1
|
Xia Y, Liu C, Zhao X, Wu K, Cao J, Cao Y, Zhu C, Zhang X. Highly stable and near-infrared responsive phase change materials for targeted enzyme delivery toward cancer therapy. Mater Today Bio 2024; 29:101345. [PMID: 39649250 PMCID: PMC11625163 DOI: 10.1016/j.mtbio.2024.101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/07/2024] [Accepted: 11/15/2024] [Indexed: 12/10/2024] Open
Abstract
Natural enzyme-based catalytic cascades have garnered increasing attention in cancer therapy, but their clinical utility is greatly limited due to loss of function during in vivo delivery. Here, we developed an enzyme delivering nanoplatform (GCI@RPCM) with great in vivo stability and achieve NIR-triggered enzyme dynamic therapy. This nanoplatform is created with encapsulation of nature enzymes (glucose oxidase and chloroperoxidase) and photothermal agent (indocyanine green) within tumor targeting and thermo-responsive phase change materials (RPCMs). With NIR irradiation for 10 min, GCI@RPCM can release 41 % of the enzymes and generate abundant reactive oxygen species (ROS), which showed significant tumor cell inhibition. After intravenous injection, GCI@RPCM can efficiently accumulate at the tumor site and local NIR treatment resulted in complete tumor eradication without detectable systemic toxicity. This study provides a highly stable and NIR-controllable smart delivery system and achieve enzyme dynamic therapy for enhanced breast cancer therapy.
Collapse
Affiliation(s)
- Yuqiong Xia
- Engineering Research Center of Molecular- and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
- Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong, 510555, China
| | - Chang Liu
- Engineering Research Center of Molecular- and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Xuejuan Zhao
- Engineering Research Center of Molecular- and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Keyun Wu
- Engineering Research Center of Molecular- and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Jianxia Cao
- Engineering Research Center of Molecular- and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Yutian Cao
- Engineering Research Center of Molecular- and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
- Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong, 510555, China
| | - Cheng Zhu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Xianghan Zhang
- Engineering Research Center of Molecular- and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
- Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong, 510555, China
| |
Collapse
|
2
|
Li C, Yao M, Jiang G, Feng L, Wu Y, Sha R, Li Y, Tang BZ, Wang J. Side Chain Phenyl Isomerization-Induced Spatial Conjugation for Achieving Efficient Near-Infrared II Phototheranostic Agents. Angew Chem Int Ed Engl 2024:e202419785. [PMID: 39520109 DOI: 10.1002/anie.202419785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The contradiction of near-infrared II (NIR-II) emission and photothermal effects limits the development of phototheranostic agents (PTAs) in many emerging cutting-edge applications. Organic aggregates present a promising opportunity for the balance of competitive relaxation processes through the manipulation of molecular structure and packing. Herein, side chain phenyl isomerization-induced spatial conjugation was proposed for constructing A-D-A type NIR-II PTAs with simultaneous enhancement of fluorescence brightness and photothermal properties. Three pairs of mutually isomeric fluorophores, whose phenyls respectively located at the outside (o-series) and inside (i-series) of the side chain, were designed and synthesized. The positional isomerization of the phenyl endows the o-series crystals with strong spatial conjugation between the phenyl group on the side chain and the backbone, as well as interlocked planar network, which is different to that observed in the i-series. Thus, all o-series nanoparticles (NPs) exhibit red-shifted absorption, enhanced NIR-II emission, and superior photothermal properties than their i-series counterparts. A prominent member of the o-series, o-ITNP NPs, demonstrated efficacy in facilitating NIR-II angiography, tumor localization, and NIR-II imaging-guided tumor photothermal therapy. The success of this side chain phenyl isomerization strategy paves the way for precise control of the aggregation behavior and for further development of efficient NIR-II PTAs.
Collapse
Affiliation(s)
- Chunbin Li
- College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Inner Mongolia Key Laboratory of Synthesis and Application of Organic Functional Molecules, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Mengfan Yao
- College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Inner Mongolia Key Laboratory of Synthesis and Application of Organic Functional Molecules, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Guoyu Jiang
- College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Inner Mongolia Key Laboratory of Synthesis and Application of Organic Functional Molecules, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Lina Feng
- College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Inner Mongolia Key Laboratory of Synthesis and Application of Organic Functional Molecules, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Yifan Wu
- College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Inner Mongolia Key Laboratory of Synthesis and Application of Organic Functional Molecules, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Renmanduhu Sha
- College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Inner Mongolia Key Laboratory of Synthesis and Application of Organic Functional Molecules, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Yonghai Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, P. R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Inner Mongolia Key Laboratory of Synthesis and Application of Organic Functional Molecules, Inner Mongolia University, Hohhot, 010021, P. R. China
| |
Collapse
|
3
|
Bourang S, Noruzpour M, Jahanbakhsh Godekahriz S, Ebrahimi HAC, Amani A, Asghari Zakaria R, Yaghoubi H. Application of nanoparticles in breast cancer treatment: a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6459-6505. [PMID: 38700795 DOI: 10.1007/s00210-024-03082-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/02/2024] [Indexed: 09/25/2024]
Abstract
It is estimated that cancer is the second leading cause of death worldwide. The primary or secondary cause of cancer-related mortality for women is breast cancer. The main treatment method for different types of cancer is chemotherapy with drugs. Because of less water solubility of chemotherapy drugs or their inability to pass through membranes, their body absorbs them inadequately, which lowers the treatment's effectiveness. Drug specificity and pharmacokinetics can be changed by nanotechnology using nanoparticles. Instead, targeted drug delivery allows medications to be delivered to the targeted sites. In this review, we focused on nanoparticles as carriers in targeted drug delivery, their characteristics, structure, and the previous studies related to breast cancer. It was shown that nanoparticles could reduce the negative effects of chemotherapy drugs while increasing their effectiveness. Lipid-based nanocarriers demonstrated notable results in this instance, and some products that are undergoing various stages of clinical trials are among the examples. Nanoparticles based on metal or polymers demonstrated a comparable level of efficacy. With the number of cancer cases rising globally, many researchers are now looking into novel treatment approaches, particularly the use of nanotechnology and nanoparticles in the treatment of cancer. In order to help clinicians, this article aimed to gather more information about various areas of nanoparticle application in breast cancer therapy, such as modifying their synthesis and physicochemical characterization. It also sought to gain a deeper understanding of the mechanisms underlying the interactions between nanoparticles and biologically normal or infected tissues.
Collapse
Affiliation(s)
- Shima Bourang
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mehran Noruzpour
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Sodabeh Jahanbakhsh Godekahriz
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hossein Ali Ca Ebrahimi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Amin Amani
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Rasool Asghari Zakaria
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hashem Yaghoubi
- Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| |
Collapse
|
4
|
Xiao A, Yin L, Chen T, Qian H. Lipo/TK-CDN/TPP/Y6 nanoparticles inhibit cutaneous melanoma formation. J Drug Target 2024; 32:931-940. [PMID: 38838039 DOI: 10.1080/1061186x.2024.2365243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Stimulation of the innate immune stimulator of interferon genes (STING) pathway has been shown to boost anti-tumour immunity. Nevertheless, the systemic delivery of STING agonists to the tumour presents challenges. Therefore, we designed a cyclic dinucleotide (CDN)-based drug delivery system (DDS) combined photothermal therapy (PTT)/photodynamic therapy (PDT)/immunotherapy for cutaneous melanoma. We coencapsulated a reactive oxygen species (ROS)-responsive prodrug thioketone-linked CDN (TK-CDN), and photoresponsive agents chlorin E6 (Y6) within mitochondria-targeting reagent triphenylphosphonium (TPP)-modified liposomes (Lipo/TK-CDN/TPP/Y6). Lipo/TK-CDN/TPP/Y6 exhibited a photothermal effect similar to Y6, along with a superior cellular uptake rate. Upon endocytosis by B16F10 cells, Lipo/TK-CDN/TPP/Y6 generated large amounts of ROS under laser irradiation for PDT. Mice bearing B16F10 tumours were intravenously injected with Lipo/TK-CDN/TPP/Y6 and exposed to irradiation, resulting in a substantial inhibition of tumour growth. Exploration of the mechanism of anti-tumour action showed that Lipo/TK-CDN/TPP/Y6 had a stronger stimulation of STING activation and anti-tumour immune cell infiltration compared to other groups. Hence, the Lipo/TK-CDN/TPP/Y6 nanoparticles offer great potential as a DDS for targeted and on-demand drug release at tumour sites. These nanoparticles exhibit promise as a candidate for precise and controllable combination therapy in the treatment of tumours.
