for sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171948. [PMID: 38527545 DOI: 10.1016/j.scitotenv.2024.171948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
The exponential growth of the global population has resulted in a significant surge in the demand for food worldwide. Additionally, the impact of climate change has exacerbated crop losses caused by pests and pathogens. The transportation and utilization of traditional agrochemicals in the soil are highly inefficient, resulting in significant environmental losses and causing severe pollution of both the soil and aquatic ecosystems. Nanotechnology is an emerging field with significant potential for market applications. Among metal-based nanomaterials, copper-based nanomaterials have demonstrated remarkable potential in agriculture, which are anticipated to offer a promising alternative approach for enhancing crop yields and managing diseases, among other benefits. This review firstly performed co-occurrence and clustering analyses of previous studies on copper-based nanomaterials used in agriculture. Then a comprehensive review of the applications of copper-based nanomaterials in agricultural production was summarized. These applications primarily involved in nano-fertilizers, nano-regulators, nano-stimulants, and nano-pesticides for enhancing crop yields, improving crop resistance, promoting crop seed germination, and controlling crop diseases. Besides, the paper concluded the potential impact of copper-based nanomaterials on the soil micro-environment, including soil physicochemical properties, enzyme activities, and microbial communities. Additionally, the potential mechanisms were proposed underlying the interactions between copper-based nanomaterials, pathogenic microorganisms, and crops. Furthermore, the review summarized the factors affecting the application of copper-based nanomaterials, and highlighted the advantages and limitations of employing copper-based nanomaterials in agriculture. Finally, insights into the future research directions of nano-agriculture were put forward. The purpose of this review is to encourage more researches and applications of copper-based nanomaterials in agriculture, offering a novel and sustainable strategy for agricultural development.
Collapse
Affiliation(s)
- Chengpeng Su
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Anqi Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenwen Xie
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiang Xu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiuping Zhan
- Shanghai Agricultural Technology Extension and Service Center, Shanghai 201103, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
10
|
Dilmani SA, Koç S, Erkut TS, Gümüşderelioğlu M. Polymer-clay nanofibrous wound dressing materials containing different boron compounds. J Trace Elem Med Biol 2024; 83:127408. [PMID: 38387426 DOI: 10.1016/j.jtemb.2024.127408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Montmorillonite (MMT) is a biocompatible nanoclay and its incorporation into polymeric matrix not only improves the polymer's wettability/biodegradability, but also enhances cellular proliferation, and differentiation. On the other hand, the positive effect of boron (B) on the healing cascade and its antibacterial properties have drawn the attention of researchers. MATERIALS & METHODS In this regard, B compounds in different chemical structures, boron nitride (BN), zinc borate (ZB), and phenylboronic acid (PBA), were adsorbed onto MMT and then, poly (lactic acid) (PLA) based MMT/B including micron/submicron fibers were fabricated by electrospinning. RESULTS The incorporation of MMT nanoparticles into the PLA demonstrated a porous fiber topography with enhanced thermal properties, water uptake capacity, and antibacterial effect. Furthermore, the composites including BN, ZB, and PBA showed bacteriostatic effects against Gram-negative and Gram-positive pathogenic bacteria (Escherichia coli and Staphylococcus aureus). In-vitro cell culture studies performed with human dermal fibroblasts (HDF) indicated the non-toxic effect of B compounds. The results showed that incorporation of MMT supported cell adhesion and proliferation, and further addition of B compounds especially PBA increased cell viability for 14 days. CONCLUSION The results illustrated the acceptable characteristics of the B-containing composites and their favorable effect on the cells, demonstrating their potential as a skin tissue engineering product.
Collapse
Affiliation(s)
- Sara Asghari Dilmani
- Graduate School of Science and Engineering. Hacettepe University, Beytepe, Ankara, Turkey; Bioengineering Department. Hacettepe University, Beytepe, Ankara, Turkey
| | - Sena Koç
- Graduate School of Science and Engineering. Hacettepe University, Beytepe, Ankara, Turkey; Chemical Engineering Department. Hacettepe University, Beytepe, Ankara, Turkey
| | - Tülay Selin Erkut
- Graduate School of Science and Engineering. Hacettepe University, Beytepe, Ankara, Turkey; Chemical Engineering Department. Hacettepe University, Beytepe, Ankara, Turkey
| | - Menemşe Gümüşderelioğlu
- Bioengineering Department. Hacettepe University, Beytepe, Ankara, Turkey; Chemical Engineering Department. Hacettepe University, Beytepe, Ankara, Turkey.
| |
Collapse
|
11
|
Athab ZH, Halbus AF, Atiyah AJ, Ali SSM, Al Talebi ZA. High-performance photocatalytic degradation and antifungal activity of chromium-doped nickel oxide nanoparticles. ANAL SCI 2024; 40:655-670. [PMID: 38261260 DOI: 10.1007/s44211-023-00499-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024]
Abstract
The elimination of pollutants such as dyes and fungi has become a tedious process hence there is a need for multifunctional materials that can be used for the removal or degradation of various pollutants from wastewater. Here, a nickel oxide nanoparticle (NiONPs) was synthesized by the co-precipitation method. In the current study, a composite of nickel oxide nanoparticles (NiONPs) was synthesized using nitrogen and chromium as dopants to create (N/NiONPs) and (Cr/N/NiONPs), respectively and used for the removal of dyes and fungi. The synthesized nanocomposites were characterized using zeta potential (ZP), scanning electron microscopy (SEM), X-rays diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The NiONPs, N/NiONPs and Cr/N/NiONPs were tested for the degradation of two dye pollutants, Reactive blue 13 (RB13) and eosin dye. The obtained results showed that Cr/N/NiONPs were more efficient than NiONPs and N/NiONPs for dye degradation by applying the same irradiation conditions. The Cr/N/NiONPs nanocomposites showed very good degradation efficiency of dye up to 94.2% for the RB13 and 90.8% for the eosin. We also examined the antifungal action of the NiONPs, N/NiONPs and Cr/N/NiONPs against Trichoderma fungus. The results showed that the Cr/N/NiONPs have an extremely strong antifungal impact on Trichoderma. This could be explained by the strong adhesion of Cr/N/NiONPs to the Trichoderma surface due to electrostatic attraction. This work has demonstrated that it is possible to create environmentally safe materials that can be used for the degradation of different dyes and the improvement of more effective antifungal treatments with lower active agent doses for fungus control with potential big economic benefits.
Collapse
Affiliation(s)
- Zahraa H Athab
- Environmental Research and Studies Center, University of Babylon, Hilla, Iraq
| | - Ahmed F Halbus
- Department of Chemistry, College of Science, University of Babylon, Hilla, Iraq.
| | - Abbas J Atiyah
- Department of Chemistry, College of Science, University of Babylon, Hilla, Iraq
| | - Shaimaa Satae M Ali
- Environmental Research and Studies Center, University of Babylon, Hilla, Iraq
| | - Z A Al Talebi
- Department of Chemistry, College of Science, University of Babylon, Hilla, Iraq
| |
Collapse
|
12
|
Ning W, Luo X, Zhang Y, Tian P, Xiao Y, Li S, Yang X, Li F, Zhang D, Zhang S, Liu Y. Broad-spectrum nano-bactericide utilizing antimicrobial peptides and bimetallic Cu-Ag nanoparticles anchored onto multiwalled carbon nanotubes for sustained protection against persistent bacterial pathogens in crops. Int J Biol Macromol 2024; 265:131042. [PMID: 38521320 DOI: 10.1016/j.ijbiomac.2024.131042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Worldwide crop yields are threatened by persistent pathogenic bacteria that cause significant damage and jeopardize global food security. Chemical pesticides have shown limited effectiveness in protecting crops from severe yield loss. To address this obstacle, there is a growing need to develop environmentally friendly bactericides with broad-spectrum and sustained protection against persistent crop pathogens. Here, we present a method for preparing a nanocomposite that combines antimicrobial peptides (AMPs) and bimetallic Cu-Ag nanoparticles anchored onto multiwalled carbon nanotubes (MWCNTs). The nanocomposite exhibited dual antibacterial activity by disrupting bacterial cell membranes and splicing nucleic acids. By functionalizing MWCNTs with small AMPs (sAMPs), we achieved enhanced stability and penetration of the nanocomposite, and improved loading capacity of the Cu-Ag nanoparticles. The synthesized MWCNTs&CuNCs@AgNPs@P nanocomposites demonstrated broad-spectrum lethality against both Gram-positive and Gram-negative bacterial pathogens. Glasshouse pot trials confirmed the efficacy of the nanocomposites in protecting rice crops against bacterial leaf blight and tomato crops against bacterial wilt. These findings highlight the excellent antibacterial properties of the MWCNTs&CuNCs@AgNPs@P nanocomposite and its potential to replace chemical pesticides, offering significant advantages for agricultural applications.