Collapse
Affiliation(s)
- Anju Xiao
- Department of Dermatology and Venereology, Dejiang County People's Hospital, Affiliated to Zunyi Medical University, Dejiang, China
| | - Li Yin
- Department of Pathology, Dejiang County People's Hospital, Affiliated to Zunyi Medical University, Dejiang, China
| | - Ting Chen
- Department of Clinical Medicine, Dejiang County People's Hospital, Affiliated to Zunyi Medical University, Dejiang, China
| | - Huiling Qian
- Department of Endocrinology, Dejiang County People's Hospital, Affiliated to Zunyi Medical University, Dejiang, China
| |
Collapse
|
5
|
Wang H, Wang Q, Wang K, Wang J, Zhang X, Liu Y, Zhang J. A self-healing thermogelling polymer with tunable transparency based on biomolecule alginate grafting phenylboronic acid. Int J Biol Macromol 2024; 274:133485. [PMID: 38944081 DOI: 10.1016/j.ijbiomac.2024.133485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Thermogelling polymers with transparency, structure stability and biocompatibility are promising for biomedicine application. In this study, a thermogelling polymer P-C5PEG with tunable transparency was developed by the reaction between alternating copolymer C5PEG and chemically modified biomolecule Alg-PBA via boronic ester bonds. The sol-to-gel transition of P-C5PEG aqueous solution sensitively responded to changes in temperature, and the critical value could be adjusted between 15 and 40 °C by varying the content of C5PEG and Alg-PBA. As the weight ratio of Alg-PBA to C5PEG was over 0.3, the transparency of as-synthesized hydrogel kept above 75 % at 37 °C. Meanwhile, immersion P-C5PEG hydrogel in CaCl2 solution significantly increased its mechanical strength by 3 times due to chelation effect. The shear-resistance and self-healing properties were ensured by dynamic boronic ester bonds due to the protective effect of hydrophobic gel network. As a drug delivery, P-C5PEG hydrogel had a swelling rate of 3748.7 ± 103 % in PBS and could continuously release fluorescein sodium within 24 h. Moreover, the in vitro degradability and cytotoxicity of P-C5PEG was confirmed. Finally, the mechanisms behind the thermogelling property and tunable transparency were revealed. Overall, this thermogelling P-C5PEG polymer, with tunable transparency and thermo-responsiveness, exhibits great potential for biomedicine application.
Collapse
Affiliation(s)
- Hongdong Wang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai 200444, China; State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China.
| | - Qi Wang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai 200444, China
| | - Kunpeng Wang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Junyu Wang
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Xiacong Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Yuhong Liu
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Jianhua Zhang
- Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai 200444, China
| |
Collapse
|
6
|
Liu Y, Li X, Xu Y, Xie Y, Hu T, Tao P. Carbon-Enhanced Hydrated Salt Phase Change Materials for Thermal Management Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1077. [PMID: 38998682 PMCID: PMC11243696 DOI: 10.3390/nano14131077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
Inorganic hydrated salt phase change materials (PCMs) hold promise for improving the energy conversion efficiency of thermal systems and facilitating the exploration of renewable thermal energy. Hydrated salts, however, often suffer from low thermal conductivity, supercooling, phase separation, leakage and poor solar absorptance. In recent years, compounding hydrated salts with functional carbon materials has emerged as a promising way to overcome these shortcomings and meet the application demands. This work reviews the recent progress in preparing carbon-enhanced hydrated salt phase change composites for thermal management applications. The intrinsic properties of hydrated salts and their shortcomings are firstly introduced. Then, the advantages of various carbon materials and general approaches for preparing carbon-enhanced hydrated salt PCM composites are briefly described. By introducing representative PCM composites loaded with carbon nanotubes, carbon fibers, graphene oxide, graphene, expanded graphite, biochar, activated carbon and multifunctional carbon, the ways that one-dimensional, two-dimensional, three-dimensional and hybrid carbon materials enhance the comprehensive thermophysical properties of hydrated salts and affect their phase change behavior is systematically discussed. Through analyzing the enhancement effects of different carbon fillers, the rationale for achieving the optimal performance of the PCM composites, including both thermal conductivity and phase change stability, is summarized. Regarding the applications of carbon-enhanced hydrate salt composites, their use for the thermal management of electronic devices, buildings and the human body is highlighted. Finally, research challenges for further improving the overall thermophysical properties of carbon-enhanced hydrated salt PCMs and pushing towards practical applications and potential research directions are discussed. It is expected that this timely review could provide valuable guidelines for the further development of carbon-enhanced hydrated salt composites and stimulate concerted research efforts from diverse communities to promote the widespread applications of high-performance PCM composites.
Collapse
Affiliation(s)
- Yizhe Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
- Materials Genome Initiative Center, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Xiaoxiang Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Yangzhe Xu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Yixuan Xie
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Ting Hu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Peng Tao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
- National Engineering Research Center of Special Equipment and Power System for Ship and Marine Engineering, Shanghai 200030, China
| |
Collapse
|
7
|
Qureshi SA, Rafiya K, Awasthi S, Jain A, Nadaf A, Hasan N, Kesharwani P, Ahmad FJ. Biomembrane camouflaged nanoparticles: A paradigm shifts in targeted drug delivery system. Colloids Surf B Biointerfaces 2024; 238:113893. [PMID: 38631282 DOI: 10.1016/j.colsurfb.2024.113893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
Targeted drug delivery has emerged as a pivotal approach within precision medicine, aiming to optimize therapeutic efficacy while minimizing systemic side effects. Advanced biomimetic membrane-coated formulations have garnered significant interest from researchers as a promising strategy for targeted drug delivery, site-specific accumulation and heightened therapeutic outcomes. Biomimetic nanotechnology is able to retain the biological properties of the parent cell thus are able to exhibit superior targeting compared to conventional formulations. In this review, we have described different types of cell membrane camouflaged NPs. Mechanism of isolation and coating of the membranes along with the applications of each type of membrane and their mechanism to reach the desired site. Furthermore, a fusion of different membranes in order to prepare hybrid membrane biomimetic NPs which could possess better efficacy is discussed in detail in the review. Later, applications of the hybrid membrane-cloaked NPs along with current development were discussed in detail along with the challenges associated with it. Although membrane-cloaked NPs are currently in the preliminary stage of development, there is a huge potential to explore this biodegradable and biocompatible delivery system.
Collapse
Affiliation(s)
- Saba Asif Qureshi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Km Rafiya
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sakshi Awasthi
- Lloyd Institute of Management and Technology, Greater Noida, India
| | - Abhishek Jain
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
8
|
Hao Z, Li X, Zhang R, Zhang L. Stimuli‐Responsive Hydrogels for Antibacterial Applications. Adv Healthc Mater 2024:e2400513. [PMID: 38723248 DOI: 10.1002/adhm.202400513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/06/2024] [Indexed: 05/21/2024]
Abstract
Hydrogels have emerged as promising candidates for biomedical applications, especially in the field of antibacterial therapeutics, due to their unique structural properties, highly tunable physicochemical properties, and excellent biocompatibility. The integration of stimuli-responsive functions into antibacterial hydrogels holds the potential to enhance their antibacterial properties and therapeutic efficacy, dynamically responding to different external or internal stimuli, such as pH, temperature, enzymes, and light. Therefore, this review describes the applications of hydrogel dressings responsive to different stimuli in antibacterial therapy. The collaborative interaction between stimuli-responsive hydrogels and antibacterial materials is discussed. This synergistic approach, in contrast to conventional antibacterial materials, not only amplifies the antibacterial effect but also alleviates adverse side effects and diminishes the incidence of multiple infections and drug resistance. The review provides a comprehensive overview of the current challenges and outlines future research directions for stimuli-responsive antibacterial hydrogels. It underscores the imperative for ongoing interdisciplinary research aimed at unraveling the mechanisms of wound healing. This understanding is crucial for optimizing the design and implementation of stimuli-responsive antibacterial hydrogels. Ultimately, this review aims to offer scientific guidance for the development and practical clinical application of stimuli-responsive antibacterial hydrogel dressings.
Collapse
Affiliation(s)
- Zhe Hao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin, 300350, P. R. China
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Libing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
9
|
Chen YH, Liu IJ, Lin TC, Tsai MC, Hu SH, Hsu TC, Wu YT, Tzang BS, Chiang WH. PEGylated chitosan-coated nanophotosensitizers for effective cancer treatment by photothermal-photodynamic therapy combined with glutathione depletion. Int J Biol Macromol 2024; 266:131359. [PMID: 38580018 DOI: 10.1016/j.ijbiomac.2024.131359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
The combination of photothermal therapy (PTT) and photodynamic therapy (PDT) has emerged as a promising strategy for cancer treatment. However, the poor photostability and photothermal conversion efficiency (PCE) of organic small-molecule photosensitizers, and the intracellular glutathione (GSH)-mediated singlet oxygen scavenging largely decline the antitumor efficacy of PTT and PDT. Herein, a versatile nanophotosensitizer (NPS) system is developed by ingenious incorporation of indocyanine green (ICG) into the PEGylated chitosan (PEG-CS)-coated polydopamine (PDA) nanoparticles via multiple π-π stacking, hydrophobic and electrostatic interactions. The PEG-CS-covered NPS showed prominent colloidal and photothermal stability as well as high PCE (ca 62.8 %). Meanwhile, the Michael addition between NPS and GSH can consume GSH, thus reducing the GSH-induced singlet oxygen scavenging. After being internalized by CT26 cells, the NPS under near-infrared laser irradiation produced massive singlet oxygen with the aid of thermo-enhanced intracellular GSH depletion to elicit mitochondrial damage and lipid peroxide formation, thus leading to ferroptosis and apoptosis. Importantly, the combined PTT and PDT delivered by NPS effectively inhibited CT26 tumor growth in vivo by light-activated intense hyperthermia and redox homeostasis disturbance. Overall, this work presents a new tactic of boosting antitumor potency of ICG-mediated phototherapy by PEG-CS-covered NPS.
Collapse
Affiliation(s)
- Yu-Hsin Chen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - I-Ju Liu
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Tzu-Chen Lin
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Min-Chen Tsai
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Tsai-Ching Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yi-Ting Wu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Bor-Show Tzang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan; Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Wen-Hsuan Chiang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
10
|
Yang X, Sun Y, Zhang H, Liu F, Chen Q, Shen Q, Kong Z, Wei Q, Shen JW, Guo Y. CaCO 3 nanoplatform for cancer treatment: drug delivery and combination therapy. NANOSCALE 2024; 16:6876-6899. [PMID: 38506154 DOI: 10.1039/d3nr05986c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The use of nanocarriers for drug delivery has opened up exciting new possibilities in cancer treatment. Among them, calcium carbonate (CaCO3) nanocarriers have emerged as a promising platform due to their exceptional biocompatibility, biosafety, cost-effectiveness, wide availability, and pH-responsiveness. These nanocarriers can efficiently encapsulate a variety of small-molecule drugs, proteins, and nucleic acids, as well as co-encapsulate multiple drugs, providing targeted and sustained drug release with minimal side effects. However, the effectiveness of single-drug therapy using CaCO3 nanocarriers is limited by factors such as multidrug resistance, tumor metastasis, and recurrence. Combination therapy, which integrates multiple treatment modalities, offers a promising approach for tackling these challenges by enhancing efficacy, leveraging synergistic effects, optimizing therapy utilization, tailoring treatment approaches, reducing drug resistance, and minimizing side effects. CaCO3 nanocarriers can be employed for combination therapy by integrating drug therapy with photodynamic therapy, photothermal therapy, sonodynamic therapy, immunotherapy, radiation therapy, radiofrequency ablation therapy, and imaging. This review provides an overview of recent advancements in CaCO3 nanocarriers for drug delivery and combination therapy in cancer treatment over the past five years. Furthermore, insightful perspectives on future research directions and development of CaCO3 nanoparticles as nanocarriers in cancer treatment are discussed.
Collapse
Affiliation(s)
- Xiaorong Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Yue Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Hong Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Fengrui Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Qin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Qiying Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhe Kong
- Center for Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Qiaolin Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yong Guo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
11
|
Shaikhutdinov R, Mun G, Kopishev E, Bakirov A, Kabdushev S, Baipakbaeva S, Suleimenov I. Effect of the Formation of Hydrophilic and Hydrophobic-Hydrophilic Associates on the Behavior of Copolymers of N-Vinylpyrrolidone with Methyl Acrylate in Aqueous Solutions. Polymers (Basel) 2024; 16:584. [PMID: 38475269 DOI: 10.3390/polym16050584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 03/14/2024] Open
Abstract
It has been shown that there exist conditions under which thermosensitive copolymers of N-vinylpyrrolidone with methyl acrylate form hydrophobic-hydrophilic associations, which are unstable dynamic meshes, the bonds in which are continuously broken and created again, and the nature of the formation of such meshes depends significantly on the proportion of the hydrophobic component in the copolymer. It is shown that the interaction of the above copolymers with polyacrylic acid results in the formation of not only classical interpolymer complexes, but also hydrophilic interpolymer associates, which also represent unstable networks existing in a dynamic mode. In such meshes, the molecules of the above copolymers serve as a kind of cross-agent connecting the polyacid molecules. There are also conditions under which such meshes acquire a complex structure, since unstable bonds between macromolecular tangles of both the same and different types take part in their formation. It is shown that the transition from the formation of interpolymer complexes to the formation of hydrophilic interpolymer associates can occur, among other things, due to changes in the acidity or concentration of low-molecular salt in solution.
Collapse
Affiliation(s)
- Ramazan Shaikhutdinov
- National Engineering Academy of the Republic of Kazakhstan, Almaty 050010, Kazakhstan
- Department of Chemistry & Technology of Organic Materials, Polymers and Natural Compounds, Faculty of Chemistry and Chemical Technology, Al Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Grigoriy Mun
- National Engineering Academy of the Republic of Kazakhstan, Almaty 050010, Kazakhstan
- Department of Chemistry & Technology of Organic Materials, Polymers and Natural Compounds, Faculty of Chemistry and Chemical Technology, Al Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Eldar Kopishev
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan
- Department of General and Inorganic Chemistry, Faculty of Natural Sciences, Bukhara State University, Bukhara 705018, Uzbekistan
| | - Akhat Bakirov
- Department of Telecommunication Engineering, Institute of Communications and Space Engineering, Gumarbek Daukeev Almaty University of Power Engineering and Communications, Almaty 050040, Kazakhstan
| | - Sherniyaz Kabdushev
- National Engineering Academy of the Republic of Kazakhstan, Almaty 050010, Kazakhstan
| | - Saltanat Baipakbaeva
- National Engineering Academy of the Republic of Kazakhstan, Almaty 050010, Kazakhstan
| | - Ibragim Suleimenov
- National Engineering Academy of the Republic of Kazakhstan, Almaty 050010, Kazakhstan
| |
Collapse
|
12
|
Avugadda S, Soni N, Rodrigues EM, Persano S, Pellegrino T. Protease-Mediated T1 Contrast Enhancement of Multilayered Magneto-Gadolinium Nanostructures for Imaging and Magnetic Hyperthermia. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6743-6755. [PMID: 38295315 PMCID: PMC10875642 DOI: 10.1021/acsami.3c13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024]
Abstract
In this work, we constructed a multifunctional composite nanostructure for combined magnetic hyperthermia therapy and magnetic resonance imaging based on T1 and T2 signals. First, iron oxide nanocubes with a benchmark heating efficiency for magnetic hyperthermia were assembled within an amphiphilic polymer to form magnetic nanobeads. Next, poly(acrylic acid)-coated inorganic sodium gadolinium fluoride nanoparticles were electrostatically loaded onto the magnetic nanobead surface via a layer-by-layer approach by employing a positively charged enzymatic-cleavable biopolymer. The positive-negative multilayering process was validated through the changes occurring in surface ζ-potential values and structural characterization by transmission electron microscopy (TEM) imaging. These nanostructures exhibit an efficient heating profile, in terms of the specific absorption rates under clinically accepted magnetic field conditions. The addition of protease enzyme mediates the degradation of the surface layers of the nanostructures with the detachment of gadolinium nanoparticles from the magnetic beads and exposure to the aqueous environment. Such a process is associated with changes in the T1 relaxation time and contrast and a parallel decrease in the T2 signal. These structures are also nontoxic when tested on glioblastoma tumor cells up to a maximum gadolinium dose of 125 μg mL-1, which also corresponds to a iron dose of 52 μg mL-1. Nontoxic nanostructures with such enzyme-triggered release mechanisms and T1 signal enhancement are desirable for tracking tumor microenvironment release with remote T1-guidance and magnetic hyperthermia therapy actuation to be done at the diseased site upon verification of magnetic resonance imaging (MRI)-guided release.
Collapse
Affiliation(s)
| | | | - Emille M. Rodrigues
- Nanomaterials for Biomedical
Applications, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Stefano Persano
- Nanomaterials for Biomedical
Applications, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Teresa Pellegrino
- Nanomaterials for Biomedical
Applications, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| |
Collapse
|
13
|
Gómez-Lázaro L, Martín-Sabroso C, Aparicio-Blanco J, Torres-Suárez AI. Assessment of In Vitro Release Testing Methods for Colloidal Drug Carriers: The Lack of Standardized Protocols. Pharmaceutics 2024; 16:103. [PMID: 38258113 PMCID: PMC10819705 DOI: 10.3390/pharmaceutics16010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Although colloidal carriers have been in the pipeline for nearly four decades, standardized methods for testing their drug-release properties remain to be established in pharmacopeias. The in vitro assessment of drug release from these colloidal carriers is one of the most important parameters in the development and quality control of drug-loaded nano- and microcarriers. This lack of standardized protocols occurs due to the difficulties encountered in separating the released drug from the encapsulated one. This review aims to compare the most frequent types of release testing methods (i.e., membrane diffusion techniques, sample and separate methods and in situ detection techniques) in terms of the advantages and disadvantages of each one and of the key parameters that influence drug release in each case.
Collapse
Affiliation(s)
- Laura Gómez-Lázaro
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (L.G.-L.); (C.M.-S.); (A.I.T.-S.)
| | - Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (L.G.-L.); (C.M.-S.); (A.I.T.-S.)
- Institute of Industrial Pharmacy, Complutense University Madrid, 28040 Madrid, Spain
| | - Juan Aparicio-Blanco
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (L.G.-L.); (C.M.-S.); (A.I.T.-S.)
- Institute of Industrial Pharmacy, Complutense University Madrid, 28040 Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (L.G.-L.); (C.M.-S.); (A.I.T.-S.)
- Institute of Industrial Pharmacy, Complutense University Madrid, 28040 Madrid, Spain
| |
Collapse
|
14
|
Fernandes DA. Liposomes for Cancer Theranostics. Pharmaceutics 2023; 15:2448. [PMID: 37896208 PMCID: PMC10610083 DOI: 10.3390/pharmaceutics15102448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/16/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer is one of the most well-studied diseases and there have been significant advancements over the last few decades in understanding its molecular and cellular mechanisms. Although the current treatments (e.g., chemotherapy, radiotherapy, gene therapy and immunotherapy) have provided complete cancer remission for many patients, cancer still remains one of the most common causes of death in the world. The main reasons for the poor response rates for different cancers include the lack of drug specificity, drug resistance and toxic side effects (i.e., in healthy tissues). For addressing the limitations of conventional cancer treatments, nanotechnology has shown to be an important field for constructing different nanoparticles for destroying cancer cells. Due to their size (i.e., less than 1 μm), nanoparticles can deliver significant amounts of cancer drugs to tumors and are able to carry moieties (e.g., folate, peptides) for targeting specific types of cancer cells (i.e., through receptor-mediated endocytosis). Liposomes, composed of phospholipids and an interior aqueous core, can be used as specialized delivery vehicles as they can load different types of cancer therapy agents (e.g., drugs, photosensitizers, genetic material). In addition, the ability to load imaging agents (e.g., fluorophores, radioisotopes, MRI contrast media) enable these nanoparticles to be used for monitoring the progress of treatment. This review examines a wide variety of different liposomes for cancer theranostics, with the different available treatments (e.g., photothermal, photodynamic) and imaging modalities discussed for different cancers.