Collapse
Affiliation(s)
- Weimin Ning
- Longping branch, Biology College, Hunan University, Changsha 410125, China
| | - Xiangwen Luo
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Yu Zhang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Peijie Tian
- Plant Protection College, Yunnan Agricultural University, Kunming 650000, China
| | - Youlun Xiao
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Shijun Li
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Xiao Yang
- Longping branch, Biology College, Hunan University, Changsha 410125, China
| | - Fan Li
- Plant Protection College, Yunnan Agricultural University, Kunming 650000, China
| | - Deyong Zhang
- Longping branch, Biology College, Hunan University, Changsha 410125, China; Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Songbai Zhang
- Longping branch, Biology College, Hunan University, Changsha 410125, China; Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China.
| | - Yong Liu
- Longping branch, Biology College, Hunan University, Changsha 410125, China; Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China.
| |
Collapse
|
13
|
Parambil AM, Prasad A, Tomar AK, Ghosh I, Rajamani P. Biogenic carbon dots: a novel mechanistic approach to combat multidrug-resistant critical pathogens on the global priority list. J Mater Chem B 2023; 12:202-221. [PMID: 38073612 DOI: 10.1039/d3tb02374e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
This study delves into investigating alternative methodologies for anti-microbial therapy by focusing on the mechanistic assessment of carbon dots (CDs) synthesized from F. benghalensis L. extracts. These biogenic CDs have shown remarkable broad-spectrum anti-bacterial activity even against multi-drug resistant (MDR) bacterial strains, prompting a deeper examination of their potential as novel anti-microbial agents. The study highlights the significant detrimental impact of CDs on bacterial cells through oxidative damage, which disrupts the delicate balance of ROS control within the cells. Notably, even at low doses, the anti-bacterial activity of CDs against MDR strains of P. aeruginosa and E. cloacae is highly effective, demonstrating their promise as potent antimicrobial agents. The research sheds light on the capacity of CDs to generate ROS, leading to membrane lipid peroxidation, loss of membrane potential, and rupture of bacterial cell membranes, resulting in cytoplasmic leakage. SEM and TEM analysis revealed time-dependent cell surface, morphological, and ultrastructural changes such as elongation of the cells, irregular surface protrusion, cell wall and cell membrane disintegration, internalization, and aggregations of CDs. These mechanisms offer a comprehensive explanation of how CDs exert their anti-bacterial effects. We also determined the status of plasma membrane integrity and evaluated live (viable) and dead cells upon CD exposure by flow cytometry. Furthermore, comet assay, biochemical assays, and SDS PAGE identify DNA damage, carbohydrate and protein leakage, and distinct differences in protein expression, adding another layer of understanding to the mechanisms behind CDs' anti-bacterial activity. These findings pave the way for future research on managing ROS levels and developing CDs with enhanced anti-bacterial properties, presenting a breakthrough in anti-microbial therapy.
Collapse
Affiliation(s)
- Ajith Manayil Parambil
- School of Environmental Sciences, Jawaharlal Nehru University (JNU), New Delhi 110067, India.
| | - Abhinav Prasad
- School of Environmental Sciences, Jawaharlal Nehru University (JNU), New Delhi 110067, India.
| | - Anuj Kumar Tomar
- School of Environmental Sciences, Jawaharlal Nehru University (JNU), New Delhi 110067, India.
| | - Ilora Ghosh
- School of Environmental Sciences, Jawaharlal Nehru University (JNU), New Delhi 110067, India.
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University (JNU), New Delhi 110067, India.
| |
Collapse
|
14
|
Peng W, Li L, Zhang Y, Su H, Jiang X, Liu H, Huang X, Zhou L, Shen XC, Liu C. Photothermal synergistic nitric oxide controlled release injectable self-healing adhesive hydrogel for biofilm eradication and wound healing. J Mater Chem B 2023; 12:158-175. [PMID: 38054356 DOI: 10.1039/d3tb02040a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The development of injectable self-healing adhesive hydrogel dressings with excellent bactericidal activity and wound healing ability is urgently in demand for combating biofilm infections. Herein, a multifunctional hydrogel (QP/QT-MB) with near-infrared (NIR) light-activated mild photothermal/gaseous antimicrobial activity was developed based on the dynamic reversible borate bonds and hydrogen bonds crosslinking between quaternization chitosan (QCS) derivatives alternatively containing phenylboronic acid and catechol-like moieties in conjunction with the in situ encapsulation of BNN6-loaded mesoporous polydopamine (MPDA@BNN6 NPs). Given the dynamic reversible cross-linking feature, the versatile hybrid hydrogel exhibited injectability, flexibility, and rapid self-healing ability. The numerous phenylboronic acid and catechol-like moieties on the QCS backbone confer the hydrogel with specific bacterial affinity, desirable tissue adhesion, and antioxidant stress ability that enhance bactericidal activity and facilitate the regeneration of infection wounds. Under NIR irradiation, the QP/QT-MB hydrogels exhibited a desirable mild photothermal effect and NIR-activity controllable NO delivery, combined with the endogenous contact antimicrobial activity of hydrogel, contributing jointly to induce dispersal of biofilms and disruption of the bacterial plasma membranes, ultimately leading to bacteria inactivation and biofilm elimination. In vivo experiments demonstrated that the fabricated QP/QT-MB hydrogel platform was capable of inducing efficient eradication of the S. aureus biofilm in a severely infected wound model and accelerating infected wound repair by promoting collagen deposition, angiogenesis, and suppressing inflammatory responses. Additionally, the QP/QT-MB hydrogel demonstrated excellent biocompatibility in vitro and in vivo. Collectively, the hydrogel (QP/QT-MB) reveals great potential application prospects as a promising alternative in the field of biofilm-associated infection treatment.
Collapse
Affiliation(s)
- Weiling Peng
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Lixia Li
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Yu Zhang
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Haibing Su
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Xiaohe Jiang
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Haimeng Liu
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Xiaohua Huang
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Li Zhou
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541001, China
| | - Chanjuan Liu
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| |
Collapse
|
15
|
Khosla H, Seche W, Ammerman D, Elyahoodayan S, Caputo GA, Hettinger J, Amini S, Feng G. Development of antibacterial neural stimulation electrodes via hierarchical surface restructuring and atomic layer deposition. Sci Rep 2023; 13:19778. [PMID: 37957282 PMCID: PMC10643707 DOI: 10.1038/s41598-023-47256-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023] Open
Abstract
Miniaturization and electrochemical performance enhancement of electrodes and microelectrode arrays in emerging long-term implantable neural stimulation devices improves specificity, functionality, and performance of these devices. However, surgical site and post-implantation infections are amongst the most devastating complications after surgical procedures and implantations. Additionally, with the increased use of antibiotics, the threat of antibiotic resistance is significant and is increasingly being recognized as a global problem. Therefore, the need for alternative strategies to eliminate post-implantation infections and reduce antibiotic use has led to the development of medical devices with antibacterial properties. In this work, we report on the development of electrochemically active antibacterial platinum-iridium electrodes targeted for use in neural stimulation and sensing applications. A two-step development process was used. Electrodes were first restructured using femtosecond laser hierarchical surface restructuring. In the second step of the process, atomic layer deposition was utilized to deposit conformal antibacterial copper oxide thin films on the hierarchical surface structure of the electrodes to impart antibacterial properties to the electrodes with minimal impact on electrochemical performance of the electrodes. Morphological, compositional, and structural properties of the electrodes were studied using multiple modalities of microscopy and spectroscopy. Antibacterial properties of the electrodes were also studied, particularly, the killing effect of the hierarchically restructured antibacterial electrodes on Escherichia coli and Staphylococcus aureus-two common types of bacteria responsible for implant infections.
Collapse
Affiliation(s)
- Henna Khosla
- Department of Mechanical Engineering, Villanova University, Villanova, PA, 19085, USA
| | - Wesley Seche
- Pulse Technologies Inc., Research and Development, Quakertown, PA, 18951, USA
| | - Daniel Ammerman
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, 08028, USA
| | - Sahar Elyahoodayan
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Gregory A Caputo
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, 08028, USA
| | - Jeffrey Hettinger
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ, 08028, USA
| | - Shahram Amini
- Pulse Technologies Inc., Research and Development, Quakertown, PA, 18951, USA.
- Biomedical Engineering Department, University of Connecticut, Storrs, CT, 06269, USA.
| | - Gang Feng
- Department of Mechanical Engineering, Villanova University, Villanova, PA, 19085, USA
| |
Collapse
|
16
|
Chen Z, Zhou W, Wei Y, Shi L, Zhang Z, Dadgar M, Zhu G, Zhang G. Preparation and performance of a stimuli-responsive drug delivery system: novel light-triggered temperature-sensitive drug-loaded microcapsules. J Mater Chem B 2023; 11:9757-9764. [PMID: 37807767 DOI: 10.1039/d3tb01836a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Stimuli-responsive/smart drug delivery systems (DDSs), particularly those that use temperature as a stimuli-response factor to activate drug release, are the subject of recent research. A phase change material (PCM) is a popular thermally responsive material that can be used as a drug carrier and only when the system temperature is above the phase change point is the drug released following the phase change material changing from solid to liquid. In this study, a novel NIR light-triggered temperature-sensitive drug delivery system is developed for controllable release of acyclovir (ACV). For this purpose, a mixture of a phase change material (T38) and an ACV compound is first emulsified with copper oxide nanoparticles (CuO NPs) as a Pickering stabilizer and a photothermal conversion material, and then encapsulated with SiO2 to form a photothermal stimuli-responsive delivery system. This system shows a uniform spherical shape with a well-distinct core-shell structure, and is further experimentally proven to be able to controllably release drugs with solid-liquid transition of the phase change carrier upon temperature change. These results indicate that cumulative release of ACV can reach 51.2% at 40 °C within 20 hours, which is much higher than 27.3% release achieved below the melting point of T38. In addition, CuO NPs with excellent photothermal conversion ability endow the system with precisely controllable drug delivery via NIR light stimulation, where the cumulative drug release can reach 83.6% after 7 cycles of light stimulation, allowing controlled release at a specific time or location.