Collapse
|
15
|
Deng Y, Ding M, Zhu L, Zhang Y, Wang F, Zhao L, Li J. Near-infrared light-activated ROS generation using semiconducting polymer nanocatalysts for photodynamic-chemodynamic therapy. J Mater Chem B 2023; 11:8484-8491. [PMID: 37593820 DOI: 10.1039/d3tb00642e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Chemodynamic therapy (CDT) is an emerging treatment strategy for cancer, but the low therapeutic efficacy and potential side effects still limit its applications. In this study, we report a semiconducting polymer nanocatalyst (PGFe) that can generate reactive oxygen species (ROS) only upon near-infrared (NIR) light-activation for photodynamic therapy (PDT)-synergized CDT. Such PGFe consists of a semiconducting polymer as a photosensitizer, iron oxide (Fe3O4) nanoparticles as CDT agents, and glucose oxidase (GOx), all of which are loaded into a singlet oxygen (1O2)-responsive nanocarrier. Under NIR laser irradiation, PGFe produces 1O2 through a photosensitizer-mediated PDT effect, and the produced 1O2 destroys the 1O2-responsive nanocarriers, leading to controlled releases of Fe3O4 nanoparticles and GOx. In a tumor microenvironment, GOx catalyzes glucose degradation to form hydrogen peroxide (H2O2), and thus the CDT effect of Fe3O4 nanoparticles is greatly improved. As such, an amplified ROS level in tumor cells is obtained by PGFe to induce cell death. PGFe can be utilized to treat subcutaneous 4T1 tumors, observably inhibiting the tumor growth and suppressing lung and liver metastasis. This study thus provides a NIR light-activated ROS generation strategy for precise and effective treatments of tumors.
Collapse
Affiliation(s)
- Yingyi Deng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Mengbin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Liyun Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Yijing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Fengshuo Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
16
|
Mahmut Z, Zhang C, Ruan F, Shi N, Zhang X, Wang Y, Zheng X, Tang Z, Dong B, Gao D, Sun J. Medical Applications and Advancement of Near Infrared Photosensitive Indocyanine Green Molecules. Molecules 2023; 28:6085. [PMID: 37630337 PMCID: PMC10459369 DOI: 10.3390/molecules28166085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Indocyanine green (ICG) is an important kind of near infrared (NIR) photosensitive molecules for PTT/PDT therapy as well as imaging. When exposed to NIR light, ICG can produce reactive oxygen species (ROS), which can kill cancer cells and pathogenic bacteria. Moreover, the absorbed light can also be converted into heat by ICG molecules to eliminate cancer cells. In addition, it performs exceptionally well in optical imaging-guided tumor therapy and antimicrobial therapy due to its deeper tissue penetration and low photobleaching properties in the near-infrared region compared to other dyes. In order to solve the problems of water and optical stability and multi-function problem of ICG molecules, composite nanomaterials based on ICG have been designed and widely used, especially in the fields of tumors and sterilization. So far, ICG molecules and their composite materials have become one of the most famous infrared sensitive materials. However, there have been no corresponding review articles focused on ICG molecules. In this review, the molecular structure and properties of ICG, composite material design, and near-infrared light- triggered anti-tumor, and antibacterial, and clinical applications are reviewed in detail, which of great significance for related research.
Collapse
Affiliation(s)
- Zulpya Mahmut
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China; (Z.M.); (C.Z.); (X.Z.); (Y.W.); (X.Z.)
| | - Chunmei Zhang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China; (Z.M.); (C.Z.); (X.Z.); (Y.W.); (X.Z.)
| | - Fei Ruan
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (F.R.); (Z.T.)
| | - Nan Shi
- Department of Respiratory Medicine, No. 964 Hospital of People’s Liberation Army, 4799 Xi’an Road, Changchun 130062, China;
| | - Xinyao Zhang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China; (Z.M.); (C.Z.); (X.Z.); (Y.W.); (X.Z.)
| | - Yuda Wang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China; (Z.M.); (C.Z.); (X.Z.); (Y.W.); (X.Z.)
| | - Xianhong Zheng
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China; (Z.M.); (C.Z.); (X.Z.); (Y.W.); (X.Z.)
| | - Zixin Tang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (F.R.); (Z.T.)
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (F.R.); (Z.T.)
| | - Donghui Gao
- Department of Anesthesiology and Operating Room, School and Hospital of Stomatology, Jilin University, Changchun 130012, China
| | - Jiao Sun
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China; (Z.M.); (C.Z.); (X.Z.); (Y.W.); (X.Z.)
| |
Collapse
|
17
|
Kommineni N, Chaudhari R, Conde J, Tamburaci S, Cecen B, Chandra P, Prasad R. Engineered Liposomes in Interventional Theranostics of Solid Tumors. ACS Biomater Sci Eng 2023; 9:4527-4557. [PMID: 37450683 DOI: 10.1021/acsbiomaterials.3c00510] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Engineered liposomal nanoparticles have unique characteristics as cargo carriers in cancer care and therapeutics. Liposomal theranostics have shown significant progress in preclinical and clinical cancer models in the past few years. Liposomal hybrid systems have not only been approved by the FDA but have also reached the market level. Nanosized liposomes are clinically proven systems for delivering multiple therapeutic as well as imaging agents to the target sites in (i) cancer theranostics of solid tumors, (ii) image-guided therapeutics, and (iii) combination therapeutic applications. The choice of diagnostics and therapeutics can intervene in the theranostics property of the engineered system. However, integrating imaging and therapeutics probes within lipid self-assembly "liposome" may compromise their overall theranostics performance. On the other hand, liposomal systems suffer from their fragile nature, site-selective tumor targeting, specific biodistribution and premature leakage of loaded cargo molecules before reaching the target site. Various engineering approaches, viz., grafting, conjugation, encapsulations, etc., have been investigated to overcome the aforementioned issues. It has been studied that surface-engineered liposomes demonstrate better tumor selectivity and improved therapeutic activity and retention in cells/or solid tumors. It should be noted that several other parameters like reproducibility, stability, smooth circulation, toxicity of vital organs, patient compliance, etc. must be addressed before using liposomal theranostics agents in solid tumors or clinical models. Herein, we have reviewed the importance and challenges of liposomal medicines in targeted cancer theranostics with their preclinical and clinical progress and a translational overview.
Collapse
Affiliation(s)
- Nagavendra Kommineni
- Center for Biomedical Research, Population Council, New York, New York 10065, United States
| | - Ruchita Chaudhari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - João Conde
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa; Lisboa 1169-056, Portugal
| | - Sedef Tamburaci
- Department of Chemical Engineering, Izmir Institute of Technology, Gulbahce Campus, Izmir 35430, Turkey
| | - Berivan Cecen
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
- Department of Mechanical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rajendra Prasad
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
18
|
Honari A, Sirsi SR. The Evolution and Recent Trends in Acoustic Targeting of Encapsulated Drugs to Solid Tumors: Strategies beyond Sonoporation. Pharmaceutics 2023; 15:1705. [PMID: 37376152 DOI: 10.3390/pharmaceutics15061705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Despite recent advancements in ultrasound-mediated drug delivery and the remarkable success observed in pre-clinical studies, no delivery platform utilizing ultrasound contrast agents has yet received FDA approval. The sonoporation effect was a game-changing discovery with a promising future in clinical settings. Various clinical trials are underway to assess sonoporation's efficacy in treating solid tumors; however, there are disagreements on its applicability to the broader population due to long-term safety issues. In this review, we first discuss how acoustic targeting of drugs gained importance in cancer pharmaceutics. Then, we discuss ultrasound-targeting strategies that have been less explored yet hold a promising future. We aim to shed light on recent innovations in ultrasound-based drug delivery including newer designs of ultrasound-sensitive particles specifically tailored for pharmaceutical usage.
Collapse
Affiliation(s)
- Arvin Honari
- Department of Bioengineering, Erik Johnson School of Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Shashank R Sirsi
- Department of Bioengineering, Erik Johnson School of Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
19
|
Giri PM, Banerjee A, Layek B. A Recent Review on Cancer Nanomedicine. Cancers (Basel) 2023; 15:cancers15082256. [PMID: 37190185 DOI: 10.3390/cancers15082256] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
Cancer is one of the most prevalent diseases globally and is the second major cause of death in the United States. Despite the continuous efforts to understand tumor mechanisms and various approaches taken for treatment over decades, no significant improvements have been observed in cancer therapy. Lack of tumor specificity, dose-related toxicity, low bioavailability, and lack of stability of chemotherapeutics are major hindrances to cancer treatment. Nanomedicine has drawn the attention of many researchers due to its potential for tumor-specific delivery while minimizing unwanted side effects. The application of these nanoparticles is not limited to just therapeutic uses; some of them have shown to have extremely promising diagnostic potential. In this review, we describe and compare various types of nanoparticles and their role in advancing cancer treatment. We further highlight various nanoformulations currently approved for cancer therapy as well as under different phases of clinical trials. Finally, we discuss the prospect of nanomedicine in cancer management.