Collapse
Affiliation(s)
- Zhengguo Chen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Wangting Zhou
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yujing Wei
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Lingling Shi
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Zhaoxia Zhang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Mehran Dadgar
- Department of Textile, University of Neyshabur, Adib Boulevard, Khorasan Razavi Province, Iran
| | - Guocheng Zhu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Guoqing Zhang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
17
|
Zhou X, Dong L, Zhao B, Hu G, Huang C, Liu T, Lu Y, Zheng M, Yu Y, Yang Z, Cheng S, Xiong Y, Luo G, Qian W, Yin R. A photoactivatable and phenylboronic acid-functionalized nanoassembly for combating multidrug-resistant gram-negative bacteria and their biofilms. BURNS & TRAUMA 2023; 11:tkad041. [PMID: 37849944 PMCID: PMC10578387 DOI: 10.1093/burnst/tkad041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/23/2023] [Accepted: 07/19/2023] [Indexed: 10/19/2023]
Abstract
Background Multidrug-resistant (MDR) gram-negative bacteria-related infectious diseases have caused an increase in the public health burden and mortality. Moreover, the formation of biofilms makes these bacteria difficult to control. Therefore, developing novel interventions to combat MDR gram-negative bacteria and their biofilms-related infections are urgently needed. The purpose of this study was to develop a multifunctional nanoassembly (IRNB) based on IR-780 and N, N'-di-sec-butyl-N, N'- dinitroso-1,4-phenylenediamine (BNN6) for synergistic effect on the infected wounds and subcutaneous abscesses caused by gram-negative bacteria. Methods The characterization and bacteria-targeting ability of IRNB were investigated. The bactericidal efficacy of IRNB against gram-negative bacteria and their biofilms was demonstrated by crystal violet staining assay, plate counting method and live/dead staining in vitro. The antibacterial efficiency of IRNB was examined on a subcutaneous abscess and cutaneous infected wound model in vivo. A cell counting kit-8 assay, Calcein/PI cytotoxicity assay, hemolysis assay and intravenous injection assay were performed to detect the biocompatibility of IRNB in vitro and in vivo. Results Herein, we successfully developed a multifunctional nanoassembly IRNB based on IR-780 and BNN6 for synergistic photothermal therapy (PTT), photodynamic therapy (PDT) and nitric oxide (NO) effect triggered by an 808 nm laser. This nanoassembly could accumulate specifically at the infected sites of MDR gram-negative bacteria and their biofilms via the covalent coupling effect. Upon irradiation with an 808 nm laser, IRNB was activated and produced both reactive oxygen species (ROS) and hyperthermia. The local hyperthermia could induce NO generation, which further reacted with ROS to generate ONOO-, leading to the enhancement of bactericidal efficacy. Furthermore, NO and ONOO- could disrupt the cell membrane, which converts bacteria to an extremely susceptible state and further enhances the photothermal effect. In this study, IRNB showed a superior photothermal-photodynamic-chemo (NO) synergistic therapeutic effect on the infected wounds and subcutaneous abscesses caused by gram-negative bacteria. This resulted in effective control of associated infections, relief of inflammation, promotion of re-epithelization and collagen deposition, and regulation of angiogenesis during wound healing. Moreover, IRNB exhibited excellent biocompatibility, both in vitro and in vivo. Conclusions The present research suggests that IRNB can be considered a promising alternative for treating infections caused by MDR gram-negative bacteria and their biofilms.
Collapse
Affiliation(s)
- Xiaoqing Zhou
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Lanlan Dong
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Baohua Zhao
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Guangyun Hu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Can Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Tengfei Liu
- Department of Burn and Plastic Sugery, No. 906 Hospital of Joint Logistic Support Force of PLA, No. 377 Zhongshan East Road, Yinzhou District, Ningbo 315100, China
| | - Yifei Lu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Mengxue Zheng
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Yanlan Yu
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Zengjun Yang
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Shaowen Cheng
- Department of Wound Repair, the First Affiliated Hospital of Hainan Medical University, No. 31 Longhua Road, Haikou 570102, China
| | - Yan Xiong
- Department of Orthopaedics, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Wei Qian
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Rui Yin
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| |
Collapse
|
18
|
Zhang W, Chen H, Tian H, Niu Q, Xing J, Wang T, Chen X, Wang X. Two-dimensional TiO nanosheets with photothermal effects for wound sterilization. J Mater Chem B 2023; 11:7641-7653. [PMID: 37489037 DOI: 10.1039/d3tb01170d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
To combat multidrug-resistant bacteria, researchers have poured into the development and design of antimicrobial agents. Here, low-cost two-dimensional (2D) antibacterial material titanium monoxide nanosheets (TiO NSs) were prepared by an ultrasonic-assisted liquid-phase exfoliation method. When cultured with bacteria, TiO NSs showed intrinsic antimicrobial capacity, possibly due to membrane damage caused by the sharp edges of TiO NSs. Under near-infrared (NIR) laser irradiation, TiO NSs showed high photothermal conversion efficiency (PTCE) and sterilization efficiency. By combining these two antibacterial mechanisms, TiO NSs exhibited a strong killing effect on Gram-negative Escherichia coli (E. coli) and Gram-positive methicillin-resistant Staphylococcus aureus (MRSA). Especially after treatment with TiO NSs (150 μg mL-1) +near-infrared (NIR) light irradiation, both bacteria were completely killed. In vivo experiments on wound repair of bacterial infection further confirmed its antibacterial effect. In addition, TiO NSs had no obvious toxicity or side effects, so as a kind of broad-spectrum 2D antibacterial nanoagent, TiO NSs have broad application prospects in the field of pathogen infection.
Collapse
Affiliation(s)
- Wei Zhang
- College and Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China.
| | - Hongrang Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Haotian Tian
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Qiang Niu
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China
| | - Jianghao Xing
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China
| | - Tao Wang
- Department of Orthopaedics, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Xulin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xianwen Wang
- College and Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China.
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
19
|
Dadhwal P, Dhingra HK, Dwivedi V, Alarifi S, Kalasariya H, Yadav VK, Patel A. Hippophae rhamnoides L. (sea buckthorn) mediated green synthesis of copper nanoparticles and their application in anticancer activity. Front Mol Biosci 2023; 10:1246728. [PMID: 37692067 PMCID: PMC10484619 DOI: 10.3389/fmolb.2023.1246728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023] Open
Abstract
Green synthesis of nanoparticles has drawn huge attention in the last decade due to their eco-friendly, biocompatible nature. Phyto-assisted synthesis of metallic nanoparticles is widespread in the field of nanomedicine, especially for antimicrobial and anticancer activity. Here in the present research work, investigators have used the stem extract of the Himalayan plant Hippophae rhamnoides L, for the synthesis of copper nanoparticles (CuNPs). The synthesized of CuNPs were analyzed by using sophisticated instruments, i.e., Fourier transform infrared spectroscopy (FTIR), UV-Vis spectroscopy, X-ray diffraction (XRD), high-performance liquid chromatography (HPLC), and scanning electron microscope (SEM). The size of the synthesized CuNPs was varying from 38 nm to 94 nm which were mainly spherical in shape. Further, the potential of the synthesized CuNPs was evaluated as an anticancer agent on the Hela cell lines, by performing an MTT assay. In the MTT assay, a concentration-dependent activity of CuNPs demonstrated the lower cell viability at 100 μg/mL and IC50 value at 48 μg/mL of HeLa cancer cell lines. In addition to this, apoptosis activity was evaluated by reactive oxygen species (ROS), DAPI (4',6-diamidino-2-phenylindole) staining, Annexin V, and Propidium iodide (PI) staining, wherein the maximum ROS production was at a dose of 100 µg per mL of CuNPs with a higher intensity of green fluorescence. In both DAPI and PI staining, maximum nuclear condensation was observed with 100 μg/mL of CuNPs against HeLa cell lines.
Collapse
Affiliation(s)
- Pooja Dadhwal
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Rajasthan, India
| | - Harish Kumar Dhingra
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Rajasthan, India
| | - Vinay Dwivedi
- Biotechnology Engineering and Food Technology, Chandigarh University Chandigarh, Mohali, India
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Haresh Kalasariya
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
20
|
Batista MJPA, Marques MBF, Franca AS, Oliveira LS. Development of Films from Spent Coffee Grounds' Polysaccharides Crosslinked with Calcium Ions and 1,4-Phenylenediboronic Acid: A Comparative Analysis of Film Properties and Biodegradability. Foods 2023; 12:2520. [PMID: 37444258 DOI: 10.3390/foods12132520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/05/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Most polymeric materials are synthetic and derived from petroleum, hence they accumulate in landfills or the ocean, and recent studies have focused on alternatives to replace them with biodegradable materials from renewable sources. Biodegradable wastes from food and agroindustry, such as spent coffee grounds (SCGs), are annually discarded on a large scale and are rich in organic compounds, such as polysaccharides, that could be used as precursors to produce films. Around 6.5 million tons of SCGs are discarded every year, generating an environmental problem around the world. Therefore, it was the aim of this work to develop films from the SCGs polysaccharide fraction, which is comprised of cellulose, galactomannans and arabinogalactans. Two types of crosslinking were performed: the first forming coordination bonds of calcium ions with polysaccharides; and the second through covalent bonds with 1,4-phenylenediboronic acid (PDBA). The films with Ca2+ ions exhibited a greater barrier to water vapor with a reduction of 44% of water permeability vapor and 26% greater tensile strength than the control film (without crosslinkers). Films crosslinked with PDBA presented 55-81% higher moisture contents, 85-125% greater permeability to water vapor and 67-150% larger elongations at break than the films with Ca2+ ions. Film biodegradability was demonstrated to be affected by the crosslinking density, with the higher the crosslinking density, the longer the time for the film to fully biodegrade. The results are promising and suggest that future research should focus on enhancing the properties of these films to expand the range of possible applications.
Collapse
Affiliation(s)
- Michelle J P A Batista
- PPGCA, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - M Betânia F Marques
- DQ, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Adriana S Franca
- PPGCA, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
- DEMEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Leandro S Oliveira
- PPGCA, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
- DEMEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
21
|
Ghazzy A, Naik RR, Shakya AK. Metal-Polymer Nanocomposites: A Promising Approach to Antibacterial Materials. Polymers (Basel) 2023; 15:polym15092167. [PMID: 37177313 PMCID: PMC10180664 DOI: 10.3390/polym15092167] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
There has been a new approach in the development of antibacterials in order to enhance the antibacterial potential. The nanoparticles are tagged on to the surface of other metals or metal oxides and polymers to achieve nanocomposites. These have shown significant antibacterial properties when compared to nanoparticles. In this article we explore the antibacterial potentials of metal-based and metal-polymer-based nanocomposites, various techniques which are involved in the synthesis of the metal-polymer, nanocomposites, mechanisms of action, and their advantages, disadvantages, and applications.
Collapse
Affiliation(s)
- Asma Ghazzy
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Rajashri R Naik
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Ashok K Shakya
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| |
Collapse
|
22
|
Li X, Cong Y, Ovais M, Cardoso MB, Hameed S, Chen R, Chen M, Wang L. Copper-based nanoparticles against microbial infections. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1888. [PMID: 37037205 DOI: 10.1002/wnan.1888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 04/12/2023]
Abstract
Drug-resistant bacteria and highly infectious viruses are among the major global threats affecting the human health. There is an immediate need for novel strategies to tackle this challenge. Copper-based nanoparticles (CBNPs) have exhibited a broad antimicrobial capacity and are receiving increasing attention in this context. In this review, we describe the functionalization of CBNPs, elucidate their antibacterial and antiviral activity as well as applications, and briefly review their toxicity, biodistribution, and persistence. The limitations of the current study and potential solutions are also shortly discussed. The review will guide the rational design of functional nanomaterials for antimicrobial application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Xiumin Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, Liaoning, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalin Cong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Muhammad Ovais
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Mateus Borba Cardoso
- The Soft and Biological Matter Division, Brazilian Synchrotron Light Laboratory, Institute of Chemistry, University of Campinas, CEP 13083-970 Campinas, São Paulo, CP, 6154, Brazil
| | - Saima Hameed
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Chen
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100083, China
| | - Mingli Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, Liaoning, China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
23
|
Rajamohan R, Raorane CJ, Kim SC, Ashokkumar S, Lee YR. Novel Microwave Synthesis of Copper Oxide Nanoparticles and Appraisal of the Antibacterial Application. MICROMACHINES 2023; 14:456. [PMID: 36838156 PMCID: PMC9960782 DOI: 10.3390/mi14020456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The exceptional characteristics of bio-synthesized copper oxide nanoparticles (CuO NPs), including high surface-to-volume ratio and high-profit strength, are of tremendous interest. CuO NPs have cytotoxic, catalytic, antibacterial, and antioxidant properties. Fruit peel extract has been recommended as a valuable alternative method due to the advantages of economic prospects, environment-friendliness, improved biocompatibility, and high biological activities, such as antioxidant and antimicrobial activities, as many physical and chemical methods have been applied to synthesize metal oxide NPs. In the presence of apple peel extract and microwave (MW) irradiation, CuO NPs are produced from the precursor CuCl2. 2H2O. With the help of TEM analysis, and BET surface area, the average sizes of the obtained NPs are found to be 25-40 nm. For use in antimicrobial applications, CuO NPs are appropriate. Disk diffusion tests were used to study the bactericidal impact in relation to the diameter of the inhibition zone, and an intriguing antibacterial activity was confirmed on both the Gram-positive bacterial pathogen Staphylococcus aureus and Gram-negative bacterial pathogen Escherichia coli. Moreover, CuO NPs did not have any toxic effect on seed germination. Thus, this study provides an environmentally friendly material and provides a variety of advantages for biomedical applications and environmental applications.
Collapse
Affiliation(s)
- Rajaram Rajamohan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sekar Ashokkumar
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
24
|
Zhu Z, Gou X, Liu L, Xia T, Wang J, Zhang Y, Huang C, Zhi W, Wang R, Li X, Luo S. Dynamically evolving piezoelectric nanocomposites for antibacterial and repair-promoting applications in infected wound healing. Acta Biomater 2023; 157:566-577. [PMID: 36481503 DOI: 10.1016/j.actbio.2022.11.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Wound healing from bacterial infections is one of the major challenges in the biomedical field. The traditional single administration methods are usually accompanied with side effects or unsatisfactory efficacy. Herein, we design dynamically evolving antibacterial and repair-promoting nanocomposites (NCs) by in situ self-assembling of zeolitic imidazolate framework-8 (ZIF-8) on the surface of barium titanate (BTO), and further loading with a small amount of ciprofloxacin (CIP). The new strategy of combining pH-stimulated drug delivery and ultrasound-controlled sonodyamics has the potential to dynamically evolve in infected wound sites, offering a multifunctional therapy. In vitro study demonstrates that the enhancement generation of reactive oxygen species through the sonodynamic process due to the heterostructures and a small amount of CIP released in an acidic environment are synergistically antibacterial, and the inhibition rate was >99.9%. In addition, reduced sonodynamic effect and Zn2+ generated along with the gradual degradation of ZIF-8 simultanously promote cell migration and tissue regeneration. The in vivo study of full-thickness skin wounds in mouse models demonstrate a healing rate of 99.3% could be achieved under the treatment of BTO@ZIF-8/CIP NCs. This work provides a useful improvement in rational design of multi-stimulus-responsive nanomaterials for wound healing. STATEMENT OF SIGNIFICANCE: A novel piezoelectric nanocomposite was proposed to realize sonodynamic therapy and pH-stimulated drug releasing simultaneously in wound healing treatment. The dynamically evolving structure of the piezoelectric nanocomposite in acidic microenvironment has been theoretically and experimentally verified to contribute to a continuous variation of sonodymanic strength, which accompanied with the gradual releasing of drug and biocompatible Zn2+effectively balanced antibacterial and repair-promoting effects. Both of the in vitro and in vivo study demonstrated that the strategy could significantly accelerate wound healing, inspiring researchers to optimize the design of multi-stimulus-responsive nanomaterials for various applications in biomedical and biomaterial fields.
Collapse
Affiliation(s)
- Zixin Zhu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Xue Gou
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| | - Laiyi Liu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Tian Xia
- Department of Pathology, Western Theater Command Air Force Hospital, Chengdu 610021, China
| | - Jiayi Wang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yimeng Zhang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Chenjun Huang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Wei Zhi
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Ran Wang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Xiaohong Li
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Shengnian Luo
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| |
Collapse
|
25
|
Skłodowski K, Chmielewska-Deptuła SJ, Piktel E, Wolak P, Wollny T, Bucki R. Metallic Nanosystems in the Development of Antimicrobial Strategies with High Antimicrobial Activity and High Biocompatibility. Int J Mol Sci 2023; 24:2104. [PMID: 36768426 PMCID: PMC9917064 DOI: 10.3390/ijms24032104] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Antimicrobial resistance is a major and growing global problem and new approaches to combat infections caused by antibiotic resistant bacterial strains are needed. In recent years, increasing attention has been paid to nanomedicine, which has great potential in the development of controlled systems for delivering drugs to specific sites and targeting specific cells, such as pathogenic microbes. There is continued interest in metallic nanoparticles and nanosystems based on metallic nanoparticles containing antimicrobial agents attached to their surface (core shell nanosystems), which offer unique properties, such as the ability to overcome microbial resistance, enhancing antimicrobial activity against both planktonic and biofilm embedded microorganisms, reducing cell toxicity and the possibility of reducing the dosage of antimicrobials. The current review presents the synergistic interactions within metallic nanoparticles by functionalizing their surface with appropriate agents, defining the core structure of metallic nanoparticles and their use in combination therapy to fight infections. Various approaches to modulate the biocompatibility of metallic nanoparticles to control their toxicity in future medical applications are also discussed, as well as their ability to induce resistance and their effects on the host microbiome.
Collapse
Affiliation(s)
- Karol Skłodowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | | | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Przemysław Wolak
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielce 19A, 25-317 Kielce, Poland
| | - Tomasz Wollny
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielce 19A, 25-317 Kielce, Poland
| |
Collapse
|
26
|
Lei C, Huo Y, Ma F, Liao J, Hu Z, Han Q, Li Y, Pan J, Hu L, Guo J, Tang Z. Long-term copper exposure caused hepatocytes autophagy in broiler via miR-455-3p-OXSR1 axis. Chem Biol Interact 2023; 369:110256. [PMID: 36372260 DOI: 10.1016/j.cbi.2022.110256] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Copper (Cu) is a common environmental pollutant which has been identified to cause toxic effects on animal bodies. MicroRNAs (miRNAs) are a type of non-coding RNAs involved in the regulation of various cellular activities including autophagy, but the potential regulatory mechanisms after excess Cu intake are still uncertain. Our previous study has prompted that Cu exposure reduced liver miR-455-3p levels. Herein, miR-455-3p was found to be an important molecule in the regulation of Cu-induced autophagy in vivo and in vitro. Histopathology observation of liver tissue indicated that Cu-induced severe hepatic damage including cellular swelling and vacuolization. Meanwhile, excessive Cu exposure not only heighten the mRNA and protein expression levels of Beclin1, Atg5, LC3Ⅰ and LC3Ⅱ, but also decreased miR-455-3p levels. In vitro experiment, Cu-induced autophagy can be attenuated by miR-455-3p overexpression. Additionally, oxidative stress-responsive 1 (OXSR1) was identified as a direct downstream target of miR-455-3p by dual luciferase reporter assays. Moreover, knockdown of OXSR1 can attenuate the autophagy induced by Cu treatment and the miR-455-3p inhibitor. Overall, the miR-455-3p-OXSR1 axis works as a regulator of autophagy under Cu stress, which provides a basis for further revealing the mechanism of chronic Cu poisoning.
Collapse
Affiliation(s)
- Chaiqin Lei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Yihui Huo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Feiyang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Zhuoying Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| |
Collapse
|
27
|
Potential Antimicrobial and Antibiofilm Properties of Copper Oxide Nanoparticles: Time-Kill Kinetic Essay and Ultrastructure of Pathogenic Bacterial Cells. Appl Biochem Biotechnol 2023; 195:467-485. [PMID: 36087233 PMCID: PMC9832084 DOI: 10.1007/s12010-022-04120-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/14/2023]
Abstract
Mycosynthesis of nanoparticle (NP) production is a potential ecofriendly technology for large scale production. In the present study, copper oxide nanoparticles (CuONPs) have been synthesized from the live cell filtrate of the fungus Penicillium chrysogenum. The created CuONPs were characterized via several techniques, namely Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX). Furthermore, the biosynthesized CuONPs were performed against biofilm forming Klebsiella oxytoca ATCC 51,983, Escherichia coli ATCC 35,218, Staphylococcus aureus ATCC 25,923, and Bacillus cereus ATCC 11,778. The anti-bacterial activity result was shown with the zone of inhibition determined to be 14 ± 0.31 mm, 16 ± 0.53 mm, 11 ± 0.57 mm, and 10 ± 0.57 mm respectively. Klebsiella oxytoca and Escherichia coli were more susceptible to CuONPs with minimal inhibitory concentration (MIC) values 6.25 and 3.12 µg/mL, respectively, while for Staphylococcus aureus and Bacillus cereus, MIC value was 12.5 and 25 μg/mL, respectively. The minimum biofilm inhibition concentration (MBIC) result was more evident, that the CuONPs have excellent anti-biofilm activity at sub-MIC levels reducing biofilm formation by 49% and 59% against Klebsiella oxytoca and Escherichia coli, while the results indicated that the MBIC of CuONPs on Bacillus cereus and Staphylococcus aureus was higher than 200 μg/mL and 256 μg/mL, respectively, suggesting that these CuONPs could not inhibit mature formatted biofilm of Bacillus cereus and Staphylococcus aureus in vitro. Overall, all the results were clearly confirmed that the CuONPs have excellent anti-biofilm ability against Klebsiella oxytoca and Escherichia coli. The prepared CuONPs offer a smart approach for biomedical therapy of resistant microorganisms because of its promoted antimicrobial action, but only for specified purposes.