Collapse
Affiliation(s)
- Paras Mani Giri
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Anurag Banerjee
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Buddhadev Layek
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
20
|
Roy S, Bag N, Bardhan S, Hasan I, Guo B. Recent Progress in NIR-II Fluorescence Imaging-guided Drug Delivery for Cancer Theranostics. Adv Drug Deliv Rev 2023; 197:114821. [PMID: 37037263 DOI: 10.1016/j.addr.2023.114821] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023]
Abstract
Fluorescence imaging in the second near-infrared window (NIR-II) has become a prevalent choice owing to its appealing advantages like deep penetration depth, low autofluorescence, decent spatiotemporal resolution, and a high signal-to-background ratio. This would expedite the innovation of NIR-II imaging-guided drug delivery (IGDD) paradigms for the improvement of the prognosis of patients with tumors. This work systematically reviews the recent progress of such NIR-II IGDD-mediated cancer therapeutics and collectively brings its essence to the readers. Special care has been taken to assess their performances based on their design approach, such as enhancing their drug loading and triggering release, designing intrinsic and extrinsic fluorophores, and/ or overcoming biological barriers. Besides, the state-of-the-art NIR-II IGDD platforms for different therapies like chemo-, photodynamic, photothermal, chemodynamic, immuno-, ion channel, gas-therapies, and multiple functions such as stimulus-responsive imaging and therapy, and monitoring of drug release and therapeutic response, have been updated. In addition, for boosting theranostic outcomes and clinical translation, the innovation directions of NIR-II IGDD platforms are summarized, including renal-clearable, biodegradable, sub-cellular targeting, and/or afterglow, chemiluminescence, X-ray excitable NIR-IGDD, and even cell therapy. This review will propel new directions for safe and efficient NIR-II fluorescence-mediated anticancer drug delivery.
Collapse
Affiliation(s)
- Shubham Roy
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen-518055, China
| | - Neelanjana Bag
- Department of Physics, Jadavpur University, Kolkata-700032, India
| | - Souravi Bardhan
- Department of Physics, Jadavpur University, Kolkata-700032, India
| | - Ikram Hasan
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Bing Guo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen-518055, China.
| |
Collapse
|
21
|
Kumar S, Shukla MK, Sharma AK, Jayaprakash GK, Tonk RK, Chellappan DK, Singh SK, Dua K, Ahmed F, Bhattacharyya S, Kumar D. Metal-based nanomaterials and nanocomposites as promising frontier in cancer chemotherapy. MedComm (Beijing) 2023; 4:e253. [PMID: 37025253 PMCID: PMC10072971 DOI: 10.1002/mco2.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
Cancer is a disease associated with complex pathology and one of the most prevalent and leading reasons for mortality in the world. Current chemotherapy has challenges with cytotoxicity, selectivity, multidrug resistance, and the formation of stemlike cells. Nanomaterials (NMs) have unique properties that make them useful for various diagnostic and therapeutic purposes in cancer research. NMs can be engineered to target cancer cells for early detection and can deliver drugs directly to cancer cells, reducing side effects and improving treatment efficacy. Several of NMs can also be used for photothermal therapy to destroy cancer cells or enhance immune response to cancer by delivering immune-stimulating molecules to immune cells or modulating the tumor microenvironment. NMs are being modified to overcome issues, such as toxicity, lack of selectivity, increase drug capacity, and bioavailability, for a wide spectrum of cancer therapies. To improve targeted drug delivery using nano-carriers, noteworthy research is required. Several metal-based NMs have been studied with the expectation of finding a cure for cancer treatment. In this review, the current development and the potential of plant and metal-based NMs with their effects on size and shape have been discussed along with their more effective usage in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Pharmaceutical ChemistrySchool of Pharmaceutical SciencesShoolini UniversitySolanHimachal PradeshIndia
| | - Monu Kumar Shukla
- Department of Pharmaceutical ChemistrySchool of Pharmaceutical SciencesShoolini UniversitySolanHimachal PradeshIndia
| | | | | | - Rajiv K. Tonk
- School of Pharmaceutical SciencesDelhi Pharmaceutical Sciences and Research UniversityNew DelhiDelhiIndia
| | | | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of Health, University of Technology SydneySydneyAustralia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneySydneyAustralia
| | - Faheem Ahmed
- Department of PhysicsCollege of ScienceKing Faisal UniversityAl‐HofufAl‐AhsaSaudi Arabia
| | | | - Deepak Kumar
- Department of Pharmaceutical ChemistrySchool of Pharmaceutical SciencesShoolini UniversitySolanHimachal PradeshIndia
| |
Collapse
|
22
|
Recent applications of phase-change materials in tumor therapy and theranostics. BIOMATERIALS ADVANCES 2023; 147:213309. [PMID: 36739784 DOI: 10.1016/j.bioadv.2023.213309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Phase-change materials (PCMs) are a type of special material which can store and release a large amount of thermal energy without any significant temperature change. They are emerging in recent years as a promising functional material in tumor therapy and theranostics due to their accurate responses to the temperature variations, biocompatibility and low toxicity. In this review, we will introduce the main types of PCMs and their desirable physiochemical properties for biomedical applications, and highlight the recent progress of PCM's applications in the modulated release of antitumor drugs, with special attentions paid to various ways to initiate temperature-dependent phase change, the concomitant thermal therapy and its combination with or activation of other therapies, particularly unconventional therapies. We will also summarize PCM's recent applications in tumor theranostics, where both drugs and imaging probes are delivered by PCMs for controlled drug release and imaging-guided therapy. Finally, the future perspectives and potential limitations of harnessing PCMs in tumor therapy will be discussed.
Collapse
|
23
|
Wang G, Tang Z, Gao Y, Liu P, Li Y, Li A, Chen X. Phase Change Thermal Storage Materials for Interdisciplinary Applications. Chem Rev 2023. [PMID: 36946191 DOI: 10.1021/acs.chemrev.2c00572] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Functional phase change materials (PCMs) capable of reversibly storing and releasing tremendous thermal energy during the isothermal phase change process have recently received tremendous attention in interdisciplinary applications. The smart integration of PCMs with functional supporting materials enables multiple cutting-edge interdisciplinary applications, including optical, electrical, magnetic, acoustic, medical, mechanical, and catalytic disciplines etc. Herein, we systematically discuss thermal storage mechanism, thermal transfer mechanism, and energy conversion mechanism, and summarize the state-of-the-art advances in interdisciplinary applications of PCMs. In particular, the applications of PCMs in acoustic, mechanical, and catalytic disciplines are still in their infancy. Simultaneously, in-depth insights into the correlations between microscopic structures and thermophysical properties of composite PCMs are revealed. Finally, current challenges and future prospects are also highlighted according to the up-to-date interdisciplinary applications of PCMs. This review aims to arouse broad research interest in the interdisciplinary community and provide constructive references for exploring next generation advanced multifunctional PCMs for interdisciplinary applications, thereby facilitating their major breakthroughs in both fundamental researches and commercial applications.
Collapse
Affiliation(s)
- Ge Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhaodi Tang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yan Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Panpan Liu
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Yang Li
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Ang Li
- School of Chemistry Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiao Chen
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
24
|
Yu M, Cao R, Ma Z, Zhu M. Development of "smart" drug delivery systems for chemo/PDT synergistic treatment. J Mater Chem B 2023; 11:1416-1433. [PMID: 36734612 DOI: 10.1039/d2tb02248f] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Although chemotherapy and photodynamic therapy (PDT) have been developed for fighting cancer, the complex and heterogeneous nature of tumors makes it difficult for a single therapy to completely inhibit tumor growth. In order to reduce multidrug resistance of cancer cells to chemotherapeutic drugs and overcome low PDT efficiency in the hypoxic tumor microenvironment (TME), chemo/PDT synergistic treatment has received much attention in recent years. Depending on the characteristic signals of TME, various drug delivery systems can be constructed to target tumors and improve the therapeutic efficacy and the pharmacokinetic profile of anticancer drugs. This review highlights the synergistic strategies, treatment protocols, and design of chemo/PDT co-therapy in recent years to explore its scope and limitations. Taking advantage of stimuli-responsive materials and active cancer-targeting agents, cancer-targeting synergistic therapy is presented and discussed, providing ideas and suggestions for the construction of chemo/PDT co-therapy "smart" nanocarriers.
Collapse
Affiliation(s)
- Miaomiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| | - Ran Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| | - Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| |
Collapse
|
25
|
Joseph TM, Kar Mahapatra D, Esmaeili A, Piszczyk Ł, Hasanin MS, Kattali M, Haponiuk J, Thomas S. Nanoparticles: Taking a Unique Position in Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:574. [PMID: 36770535 PMCID: PMC9920911 DOI: 10.3390/nano13030574] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 06/01/2023]
Abstract
The human nature of curiosity, wonder, and ingenuity date back to the age of humankind. In parallel with our history of civilization, interest in scientific approaches to unravel mechanisms underlying natural phenomena has been developing. Recent years have witnessed unprecedented growth in research in the area of pharmaceuticals and medicine. The optimism that nanotechnology (NT) applied to medicine and drugs is taking serious steps to bring about significant advances in diagnosing, treating, and preventing disease-a shift from fantasy to reality. The growing interest in the future medical applications of NT leads to the emergence of a new field for nanomaterials (NMs) and biomedicine. In recent years, NMs have emerged as essential game players in modern medicine, with clinical applications ranging from contrast agents in imaging to carriers for drug and gene delivery into tumors. Indeed, there are instances where nanoparticles (NPs) enable analyses and therapies that cannot be performed otherwise. However, NPs also bring unique environmental and societal challenges, particularly concerning toxicity. Thus, clinical applications of NPs should be revisited, and a deep understanding of the effects of NPs from the pathophysiologic basis of a disease may bring more sophisticated diagnostic opportunities and yield more effective therapies and preventive features. Correspondingly, this review highlights the significant contributions of NPs to modern medicine and drug delivery systems. This study also attempted to glimpse the future impact of NT in medicine and pharmaceuticals.