Collapse
|
28
|
Quaternary Ammonium-Tethered Phenylboronic Acids Appended Supramolecular Nanomicelles as a Promising Bacteria Targeting Carrier for Nitric Oxide Delivery. Polymers (Basel) 2022; 14:polym14204451. [PMID: 36298029 PMCID: PMC9611690 DOI: 10.3390/polym14204451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
The delivery of drugs to focal sites is a central goal and a key challenge in the development of nanomedicine carriers. This strategy can improve the selectivity and bioavailability of the drug while reducing its toxicity. To ensure the specific release of nitric oxide at the site of a bacterial infection without damaging the surrounding normal tissue, we designed a host-guest molecule containing a host molecule with a target moiety and a nitric oxide donor to release nitric oxide. The boronic acid group in the structure of this nanoparticle interacts strongly and specifically with the surface of E. coli. In addition, the quaternary amine salt can interact electrostatically with bacteria, indicating a large number of negatively charged cell membranes; altering the molecular structure of the cell membrane; increasing the permeability of the cell membrane; and causing cytoplasmic diffusion and cell lysis, resulting in lethal activity against most bacteria. The synthesised molecules were characterised by 1H NMR and mass spectrometry. The strong specific interaction of the boronic acid moiety with the surface of E. coli and the electrostatic interaction of the quaternary amine salt with the cell membrane were confirmed by antibacterial experiments on molecules with and without the targeting moiety. The targeting group-modified micelles enhanced the antibacterial effect of the micelles very effectively through specific interactions and electrostatic interactions. In addition, in vitro skin wound healing experiments also confirmed the targeting and antimicrobial effect of micelles. These results suggest that the specific release of nitric oxide at the site of bacterial infection is an important guide to further address the emergence of antibiotic-resistant strains of bacteria.
Collapse
|
29
|
Preparation, characterization, and synergistic antibacterial activity of mycosynthesized, PEGylated CuO nanoparticles combined tetracycline hydrochloride. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Zheng K, Liu M, Meng Z, Xiao Z, Zhong F, Wang W, Qin C. Copper Foam as Active Catalysts for the Borylation of α, β-Unsaturated Compounds. Int J Mol Sci 2022; 23:ijms23158403. [PMID: 35955537 PMCID: PMC9368805 DOI: 10.3390/ijms23158403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
The use of simple, inexpensive, and efficient methods to construct carbon–boron and carbon–oxygen bonds has been a hot research topic in organic synthesis. We demonstrated that the desired β-boronic acid products can be obtained under mild conditions using copper foam as an efficient heterogeneous catalyst. The structure of copper foam before and after the reaction was investigated by polarized light microscopy (PM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), and the results have shown that the structure of the catalyst copper foam remained unchanged before and after the reaction. The XPS test results showed that the Cu(0) content increased after the reaction, indicating that copper may be involved in the boron addition reaction. The specific optimization conditions were as follows: CH3COCH3 and H2O were used as mixed solvents, 4-methoxychalcone was used as the raw material, 8 mg of catalyst was used and the reaction was carried out at room temperature and under air for 10 h. The yield of the product obtained was up to 92%, and the catalytic efficiency of the catalytic material remained largely unchanged after five cycles of use.
Collapse
Affiliation(s)
- Kewang Zheng
- College of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China; (K.Z.); (M.L.); (Z.M.); (Z.X.); (C.Q.)
- Hubei Key Laboratory of Biological Resources and Environmental Biotechnology, Wuhan University, Wuhan 430079, China
| | - Miao Liu
- College of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China; (K.Z.); (M.L.); (Z.M.); (Z.X.); (C.Q.)
| | - Zhifei Meng
- College of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China; (K.Z.); (M.L.); (Z.M.); (Z.X.); (C.Q.)
| | - Zufeng Xiao
- College of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China; (K.Z.); (M.L.); (Z.M.); (Z.X.); (C.Q.)
| | - Fei Zhong
- College of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China; (K.Z.); (M.L.); (Z.M.); (Z.X.); (C.Q.)
- Correspondence: (F.Z.); (W.W.)
| | - Wei Wang
- College of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China; (K.Z.); (M.L.); (Z.M.); (Z.X.); (C.Q.)
- Correspondence: (F.Z.); (W.W.)
| | - Caiqin Qin
- College of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China; (K.Z.); (M.L.); (Z.M.); (Z.X.); (C.Q.)
| |
Collapse
|
31
|
Asare EO, Mun EA, Marsili E, Paunov VN. Nanotechnologies for control of pathogenic microbial biofilms. J Mater Chem B 2022; 10:5129-5153. [PMID: 35735175 DOI: 10.1039/d2tb00233g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biofilms are formed at interfaces by microorganisms, which congregate in microstructured communities embedded in a self-produced extracellular polymeric substance (EPS). Biofilm-related infections are problematic due to the high resistance towards most clinically used antimicrobials, which is associated with high mortality and morbidity, combined with increased hospital stays and overall treatment costs. Several new nanotechnology-based approaches have recently been proposed for targeting resistant bacteria and microbial biofilms. Here we discuss the impacts of biofilms on healthcare, food processing and packaging, and water filtration and distribution systems, and summarize the emerging nanotechnological strategies that are being developed for biofilm prevention, control and eradication. Combination of novel nanomaterials with conventional antimicrobial therapies has shown great potential in producing more effective platforms for controlling biofilms. Recent developments include antimicrobial nanocarriers with enzyme surface functionality that allow passive infection site targeting, degradation of the EPS and delivery of high concentrations of antimicrobials to the residing cells. Several stimuli-responsive antimicrobial formulation strategies have taken advantage of the biofilm microenvironment to enhance interaction and passive delivery into the biofilm sites. Nanoparticles of ultralow size have also been recently employed in formulations to improve the EPS penetration, enhance the carrier efficiency, and improve the cell wall permeability to antimicrobials. We also discuss antimicrobial metal and metal oxide nanoparticle formulations which provide additional mechanical factors through externally induced actuation and generate reactive oxygen species (ROS) within the biofilms. The review helps to bridge microbiology with materials science and nanotechnology, enabling a more comprehensive interdisciplinary approach towards the development of novel antimicrobial treatments and biofilm control strategies.
Collapse
Affiliation(s)
- Evans O Asare
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan.
| | - Ellina A Mun
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan.
| | - Enrico Marsili
- Department of Chemical Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan
| | - Vesselin N Paunov
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan.
| |
Collapse
|
32
|
Yang C, Li T, Yang Q, Guo Y, Tao T. One-step hydrothermal synthesis of fluorescent silicon nanoparticles for sensing sulfide ions and cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 273:121048. [PMID: 35219270 DOI: 10.1016/j.saa.2022.121048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
We have presented a hydrothermal approach for synthesizing fluorescent silicon nanoparticles (F-SiNPs) with yellow-green emission. The obtained F-SiNPs exhibited excellent stability and good biocompatibility. By virtue of the specific reaction between S2- and 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), colorimetric assay of S2- was realized with a good linear range of 0-100 μM. The colorimetric detection system could be further combined with F-SiNPs to construct a probe for fluorescence turn-off sensing S2- in aqueous solution due to inner filter effect. In the fluorescent detection system, a good linearity with S2- concentration in the range of 0-50 μM was accomplished. And as low as 0.1 μM S2- was successfully detected. Moreover, the F-SiNPs displayed low cytotoxicity and good biocompatibility, and was further utilized for cell imaging. These results demonstrated the promising applications of F-SiNPs in S2- analysis and bioimaging.
Collapse
Affiliation(s)
- Chao Yang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Ting Li
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Qin Yang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yongming Guo
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Tao Tao
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
33
|
Weldick PJ, Wang A, Halbus AF, Paunov VN. Emerging nanotechnologies for targeting antimicrobial resistance. NANOSCALE 2022; 14:4018-4041. [PMID: 35234774 DOI: 10.1039/d1nr08157h] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Antimicrobial resistance is a leading cause of mortality worldwide. Without newly approved antibiotics and antifungals being brought to the market, resistance is being developed to the ones currently available to clinicians. The reason is the applied evolutionary pressure to bacterial and fungal species due to the wide overuse of common antibiotics and antifungals in clinical practice and agriculture. Biofilms harbour antimicrobial-resistant subpopulations, which make their antimicrobial treatment even more challenging. Nanoparticle-based technologies have recently been shown to successfully overcome antimicrobial resistance in both planktonic and biofilms phenotypes. This results from the combination of novel nanomaterial research and classic antimicrobial therapies which promise to deliver a whole new generation of high-performance active nanocarrier systems. This review discusses the latest developments of promising nanotechnologies with applications against resistant pathogens and evaluates their potential and feasibility for use in novel antimicrobial therapies.
Collapse
Affiliation(s)
- Paul J Weldick
- Department of Chemistry and Biochemistry, University of Hull, Hull, HU6 7RX, UK
| | - Anheng Wang
- Department of Chemistry and Biochemistry, University of Hull, Hull, HU6 7RX, UK
| | - Ahmed F Halbus
- Department of Chemistry, College of Science, University of Babylon, Hilla, Iraq
| | - Vesselin N Paunov
- Department of Chemistry, Nazarbayev University, Kabanbay Baryr Ave. 53, Nur-sultan city, 010000, Kazakhstan.
| |
Collapse
|
34
|
Wang H, You W, Wu B, Nie X, Xia L, Wang C, You YZ. Phenylboronic acid-functionalized silver nanoparticles for highly efficient and selective bacterial killing. J Mater Chem B 2022; 10:2844-2852. [PMID: 35293932 DOI: 10.1039/d2tb00320a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With the widespread use of antibiotics, the number of severe infections caused by unknown pathogens is increasing and novel antibacterial agents with high antibacterial efficiency and selective bacterial killing are urgently needed. In this work, we developed a new kind of functional material based on silver nanoparticles (AgNPs), whose surfaces were functionalized with phenylboronic acid (AgNPs-PBAn). The phenylboronic acid groups on the surface of AgNPs-PBAn could form covalent bonds with the cis-diol groups of lipopolysaccharide or teichoic acid on the bacterial surface, which highly promoted the interaction between AgNPs-PBAn and bacteria, resulting in a very strong enhancement of their antibacterial action via membrane disruption. The scanning electron microscopy images revealed that the accumulation of phenylboronic acid-functionalized AgNPs on the bacterial surface is much more than that of the nonfunctionalized AgNPs. Importantly, the antibacterial efficiency of the phenylboronic acid-functionalized AgNPs on a series of bacteria is 32 times higher than that of bare AgNPs. Moreover, AgNPs-PBAn showed a high selectivity toward bacteria with an IC50 (half maximal inhibitory concentration to mammalian cells) more than 160 times its MBC (minimum bactericidal concentration). In a model of an E. coli-infected wound in vivo, AgNPs-PBAn could effectively kill the bacteria with an accelerated wound healing rate. This study demonstrates that phenylboronic acid surface functionalization is an efficient way to drastically promote the antibacterial activity of AgNPs, improving the selectivity of silver-based nanoparticles against a variety of bacteria.
Collapse
Affiliation(s)
- Haili Wang
- The Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China. .,CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Wei You
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Bin Wu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Xuan Nie
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Lei Xia
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Changhui Wang
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China.
| | - Ye-Zi You
- The Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China. .,CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
35
|
Proniewicz E, Starowicz M, Ozaki Y. Determination of the Influence of Various Factors on the Character of Surface Functionalization of Copper(I) and Copper(II) Oxide Nanosensors with Phenylboronic Acid Derivatives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:557-568. [PMID: 34933549 PMCID: PMC8757468 DOI: 10.1021/acs.langmuir.1c02990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/08/2021] [Indexed: 06/14/2023]
Abstract
In this work, we attempt to determine the influence of the oxidation state of copper [Cu(I) vs Cu(II)], the nature of the interface (solid/aqueous vs solid/air), the incubation time, and the structure of N-substituted phenylboronic acids (PBAs) functionalizing the surface of copper oxide nanostructures (NSs) on the mode of adsorption. For this purpose, 4-[(N-anilino)(phosphono)-S-methyl]phenylboronic acid (1-PBA) and its two analogues (2-PBA and bis{1-PBA}) and the copper oxide NSs were synthesized in a surfactant-/ion-free solution via a synthetic route that allows controlling the size and morphology of NSs. The NSs were characterized by scanning electron microscopy, ultraviolet-visible spectroscopy, Raman spectroscopy, and X-ray diffraction, which confirmed the formation of spherical Cu2O nanoparticles (Cu2ONPs) with a size of 1.5 μm to 600 nm crystallized in a cubic cuprite structure and leaf-like CuO nanostructures (CuONSs) with dimensions of 80-180 nm in width and 400-700 nm in length and crystallized in a monoclinic structure. PBA analogues were deposited on the surface of the copper oxide NSs, and adsorption was investigated using surface-enhanced Raman spectroscopy (SERS). The changes in the orientation of the molecule relative to the substrate surface caused by the abovementioned factors were described, and the signal enhancement on the copper oxide NSs was determined. This is the first study using vibrational spectroscopy for these compounds.
Collapse
Affiliation(s)
- Edyta Proniewicz
- Faculty
of Foundry Engineering, AGH University of
Science and Technology, ul. Reymonta 23, 30-059 Krakow, Poland
- School
of Biological and Environmental Sciences, Kwansei Gakuin University, 2-1, Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Maria Starowicz
- Faculty
of Foundry Engineering, AGH University of
Science and Technology, ul. Reymonta 23, 30-059 Krakow, Poland
| | - Yukihiro Ozaki
- School
of Biological and Environmental Sciences, Kwansei Gakuin University, 2-1, Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
36
|
Wang A, Weldrick PJ, Madden LA, Paunov VN. Enhanced clearing of Candida biofilms on a 3D urothelial cell in vitro model using lysozyme-functionalized fluconazole-loaded shellac nanoparticles. Biomater Sci 2021; 9:6927-6939. [PMID: 34528638 DOI: 10.1039/d1bm01035b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Candida urinary tract biofilms are increasingly witnessed in nosocomial infections due to reduced immunity of patients and the hospital ecosystem. The indwelling devices utilized to support patients with urethral diseases that connect the unsterilized external environment with the internal environment of the patient are another significant source of urinary tract biofilm infections. Recently, nanoparticle (NP)-associated therapeutics have gained traction in a number of areas, including fighting antibiotic-resistant bacterial biofilm infection. However, most studies on nanotherapeutic delivery have only been carried out in laboratory settings rather than in clinical trials due to the lack of precise in vitro and in vivo models for testing their efficiency. Here we develop a novel biofilm-infected 3D human urothelial cell culture model to test the efficiency of nanoparticle (NP)-based antifungal therapeutics. The NPs were designed based on shellac cores, loaded with fluconazole and coated with the cationic enzyme lysozyme. Our formulation of 0.2 wt% lysozyme-coated 0.02 wt% fluconazole-loaded 0.2 wt% shellac NPs, sterically stabilised by 0.25 wt% poloxamer 407, showed an enhanced efficiency in removing Candida albicans biofilms formed on 3D layer of urothelial cell clusteroids. The NP formulation exhibited low toxicity to urothelial cells. This study provides a reliable in vitro model for Candida urinary tract biofilm infections, which could potentially replace animal models in the testing of such antifungal nanotechnologies. The reproducibility and availability of a well-defined biofilm-infected 3D urothelial cell culture model give valuable insights into the formation and clearing of fungal biofilms and could accelerate the clinical use of antifungal nanotherapeutics.
Collapse
Affiliation(s)
- Anheng Wang
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU67RX, UK
| | - Paul J Weldrick
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU67RX, UK
| | - Leigh A Madden
- Department of Biomedical Sciences, University of Hull, Hull, HU67RX, UK
| | - Vesselin N Paunov
- Department of Chemistry, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan.
| |
Collapse
|
37
|
Zhang T, Li Y, Zhao X, Li W, Sun X, Li J, Lu R. A novel recyclable absorption material with boronate affinity. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Al-Obaidy SSM, Greenway GM, Paunov VN. Enhanced Antimicrobial Action of Chlorhexidine Loaded in Shellac Nanoparticles with Cationic Surface Functionality. Pharmaceutics 2021; 13:1389. [PMID: 34575466 PMCID: PMC8470920 DOI: 10.3390/pharmaceutics13091389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 12/01/2022] Open
Abstract
We report on an active nanocarrier for chlorhexidine (CHX) based on sterically stabilized shellac nanoparticles (NPs) with dual surface functionalization, which greatly enhances the antimicrobial action of CHX. The fabrication process for the CHX nanocarrier is based on pH-induced co-precipitation of CHX-DG from an aqueous solution of ammonium shellac and Poloxamer 407 (P407), which serves as a steric stabilizing agent. This is followed by further surface modification with octadecyl trimethyl ammonium bromide (ODTAB) through a solvent change to yield cationic surface functionality. In this study, we assessed the encapsulation efficiency and release kinetics of the novel nanocarrier for CHX. We further examined the antimicrobial effects of the CHX nanocarriers and their individual components in order to gain better insight into how they work, to improve their design and to explore the impacts of their dual functionalization. The antimicrobial actions of CHX loaded in shellac NPs were examined on three different proxy microorganisms: a Gram-negative bacterium (E. coli), a yeast (S. cerevisiae) and a microalgae (C. reinhardtii). The antimicrobial actions of free CHX and CHX-loaded shellac NPs were compared over the same CHX concentration range. We found that the non-coated shellac NPs loaded with CHX showed inferior action compared with free CHX due to their negative surface charge; however, the ODTAB-coated, CHX-loaded shellac NPs strongly amplified the antimicrobial action of the CHX for the tested microorganisms. The enhancement of the CHX antimicrobial action was thought to be due to the increased electrostatic adhesion between the cationic surface of the ODTAB-coated, CHX-loaded shellac NPs and the anionic surface of the cell walls of the microorganisms, ensuring direct delivery of CHX with a high concentration locally on the cell membrane. The novel CHX nanocarriers with enhanced antimicrobial action may potentially find applications in dentistry for the development of more efficient formulations against conditions such as gingivitis, periodontitis and other oral infections, as well as enabling formulations to have lower CHX concentrations.
Collapse
Affiliation(s)
- Saba S. M. Al-Obaidy
- Department of Chemistry and Biochemistry, University of Hull, Hull HU6 7RX, UK; (S.S.M.A.-O.); (G.M.G.)