Collapse
Affiliation(s)
- Tomy Muringayil Joseph
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, 80-233 Gdańsk, Poland
| | - Debarshi Kar Mahapatra
- Department of Pharmaceutical Chemistry, Dadasaheb Balpande College of Pharmacy, Nagpur 440037, India
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology and Industrial Trades, University of Doha for Science and Technology (UDST), Arab League St, Doha P.O. Box 24449, Qatar
| | - Łukasz Piszczyk
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, 80-233 Gdańsk, Poland
| | - Mohamed S. Hasanin
- Cellulose and Paper Department, National Research Centre, Cairo 12622, Egypt
| | - Mashhoor Kattali
- Department of Biotechnology, EMEA College of Arts and Science, Kondotty 673638, India
| | - Józef Haponiuk
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, 80-233 Gdańsk, Poland
| | - Sabu Thomas
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686560, India
| |
Collapse
|
26
|
Advances in Liposome-Encapsulated Phthalocyanines for Photodynamic Therapy. Life (Basel) 2023; 13:life13020305. [PMID: 36836662 PMCID: PMC9965606 DOI: 10.3390/life13020305] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
This updated review aims to describe the current status in the development of liposome-based systems for the targeted delivery of phthalocyanines for photodynamic therapy (PDT). Although a number of other drug delivery systems (DDS) can be found in the literature and have been studied for phthalocyanines or similar photosensitizers (PSs), liposomes are by far the closest to clinical practice. PDT itself finds application not only in the selective destruction of tumour tissues or the treatment of microbial infections, but above all in aesthetic medicine. From the point of view of administration, some PSs can advantageously be delivered through the skin, but for phthalocyanines, systemic administration is more suitable. However, systemic administration places higher demands on advanced DDS, active tissue targeting and reduction of side effects. This review focuses on the already described liposomal DDS for phthalocyanines, but also describes examples of DDS used for structurally related PSs, which can be assumed to be applicable to phthalocyanines as well.
Collapse
|
27
|
Shrestha B, Tang L, Hood RL. Nanotechnology for Personalized Medicine. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
28
|
Liang R, Liu N, Li F. Recent Advances of Anticancer Studies Based on Nano-Fluorescent Metal-Organic Frameworks. ChemMedChem 2022; 17:e202200480. [PMID: 36220780 DOI: 10.1002/cmdc.202200480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/11/2022] [Indexed: 01/14/2023]
Abstract
Nano-fluorescent metal-organic frameworks (NF-MOFs), a kind of newly emerged nano-scaled platform, can provide visual, rapid, and highly sensitive optical imaging of cancer lesions both in vitro and in vivo. Meanwhile, the excellent porosity, structural tunability, and chemical modifiability also enable NF-MOFs to achieve simultaneous loading of targeted molecules and therapeutic agents. These NF-MOFs not only possess excellent targeted imaging ability, but also can guide the carried cargos to perform precise therapy, drawing considerable attention in current framework of anticancer drug design. In this review, we outline the fluorescence types and response mechanisms of NF-MOFs, and highlight their applications in cancer diagnosis and therapy in recent years. Based on this panorama, we also discuss current issues and future trends of NF-MOFs in biomedical fields, attempting to clarify the potential value of fluorescence imaging guided anticancer investigations.
Collapse
Affiliation(s)
- Ranxi Liang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
29
|
Construction of a 980 nm laser-activated Pt(II) metallacycle nanosystem for efficient and safe photo-induced bacteria sterilization. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1440-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Ni Z, Hu J, Ye Z, Wang X, Shang Y, Liu H. Indocyanine Green Performance Enhanced System for Potent Photothermal Treatment of Bacterial Infection. Mol Pharm 2022; 19:4527-4537. [PMID: 35143213 DOI: 10.1021/acs.molpharmaceut.1c00985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The instability in solution and aggregation-induced self-quenching of indocyanine green (ICG) have weakened its fluorescence and photothermal properties, thus inhibiting its application in practice. In this study, the cationic and anionic liposomes containing ICG were prepared based on 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-glycerol (DPPG), respectively. Molecular dynamics (MD) simulations demonstrate that ICG molecules are better distributed in the membranes of cationic DOTAP-based liposomes, leading to a superior fluorescence and photothermal performance. The liposomal ICG also shows the physical and photothermal stability during irradiation and long-term storage. On this basis, the prepared DOTAP-based liposomal ICG was encapsulated in the self-healing hydrogel formed by guar gum through the borate/diol interaction. The proposed liposomal ICG-loaded hydrogel can not only convert near-infrared (NIR) light into heat effectively but also repair itself without external assistance, which will realize potent photothermal therapy (PTT) against bacterial infection and provide the possibility for meeting the rapidly growing needs of modern medicine.
Collapse
Affiliation(s)
- Zhuoyao Ni
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiajie Hu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhicheng Ye
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiong Wang
- Department of Dermatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yazhuo Shang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
31
|
Mou Y, Zhang P, Lai WF, Zhang D. Design and applications of liposome-in-gel as carriers for cancer therapy. Drug Deliv 2022; 29:3245-3255. [PMID: 36310364 DOI: 10.1080/10717544.2022.2139021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Cancer has long been a hot research topic, and recent years have witnessed the incidence of cancer trending toward younger individuals with great socioeconomic burden. Even with surgery, therapeutic agents serve as the mainstay to combat cancer in the clinic. Intensive research on nanomaterials can overcome the shortcomings of conventional drug delivery approaches, such as the lack of selectivity for targeted regions, poor stability against degradation, and uncontrolled drug release behavior. Over the years, different types of drug carriers have been developed for cancer therapy. One of these is liposome-in-gel (LP-Gel), which has combined the merits of both liposomes and hydrogels, and has emerged as a versatile carrier for cancer therapy. LP-Gel hybrids have addressed the lack of stability of conventional liposomes against pH and ionic strength while displaying higher efficiency of delivery hydrophilic drugs as compared to conventional gels. They can be classified into three types according to their assembled structure, are characterized by their nontoxicity, biodegradability, and flexibility for clinical use, and can be mainly categorized based on their controlled release, transmucosal delivery, and transdermal delivery properties for anticancer therapy. This review covers the recent progress on the applications of LP-Gel hybrids for anticancer therapy.
Collapse
Affiliation(s)
- Yixuan Mou
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, China
| | - Pu Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, China
| | - Wing-Fu Lai
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, China.,Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Dahong Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, China
| |
Collapse
|
32
|
Hashemi M, Ghadyani F, Hasani S, Olyaee Y, Raei B, Khodadadi M, Ziyarani MF, Basti FA, Tavakolpournegari A, Matinahmadi A, Salimimoghadam S, Aref AR, Taheriazam A, Entezari M, Ertas YN. Nanoliposomes for doxorubicin delivery: Reversing drug resistance, stimuli-responsive carriers and clinical translation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
33
|
Yang S, Wu GL, Li N, Wang M, Wu P, He Y, Zhou W, Xiao H, Tan X, Tang L, Yang Q. A mitochondria-targeted molecular phototheranostic platform for NIR-II imaging-guided synergistic photothermal/photodynamic/immune therapy. J Nanobiotechnology 2022; 20:475. [DOI: 10.1186/s12951-022-01679-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractPhototherapy is a conducive and non-invasive strategy for cancer therapy under light irradiation. Inspiringly, fluorescence imaging in the second near-infrared window (NIR-II, 1000–1700 nm) holds a great promise for imaging-guided phototherapy with deep penetration and high spatiotemporal resolution. However, most phototherapeutics still face great challenges, including complicated synthesis of agents, potential biotoxicity and unsatisfied therapeutic outcomes. Herein, a near-infrared laser triggered molecular photosensitizer FEPT, modified with triphenylphosphine PEGylation (PEG2000-TPP), is developed for NIR-II imaging-guided mitochondria-targeting synergistic photothermal therapy (PTT)/photodynamic therapy (PDT)/immune therapy (IMT). The mitochondria-targeting photosensitizer FEPT can produce reactive oxygen species (ROS) and hyperpyrexia upon 808 nm laser irradiation, resulting in mitochondrial dysfunction and photo-induced apoptosis via caspase-3 pathway. Phototherapy-induced hyperthermia or ROS triggers the release of immunogenic intracellular substrates from dying tumor cells, thereby promoting the activation of antitumor immunity. Herein, this work provides a practicable strategy to develop a molecular phototheranostic platform for imaging-guided cancer therapy via mitochondria-targeting.
Graphical Abstract
Collapse
|
34
|
High thermal storage ability and photothermal conversion capacity phase change capsule with graphene oxide covalently grafted silica shell. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Guo Y, Sun L, Wang Y, Wang Q, Jing D, Liu S. Nanomaterials based on thermosensitive polymer in biomedical field. Front Chem 2022; 10:946183. [PMID: 36212064 PMCID: PMC9532752 DOI: 10.3389/fchem.2022.946183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/30/2022] [Indexed: 11/27/2022] Open
Abstract
The progress of nanotechnology enables us to make use of the special properties of materials on the nanoscale and open up many new fields of biomedical research. Among them, thermosensitive nanomaterials stand out in many biomedical fields because of their “intelligent” behavior in response to temperature changes. However, this article mainly reviews the research progress of thermosensitive nanomaterials, which are popular in biomedical applications in recent years. Here, we simply classify the thermally responsive nanomaterials according to the types of polymers, focusing on the mechanisms of action and their advantages and potential. Finally, we deeply investigate the applications of thermosensitive nanomaterials in drug delivery, tissue engineering, sensing analysis, cell culture, 3D printing, and other fields and probe the current challenges and future development prospects of thermosensitive nanomaterials.