- Department of Chemistry, College of Science, University of Babylon, Hilla 51001, Iraq
| | - Gillian M. Greenway
- Department of Chemistry and Biochemistry, University of Hull, Hull HU6 7RX, UK; (S.S.M.A.-O.); (G.M.G.)
| | - Vesselin N. Paunov
- Department of Chemistry, Nazarbayev University, Kabanbay Batyr Ave. 53, Nursultan 010000, Kazakhstan
| |
Collapse
|
39
|
Wang A, Weldrick PJ, Madden LA, Paunov VN. Biofilm-Infected Human Clusteroid Three-Dimensional Coculture Platform to Replace Animal Models in Testing Antimicrobial Nanotechnologies. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22182-22194. [PMID: 33956425 DOI: 10.1021/acsami.1c02679] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microbial biofilms are a major concern in wound care, implant devices, and organ infections. Biofilms allow higher tolerance to antimicrobial drugs, can impair wound healing, and potentially lead to sepsis. There has been a recent focus on developing novel nanocarrier-based delivery vehicles to enhance the biofilm penetration of traditional antibacterial drugs. However, a feasible in vitro human skin model to mimic the biofilm formation and its treatment for clearance have not yet been reported. This study describes the benefits of using an innovative bacterial biofilm-infected keratinocyte clusteroid model for the first time. It paves a new way for testing innovative nanomedicine delivery systems in a rapid and reproducible way on a realistic human cell-based platform, free of any animal testing. Herein, we have developed a novel composite 3D biofilm/human keratinocyte clusteroid coculture platform, which was used to measure biofilm clearance efficiency of nanoparticle (NP)-based therapeutics. We tested this model by treating the biofilm-infected 3D coculture layers by a ciprofloxacin-loaded Carbopol nanogel particles, surface-functionalized by the cationic protease Alcalase. We measured the antibacterial efficiency of the NP treatment on clearing Staphylococcus aureus and Pseudomonas aeruginosa biofilms on the 3D keratinocyte clusteroid/biofilm coculture model. Our experiments showed that these bacteria can infect the 3D layer of keratinocyte clusteroids and produce a stable biofilm. The biofilms were efficiently cleared by treatment with a formulation of 0.0032 wt % ciprofloxacin-loaded in 0.2 wt % Carbopol NPs surface-functionalized with 0.2 wt % Alcalase. Taken together, these promising results demonstrate that our coculture model can be exploited as a novel platform for testing the biofilm-eliminating efficiency of various NP formulations emulating skin and wound infections and could have wider applicability to replace animal models in similar experiments. This 3D cell culture-based platform could help in developing and testing of more effective antibacterial agents for clinical applications of antiplaque dental treatments, implants, infection control, and wound dressings.
Collapse
Affiliation(s)
- Anheng Wang
- Department of Chemistry, University of Hull, Cottingham Road, HU67RX Hull, U.K
| | - Paul J Weldrick
- Department of Chemistry, University of Hull, Cottingham Road, HU67RX Hull, U.K
| | - Leigh A Madden
- Department of Biomedical Sciences, University of Hull, Cottingham Road, Hull HU67RX, U.K
| | - Vesselin N Paunov
- Department of Chemistry, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan City 010000, Kazakhstan
| |
Collapse
|
40
|
Morena AG, Bassegoda A, Hoyo J, Tzanov T. Hybrid Tellurium-Lignin Nanoparticles with Enhanced Antibacterial Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14885-14893. [PMID: 33754695 PMCID: PMC8480780 DOI: 10.1021/acsami.0c22301] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The surge of antibiotic-resistant bacteria is leading to the loss of effectiveness of antibiotic treatment, resulting in prolonged infections and even death. Against this healthcare threat, antimicrobial nanoparticles that hamper the evolution of resistance mechanisms are promising alternatives to antibiotics. Herein, we used Kraft lignin, a poorly valorized polymer derived from plant biomass, to develop novel hybrid tellurium-lignin nanoparticles (TeLigNPs) as alternative antimicrobial agents. The sonochemically synthesized TeLigNPs are comprised of a lignin matrix with embedded Te clusters, revealing the role of lignin as both a reducing agent and a structural component. The hybrid NPs showed strong bactericidal effects against the Gram-negative Escherichia coli and Pseudomonas aeruginosa, achieving more than 5 log bacteria reduction, while they only slightly inhibited the growth of the Gram-positive Staphylococcus aureus. Exposure of TeLigNPs to human cells did not cause morphological changes or reduction in cell viability. Studies on the antimicrobial mechanism of action demonstrated that the novel TeLigNPs were able to disturb bacterial model membranes and generate reactive oxygen species (ROS) in Gram-negative bacteria.
Collapse
|
41
|
Henry P, Halbus AF, Athab ZH, Paunov VN. Enhanced Antimould Action of Surface Modified Copper Oxide Nanoparticles with Phenylboronic Acid Surface Functionality. Biomimetics (Basel) 2021; 6:19. [PMID: 33804236 PMCID: PMC8006150 DOI: 10.3390/biomimetics6010019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 11/17/2022] Open
Abstract
Antimould agents are widely used in different applications, such as specialty paints, building materials, wood preservation and crop protection. However, many antimould agents can be toxic to the environment. This work aims to evaluate the application of copper oxide nanoparticles (CuONPs) surface modified with boronic acid (BA) terminal groups as antimould agents. We developed CuONPs grafted with (3-glycidyloxypropyl) trimethoxysilane (GLYMO), coupled with 4-hydroxyphenylboronic acid (4-HPBA), which provided a strong boost of their action as antimould agents. We studied the antimould action of the 4-HPBA-functionalized CuONPs against two mould species: Aspergillus niger (A. niger) and Penicillium chrysogenum (P. chrysogenum). The cis-diol groups of polysaccharides expressed on the mould cell walls can form reversible covalent bonds with the BA groups attached on the CuONPs surface. This allowed them to bind strongly to the mould surface, resulting in a very substantial boost of their antimould activity, which is not based on electrostatic adhesion, as in the case of bare CuONPs. The impact of these BA-surface functionalized nanoparticles was studied by measuring the growth of the mould colonies versus time. The BA-functionalized CuONPs showed significant antimould action, compared to the untreated mould sample at the same conditions and period of time. These results can be applied for the development of more efficient antimould treatments at a lower concentration of active agent with potentially substantial economic and environmental benefits.
Collapse
Affiliation(s)
- Patricia Henry
- Department of Chemistry and Biochemistry, University of Hull, Hull HU67RX, UK; (P.H.); (A.F.H.); (Z.H.A.)
| | - Ahmed F. Halbus
- Department of Chemistry and Biochemistry, University of Hull, Hull HU67RX, UK; (P.H.); (A.F.H.); (Z.H.A.)
- Department of Chemistry, College of Science, University of Babylon, Hilla 51001, Iraq
| | - Zahraa H. Athab
- Department of Chemistry and Biochemistry, University of Hull, Hull HU67RX, UK; (P.H.); (A.F.H.); (Z.H.A.)
- Environmental Research Center, University of Babylon, Hilla 51001, Iraq
| | - Vesselin N. Paunov
- Department of Chemistry and Biochemistry, University of Hull, Hull HU67RX, UK; (P.H.); (A.F.H.); (Z.H.A.)
- Department of Chemistry, Nazarbayev University, Nursultan 010000, Kazakhstan
| |
Collapse
|
42
|
Clavier B, Baptiste T, Barbieriková Z, Hajdu T, Guiet A, Boucher F, Brezová V, Roques C, Corbel G. Hydration and bactericidal activity of nanometer- and micrometer-sized particles of rock salt-type Mg 1-xCu xO oxides. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111997. [PMID: 33812617 DOI: 10.1016/j.msec.2021.111997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/30/2021] [Accepted: 02/19/2021] [Indexed: 01/20/2023]
Abstract
Copper substitution together with nano-structuring are applied with the aim to increase the bactericidal performances of the rocksalt-type MgO oxide. The partial substitution of magnesium ions with Cu2+ has been successfully achieved in both micrometer- and nanometer-sized particles of MgO up to 20 mol% in increments of 5 mol%. Microstructural analyses using the Integral Breadth method revealed that the thermal decomposition of the single source precursor Mg1-xCux(OH)2-2y(CO3)y.zH2O at 400 °C creates numerous defects in 10-20 nm-sized particles of Mg1-xCuxO thus obtained. These defects make the surface of nanoparticles highly reactive towards the sorption of water molecules, to the extent that the cubic cell a parameter in as-prepared Mg1-xCuxO expands by +0.24% as soon as the nanoparticles are exposed to ambient air (60% RH). The hydration of Mg1-xCuxO particles in liquid water is based on a conventional dissolution-precipitation mechanism. Particles of a few microns in size dissolve all the more slowly the higher the copper content and only Mg(OH)2 starts precipitating after 3 h. In contrast, the dissolution of all 10-20 nm-sized Mg1-xCuxO particles is complete over a 3 h period and water suspension only contains 4-12 nm-sized Mg1-xCux(OH)2 particles after 3 h. Thereby, the bactericidal activity reported for water suspension of Mg1-xCuxO nanoparticles depends on the speed at which these nanoparticles dissolve and Mg1-xCux(OH)2 nanoparticles precipitate in the first 3 h. Only 10 mol% of cupric ions in MgO nanoparticles are sufficient to kill both E. coli and S. aureus with a bactericidal kinetics faster and reductions in viability at 3 h (6.5 Log10 and 2.7 Log10, respectively) higher than the conventional antibacterial agent CuO (4.7 Log10 and 2 Log10 under the same conditions). EPR spin trapping study reveals that "hydroxylated" Mg0.9Cu0.1O as well as Mg0.9Cu0.1(OH)2 nanoparticles produce more spin-adducts with highly toxic hydroxyl radicals than their copper-free counterparts. The rapid mass adsorption of Mg0.9Cu0.1(OH)2 nanoparticles onto the cell envelopes following their precipitation together with their ability to produce Reactive Oxygen Species are responsible for the exceptionally high bactericidal activity measured in the course of the hydroxylation of Mg0.9Cu0.1O nanoparticles.
Collapse
Affiliation(s)
- Batiste Clavier
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Téo Baptiste
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Zuzana Barbieriková
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Tomáš Hajdu
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Amandine Guiet
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Fabien Boucher
- Institut Universitaire de Technologie du Mans, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Vlasta Brezová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Christine Roques
- Laboratoire de Génie Chimique, UMR-5503 CNRS, Faculté de Pharmacie, Université Paul Sabatier - Toulouse III, 35, chemin des maraîchers, 31062 Toulouse Cedex 4, France; Centre Hospitalier Universitaire (CHU) de Toulouse, Institut Fédératif de Biologie (IFB), Laboratoire de Bactériologie et Hygiène, 330 Avenue de Grande Bretagne, 31059 Toulouse Cedex 9, France
| | - Gwenaël Corbel
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.
| |
Collapse
|
43
|
Wei X, Gao Y, Hu Y, Zhang Y, Zhang X. A light-activated nanotherapeutic with broad-spectrum bacterial recognition to eliminate drug-resistant pathogens. J Mater Chem B 2021; 9:1364-1369. [PMID: 33458729 DOI: 10.1039/d0tb02583f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obstinate infections caused by drug-resistant bacteria severely threaten human health. And the emergence of multidrug-resistant bacteria increases the morbidity and mortality of patients, thus necessitating the development of innovative or alternative therapeutics. Here, a light-activated nanotherapeutic with broad-spectrum bacterial recognition is established as an antibiotic-free therapeutic agent against pathogens. The nanotherapeutic with external phenylboronic acid-based glycopolymers increases the stability and biocompatibility and shows the ability of bacterial recognition. Once irradiated with near-infrared light, this nanotherapeutic with high photothermal conversion efficiency disrupts the cytoplasmic membrane, thus killing bacterial cells. Importantly, it also eliminates the biofilms formed by both drug-resistant Gram-negative bacteria (Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus) effectively. Thus, this antibiotic-free nanotherapeutic with hypotoxicity offers a promising approach to fight increasingly serious antimicrobial resistance.