Collapse
Affiliation(s)
- Yingshu Guo
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- *Correspondence: Yingshu Guo,
| | - Li Sun
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Yajing Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Qianqian Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Dan Jing
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shiwei Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
36
|
Chen BQ, Pan YJ, Zhang DG, Xia HY, Kankala RK. Phase-change materials-based platforms for biomedicine. Front Bioeng Biotechnol 2022; 10:989953. [PMID: 36118587 PMCID: PMC9478655 DOI: 10.3389/fbioe.2022.989953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, phase-change materials (PCMs) have gathered enormous attention in diverse fields of medicine, particularly in bioimaging, therapeutic delivery, and tissue engineering. Due to the excellent physicochemical characteristics and morphological characteristics of PCMs, several developments have been demonstrated in the construction of diverse PCMs-based architectures toward providing new burgeoning opportunities in developing innovative technologies and improving the therapeutic benefits of the existing formulations. However, the fabrication of PCM-based materials into colloidally stable particles remains challenging due to their natural hydrophobicity and high crystallinity. This review systematically emphasizes various PCMs-based platforms, such as traditional PCMs (liposomes) and their nanoarchitectured composites, including PCMs as core, shell, and gatekeeper, highlighting the pros and cons of these architectures for delivering bioactives, imaging anatomical features, and engineering tissues. Finally, we summarize the article with an exciting outlook, discussing the current challenges and future prospects for PCM-based platforms as biomaterials.
Collapse
Affiliation(s)
- Biao-Qi Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, China
| | - Yu-Jing Pan
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, China
| | - Da-Gui Zhang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, China
| | - Hong-Ying Xia
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, China
| |
Collapse
|
37
|
Ashrafizadeh M, Delfi M, Zarrabi A, Bigham A, Sharifi E, Rabiee N, Paiva-Santos AC, Kumar AP, Tan SC, Hushmandi K, Ren J, Zare EN, Makvandi P. Stimuli-responsive liposomal nanoformulations in cancer therapy: Pre-clinical & clinical approaches. J Control Release 2022; 351:50-80. [PMID: 35934254 DOI: 10.1016/j.jconrel.2022.08.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
The site-specific delivery of antitumor agents is of importance for providing effective cancer suppression. Poor bioavailability of anticancer compounds and the presence of biological barriers prevent their accumulation in tumor sites. These obstacles can be overcome using liposomal nanostructures. The challenges in cancer chemotherapy and stimuli-responsive nanocarriers are first described in the current review. Then, stimuli-responsive liposomes including pH-, redox-, enzyme-, light-, thermo- and magneto-sensitive nanoparticles are discussed and their potential for delivery of anticancer drugs is emphasized. The pH- or redox-sensitive liposomes are based on internal stimulus and release drug in response to a mildly acidic pH and GSH, respectively. The pH-sensitive liposomes can mediate endosomal escape via proton sponge. The multifunctional liposomes responsive to both redox and pH have more capacity in drug release at tumor site compared to pH- or redox-sensitive alone. The magnetic field and NIR irradiation can be exploited for external stimulation of liposomes. The light-responsive liposomes release drugs when they are exposed to irradiation; thermosensitive-liposomes release drugs at a temperature of >40 °C when there is hyperthermia; magneto-responsive liposomes release drugs in presence of magnetic field. These smart nanoliposomes also mediate co-delivery of drugs and genes in synergistic cancer therapy. Due to lack of long-term toxicity of liposomes, they can be utilized in near future for treatment of cancer patients.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey.
| | - Masoud Delfi
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, Naples 80126, Italy
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J.F. Kennedy 54-Mostra d'Oltremare pad. 20, 80125 Naples, Italy
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, 6517838736 Hamadan, Iran
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea; School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology and zoonosis, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | | | - Pooyan Makvandi
- School of Chemistry, Damghan University, Damghan 36716-41167, Iran; Istituto Italiano di Tecnologia, Center for Materials Interfaces, viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy.
| |
Collapse
|
38
|
Yuan Z, Gottsacker C, He X, Waterkotte T, Park YC. Repetitive drug delivery using Light-Activated liposomes for potential antimicrobial therapies. Adv Drug Deliv Rev 2022; 187:114395. [DOI: 10.1016/j.addr.2022.114395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/15/2022] [Accepted: 06/08/2022] [Indexed: 12/22/2022]
|
39
|
Liu W, Semcheddine F, Jiang H, Wang X. Acid-Responsive Multifunctional Zeolitic Imidazolate Framework-8 (ZIF-8) Nanocomposites for Tumor Chemo-Photothermal Synergistic Therapy. Bioconjug Chem 2022; 33:1405-1414. [PMID: 35797716 DOI: 10.1021/acs.bioconjchem.2c00246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Camptothecin (CPT), a broad-spectrum anticancer drug, has been extensively used clinically. However, its hydrophobic properties seriously hinder its antitumor therapeutic effect. Herein, we synthesized acid-degradable Fe3O4@poly(vinylpyrrolidone) (Fe3O4@PVP)/gold nanoclusters@zeolitic imidazolate framework-8 composite nanoparticles (ZIF-8CNPs) via a facile method and utilized them as carriers to efficiently load CPT. The excellent fluorescence properties of gold nanoclusters (AuNCs) and the photothermal properties of Fe3O4@poly(vinylpyrrolidone) (Fe3O4@PVP) endowed the nanocomposites with excellent cell imaging and photothermal functions. In addition, the surface modification of the composite nanoparticles with folic acid-grafted bovine serum albumin (FA-BSA) enables them to efficiently target tumor cells. Once FA-BSA/ZIF-8CNPs-CPT are taken up by tumor cells and irradiated with a near-infrared laser, the nanoparticles show a highly effective inhibitory effect against various tumor cells through a chemo-photothermal synergistic effect. Hence, it is conceivable that this acid-responsive multifunctional ZIF-8 nanocomposite has promising bioapplication prospects in cancer treatment.
Collapse
Affiliation(s)
- Weiwei Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.,School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China
| | - Farouk Semcheddine
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
40
|
Huang R, Zhou X, Chen G, Su L, Liu Z, Zhou P, Weng J, Min Y. Advances of functional nanomaterials for magnetic resonance imaging and biomedical engineering applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1800. [PMID: 35445588 DOI: 10.1002/wnan.1800] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 11/12/2022]
Abstract
Functional nanomaterials have been widely used in biomedical fields due to their good biocompatibility, excellent physicochemical properties, easy surface modification, and easy regulation of size and morphology. Functional nanomaterials for magnetic resonance imaging (MRI) can target specific sites in vivo and more easily detect disease-related specific biomarkers at the molecular and cellular levels than traditional contrast agents, achieving a broad application prospect in MRI. This review focuses on the basic principles of MRI, the classification, synthesis and surface modification methods of contrast agents, and their clinical applications to provide guidance for designing novel contrast agents and optimizing the contrast effect. Furthermore, the latest biomedical advances of functional nanomaterials in medical diagnosis and disease detection, disease treatment, the combination of diagnosis and treatment (theranostics), multi-model imaging and nanozyme are also summarized and discussed. Finally, the bright application prospects of functional nanomaterials in biomedicine are emphasized and the urgent need to achieve significant breakthroughs in the industrial transformation and the clinical translation is proposed. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Diagnostic Nanodevices Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Ruijie Huang
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Xingyu Zhou
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Guiyuan Chen
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Lanhong Su
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Zhaoji Liu
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Peijie Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuanzeng Min
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Department of Chemistry, University of Science and Technology of China, Hefei, China
| |
Collapse
|
41
|
A multi-hit therapeutic nanoplatform for hepatocellular carcinoma: Dual stimuli-responsive drug release, dual-modal imaging, and in situ oxygen supply to enhance synergistic therapy. Mater Today Bio 2022; 16:100338. [PMID: 35847375 PMCID: PMC9278082 DOI: 10.1016/j.mtbio.2022.100338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/07/2022] [Accepted: 06/18/2022] [Indexed: 12/26/2022]
Abstract
Nanomedicine has been widely studied for the diagnosis and treatment of hepatocellular carcinoma (HCC). How to synthesize a nanoplatform possessing a high synergistic therapeutic efficacy remains a challenge in this emerging research field. In this study, a convenient all-in-one therapeutic nanoplatform (FTY720@AM/T7-TL) is designed for HCC. This advanced nanoplatform consists of multiple functional elements, including gold-manganese dioxide nanoparticles (AM), tetraphenylethylene (T), fingolimod (FTY720), hybrid-liposome (L), and T7 peptides (T7). The nanoplatform is negatively charged at physiological pH and can transit to a positively charged state once moving to acidic pH environments. The specially designed pH-responsive charge-reversal nanocarrier prolongs the half-life of nanodrugs in blood and improves cellular uptake efficiency. The platform achieves a sustained and controllable drug release through dual stimulus-response, with pH as the endogenous stimulus and near-infrared as the exogenous stimulus. Furthermore, the nanoplatform realizes in situ O2 generation by catalyzing tumor over-expressed H2O2, which alleviates tumor microenvironment hypoxia and improves photodynamic therapy. Both in vitro and in vivo studies show the prepared nanoplatform has good photothermal conversion, cellular uptake efficiency, fluorescence/magnetic resonance imaging capabilities, and synergistic anti-tumor effects. These results suggest that the prepared all-in-one nanoplatform has great potential for dual-modal imaging-guided synergistic therapy of HCC.