Collapse
Affiliation(s)
- Xiaosong Wei
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yingchao Gao
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yuqing Hu
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yufei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
44
|
Wang Y, Chu X, Sun Y, Teng P, Xia T, Chen Y. A convenient approach by using poly-(HEMA-co-NIPAM)/Cu 2+ solution sol-gel transition for wound protection and healing. J Biomed Mater Res B Appl Biomater 2021; 109:50-59. [PMID: 32627333 DOI: 10.1002/jbm.b.34679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/31/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022]
Abstract
Rapid and convenient wound healing is crucial for reducing potential post-traumatic wound complications. In this study, a temperature-sensitive polymer of poly-(HEMA-co-NIPAM) (PHN) was synthesized by free-radical polymerization, in which the solution quickly underwent a sol-gel transition above 29°C, thus responding to a typical body temperature and facilitating wound sealing. PHN solution incorporated with copper ions (PHN-Cu) not only exhibited excellent antibacterial properties, but also expedited wound closure and facilitated tissue angiogenesis. The in vivo and in vitro experiments showed that the PHN-Cu had a higher wound closure rate and demonstrated an ability to promote skin tissue angiogenesis. Such a versatile, convenient aqueous solution could enable nonprofessionals to promptly treat wounds in a short time after injury, thus providing suitable conditions for later treatment, and can be used as a convenient method to clean wounds.
Collapse
Affiliation(s)
- Yansong Wang
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xin Chu
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yu Sun
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Peng Teng
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Tianzhi Xia
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yisheng Chen
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
45
|
Sharma B, Thakur V, Kaur G, Chaudhary GR. Efficient Photodynamic Therapy against Gram-Positive and Gram-Negative Bacteria Using Rose Bengal Encapsulated in Metallocatanionic Vesicles in the Presence of Visible Light. ACS APPLIED BIO MATERIALS 2020; 3:8515-8524. [PMID: 35019621 DOI: 10.1021/acsabm.0c00901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significant consumption of antibiotics has generated multidrug resistance in bacteria, which is a major menace to human beings. Antibacterial photodynamic therapy (aPDT) is a progressing technique for inhibition of bacterial infection with minimal side effects. Metals and delivering agents play a major role in aPDT efficiency. Herein, we report a formulation to enrich the antibacterial photodynamic therapy utilizing metallocatanionic vesicles (MCVs) against both Gram-positive and Gram-negative bacteria. These MCVs were synthesized by utilizing iron-based double-chain metallosurfactant [FeCPC(II)] as a cationic surfactant and AOT, a double-chain anionic surfactant. These synthesized MCV fractions were characterized by distinct techniques like DLS, zeta potential, FE-SEM, confocal microscopy, SAXS, and UV-Visible spectroscopy. Polyhedral-shaped MCVs with a size of 200 nm were formed, wherein the charge and size of the catanionic vesicle can be controlled by varying the mixing ratios. Both Gram-positive bacteria, i.e., methicillin-resistant Staphylococcus aureus (MRSA), and Gram-negative bacteria, i.e., Escherichia coli (E. coli), were used for aPDT using Rose Bengal (RB) as a photosensitizer (PS) encapsulated in MCVs in the presence of a 532 nm wavelength laser. The aPDT against bacterial cells was evaluated for both dark and light toxicities. Pure MCVs also exhibited good antibacterial properties; however, much enhancement was observed in the presence of RB encapsulated in MCVs under light, where eradication of bacteria (E. coli and MRSA) was achieved in 30 min. The observations demonstrated that it is the presence of metal that enhances the singlet oxygen quantum yield of RB and MCVs help in retarding self-quenching and enhanced solubilization of RB. The cationic surfactant-rich fraction shows strong adhesion toward bacteria via electrostatic interactions. The outcome of this research shows that these newly fabricated metal-based metallocatanionic vesicles were effective against both Gram-positive and Gram-negative bacteria using aPDT and must be exploited for clinical applications as well as an alternative for antibiotics in the future.
Collapse
Affiliation(s)
- Bunty Sharma
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Vipul Thakur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Gurpreet Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Ganga Ram Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
46
|
Filby BW, Hardman MJ, Paunov VN. Antibody‐free bioimprint aided sandwich ELISA technique for cell recognition and rapid screening for bacteria. NANO SELECT 2020. [DOI: 10.1002/nano.202000113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Benjamin W. Filby
- Department of Chemistry and Biochemistry University of Hull Hull HU6 7RX UK
| | - Matthew J. Hardman
- Department of Chemistry and Biochemistry University of Hull Hull HU6 7RX UK
| | - Vesselin N. Paunov
- Department of Chemistry and Biochemistry University of Hull Hull HU6 7RX UK
| |
Collapse
|
47
|
Bezza FA, Tichapondwa SM, Chirwa EMN. Fabrication of monodispersed copper oxide nanoparticles with potential application as antimicrobial agents. Sci Rep 2020; 10:16680. [PMID: 33028867 PMCID: PMC7541485 DOI: 10.1038/s41598-020-73497-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 09/15/2020] [Indexed: 12/23/2022] Open
Abstract
Cuprous oxide nanoparticles (Cu2O NPs) were fabricated in reverse micellar templates by using lipopeptidal biosurfactant as a stabilizing agent. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectrum (EDX) and UV-Vis analysis were carried out to investigate the morphology, size, composition and stability of the nanoparticles synthesized. The antibacterial activity of the as-synthesized Cu2O NPs was evaluated against Gram-positive B. subtilis CN2 and Gram-negative P. aeruginosa CB1 strains, based on cell viability, zone of inhibition and minimal inhibitory concentration (MIC) indices. The lipopeptide stabilized Cu2O NPs with an ultra-small size of 30 ± 2 nm diameter exhibited potent antimicrobial activity against both Gram-positive and Gram-negative bacteria with a minimum inhibitory concentration of 62.5 µg/mL at pH5. MTT cell viability assay displayed a median inhibition concentration (IC50) of 21.21 μg/L and 18.65 μg/mL for P. aeruginosa and B. subtilis strains respectively. Flow cytometric quantification of intracellular reactive oxygen species (ROS) using 2,7-dichlorodihydrofluorescein diacetate staining revealed a significant ROS generation up to 2.6 to 3.2-fold increase in the cells treated with 62.5 µg/mL Cu2O NPs compared to the untreated controls, demonstrating robust antibacterial activity. The results suggest that lipopeptide biosurfactant stabilized Cu2O NPs could have promising potential for biocompatible bactericidal and therapeutic applications.
Collapse
Affiliation(s)
- Fisseha A Bezza
- Water Utilization and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, Pretoria, 0002, South Africa
| | - Shepherd M Tichapondwa
- Water Utilization and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, Pretoria, 0002, South Africa
| | - Evans M N Chirwa
- Water Utilization and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, Pretoria, 0002, South Africa.
| |
Collapse
|
48
|
Perturbation of proton transfer of 2-(2′-hydroxyphenyl)benzimidazole and its nitrogenous analogues by nanoparticles. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Wang W, Li B, Yang H, Lin Z, Chen L, Li Z, Ge J, Zhang T, Xia H, Li L, Lu Y. Efficient elimination of multidrug-resistant bacteria using copper sulfide nanozymes anchored to graphene oxide nanosheets. NANO RESEARCH 2020; 13:2156-2164. [DOI: 10.1007/s12274-020-2824-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/10/2020] [Accepted: 04/19/2020] [Indexed: 01/14/2025]
|
50
|
Li Y, Liu Y, Yang D, Jin Q, Wu C, Cui J. Multifunctional molybdenum disulfide-copper nanocomposite that enhances the antibacterial activity, promotes rice growth and induces rice resistance. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122551. [PMID: 32272326 DOI: 10.1016/j.jhazmat.2020.122551] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 06/11/2023]
Abstract
Molybdenum disulfide sheets loaded with copper nanoparticles (MoS2-CuNPs) was prepared and its antibacterial activity against phytopathogen Xanthomonas oryzae pv. oryzae (Xoo) was investigated in vitro and in vivo for the first time. In a 2 h co-incubation, MoS2-CuNPs exhibited 19.2 times higher antibacterial activity against Xoo cells than a commercial copper bactericide (Kocide 3000). In the detached leaf experiment, the disease severity decreased from 86.25 % to 7.5 % in the MoS2-CuNPs treated rice leaves. The results further demonstrated that foliar application of MoS2-CuNPs could form a protective film and increase the density of trichome on the surface of rice leaves, finally prevent the infection of Xoo cells. This was probably due to the synergistic effect of MoS2-CuNPs. Additionally, foliar application of MoS2-CuNPs (4-32 μg/mL) increased obviously the content of Mo and chlorophyll (up 30.85 %), and then improved the growth of rice seedlings. Furthermore, the obtained MoS2-CuNPs could activate the activities of the antioxidant enzymes in rice, indicating higher resistance of rice under abiotic/biotic stresses. The multifunctional MoS2-CuNPs with superior antibacterial activity provided a promising alternative to the traditional antibacterial agents and had great potential in plant protection.
Collapse
Affiliation(s)
- Yadong Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China; Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yingliang Liu
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Desong Yang
- College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China; Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bintuan, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Qian Jin
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Cailan Wu
- College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China; Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bintuan, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Jianghu Cui
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China.
| |
Collapse
|