Collapse
|
42
|
Xia Y, Wu Y, Cao J, Wang J, Chen Z, Li C, Zhang X. Liposomal Glucose Oxidase for Enhanced Photothermal Therapy and Photodynamic Therapy against Breast Tumors. ACS Biomater Sci Eng 2022; 8:1892-1906. [PMID: 35404565 DOI: 10.1021/acsbiomaterials.1c01311] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Organic near-infrared fluorescent dye mediated photothermal therapy (PTT) and photodynamic therapy (PDT) suffer from heat shock response, since, heat shock proteins (HSPs) are overexpressed and can repair the proteins damaged by PTT and PDT. Starvation therapy by glucose oxide (GOx) can inhibit the heat shock response by limiting the energy supply. However, the delivery of sufficient and active GOx remains a challenge. To solve this problem, we utilize liposomes as drug carriers and prepare GOx loaded liposome (GOx@Lipo) with a high drug loading content (12.0%) and high enzymatic activity. The successful delivery of GOx shows excellent inhibition of HSPs and enhances PTT and PDT. Additionally, we apply the same liposome formulation to load near-infrared dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbo cyanine iodide (DiR) and prepare DiR contained liposomes (DiR@Lipo) for PTT and PDT. The liposomal formulation substantially enhances the PTT and PDT properties of DiR as well as the cellular uptake and tumor accumulation. Finally, the combination therapy shows excellent tumor inhibition on 4T1 tumor-bearing mice. Interestingly, we also find that the starvation therapy can efficiently inhibit tumor metastasis, which is probably due to the immunogenic effect. Our work presents a biocompatible and effective carrier for the combination of starvation therapy and phototherapy, emphasizing the importance of auxiliary starvation therapy against tumor metastasis and offering important guidance for clinical PTT and PDT.
Collapse
Affiliation(s)
- Yuqiong Xia
- Engineering Research Center of Molecular- and Neuro-Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710026, China
| | - Yankun Wu
- Engineering Research Center of Molecular- and Neuro-Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710026, China
| | - Jianxia Cao
- Engineering Research Center of Molecular- and Neuro-Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710026, China
| | - Jun Wang
- Engineering Research Center of Molecular- and Neuro-Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710026, China
| | - Zhaoxu Chen
- Engineering Research Center of Molecular- and Neuro-Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710026, China
| | - Cairu Li
- Engineering Research Center of Molecular- and Neuro-Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710026, China
| | - Xianghan Zhang
- Engineering Research Center of Molecular- and Neuro-Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710026, China
| |
Collapse
|
43
|
Jiang Y, Zhou H, Zhao W, Zhang S. ATP-Triggered Drug Release of Self-Assembled 3D DNA Nanostructures for Fluorescence Imaging and Tumor Therapy. Anal Chem 2022; 94:6771-6780. [PMID: 35471011 DOI: 10.1021/acs.analchem.2c00409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stimulus-responsive materials are ideal carriers for precisely controlled drug delivery due to their high selectivity. However, the complex physiological environment hinders its development in clinical medicine. Here, we aim to design a self-assembled three-dimensional (3D) DNA nanostructure drug delivery system with adenosine-5'-triphosphate (ATP)-triggered drug release for tumor fluorescence imaging analysis and targeted drug delivery. Dox@3D DNA nanostructures are self-assembled by a simple one-pot annealing reaction and embedded with drugs, which are structurally stable but can be induced using high concentrations of ATP in tumor cells to cleave and release drugs rapidly, facilitating the rapid accumulation of drugs in tumors and exerting therapeutic effects, thus effectively avoiding damage to normal tissues. This work demonstrates that 3D DNA nanostructures can be used as efficient drug nanocarriers with promising applications in tumor therapy.
Collapse
Affiliation(s)
- Yao Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.,Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Huimin Zhou
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Wenjing Zhao
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| |
Collapse
|
44
|
Construction of emissive ruthenium(II) metallacycle over 1000 nm wavelength for in vivo biomedical applications. Nat Commun 2022; 13:2009. [PMID: 35422104 PMCID: PMC9010459 DOI: 10.1038/s41467-022-29572-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/22/2022] [Indexed: 12/19/2022] Open
Abstract
Although Ru(II)-based agents are expected to be promising candidates for substituting Pt-drug, their in vivo biomedical applications are still limited by the short excitation/emission wavelengths and unsatisfactory therapeutic efficiency. Herein, we rationally design a Ru(II) metallacycle with excitation at 808 nm and emission over 1000 nm, namely Ru1085, which holds deep optical penetration (up to 6 mm) and enhanced chemo-phototherapy activity. In vitro studies indicate that Ru1085 exhibits prominent cell uptake and desirable anticancer capability against various cancer cell lines, especially for cisplatin-resistant A549 cells. Further studies reveal Ru1085 induces mitochondria-mediated apoptosis along with S and G2/M phase cell cycle arrest. Finally, Ru1085 shows precise NIR-II fluorescence imaging guided and long-term monitored chemo-phototherapy against A549 tumor with minimal side effects. We envision that the design of long-wavelength emissive metallacycle will offer emerging opportunities of metal-based agents for in vivo biomedical applications. Ruthenium (Ru(II)) compounds are of interest as platinum drug replacements but have suffered from suboptimal therapeutic efficiency. Here, the authors design a Ru(II) metallacycle with NIR excitation and emission wavelengths and demonstrate application for deep tumour imaging and chemo-photo therapy.
Collapse
|
45
|
Cui C, Wang C, Fu Q, Song J, Zou J, Li L, Zhu J, Huang W, Li L, Yang Z, Chen X. A generic self-assembly approach towards phototheranostics for NIR-II fluorescence imaging and phototherapy. Acta Biomater 2022; 140:601-609. [PMID: 34808416 DOI: 10.1016/j.actbio.2021.11.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/20/2021] [Accepted: 11/16/2021] [Indexed: 01/10/2023]
Abstract
Controllable self-assembly of photonic molecules for precise biomedicine is highly desirable but challenging to prepare multifunctional nano-phototheranostics. Herein, we developed a generic self-assembly approach to design nano-phototheranostics that provides NIR-II fluorescence imaging and phototherapy. We first designed and synthesized two amphiphilic photonic molecules, PEG2000-IR806 and BODIPY. Then, we prepared the co-self-assembled phototheranostic agents, PEG2000-IR806/BODIPY nanoparticles (PIBY NPs). The morphology of the PIBY NPs is controllable by adjusting the ratio of PEG2000-IR806 and BODIPY during self-assembly. The NIR-II fluorescence properties and phototherapy capability of the PIBY NPs were demonstrated in vitro and in vivo. By tuning the ratio of PEG2000-IR806 and BODIPY, the PIBY NPs showed various morphologies (e.g. spherical nanoparticles, nanovesicles and rod-like nanoparticles). The PEG2000-IR806 plays two roles in the co-self-assemblies, one is second near-infrared (NIR-II, 1000-1700 nm) agent, the other is the surfactant for BODIPY encapsulation. The phototherapeutic PIBY NPs all show bright NIR-II fluorescence and effective phototherapeutic (photothermal and photodynamic) properties, which are attributed to IR806 and BODIPY, respectively. The driving force of the self-assembly can be attributed to the electrostatic interaction between NIR806 and BODIPY and their hydrophobicity. The rod-like PIBY NPs (rPIBY NPs) demonstrated a low half inhibitory concentration (IC50) of 3.96 µg/mL on U87MG cells. The NIR-II imaging showed the accumulation of rPIBY NPs in the tumor region. After systemic injection of rPIBY NPs at low dose (0.5 mg/kg), the tumor growth was greatly inhibited upon laser irradiation without noticeable side effects. This study provides a generic self-assembly approach to fabricate NIR-II imaging and phototherapeutic platform for cancer phototheranostics. STATEMENT OF SIGNIFICANCE: Nanophototheranostics providing NIR-II fluorescence imaging and phototherapy are expected to play a critical role in modern precision medicine. Controllable self-assembly of optical molecules for the fabrication of efficient nanophototheranostics is highly desirable but challenging. This work reports for the first time the co-assembly of a NIR-II imaging contrast agent and a phototherapeutic agent to yield nanophototheranostics with various morphologies. The design of molecular co-assembly with complementary optical functions can be a generic method for future the development of phototheranostics.
Collapse
|
46
|
Yeo YH, Chathuranga K, Lee JS, Koo J, Park WH. Multifunctional and thermoresponsive methylcellulose composite hydrogels with photothermal effect. Carbohydr Polym 2022; 277:118834. [PMID: 34893251 DOI: 10.1016/j.carbpol.2021.118834] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 01/10/2023]
Abstract
Multifunctional and thermoresponsive hydrogels can be used as soft materials in various medical applications, such as beauty devices, drug delivery, and near-infrared (NIR) lasers. In this study, methylcellulose (MC) composite hydrogels containing tannic acid (TA) and Fe3+ were prepared via a simple, fast process. The MC composite hydrogel contains hydrogen bonds between the MC polymer and TA and coordination bonds between TA and Fe3+, without losing the reversible thermogelation properties of the MC polymer. The gelation rates and mechanical properties of the MC composite hydrogel were controlled by varying its TA and Fe3+ contents. In particular, the hydrogel with a TA-Fe chelating complex showed an excellent photothermal effect, indicating its potential application in cosmetic beauty devices. It also exhibited UV-blocking, antioxidant, and antibacterial properties owing to the multifunctional TA. The facile processing of these MC/TA/Fe hydrogels provides new opportunities for biomedical applications and beauty devices employing NIR laser therapy.
Collapse
Affiliation(s)
- Yong Ho Yeo
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Kiramage Chathuranga
- Department of Veterinary Microbiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, South Korea
| | - Jong Soo Lee
- Department of Veterinary Microbiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, South Korea
| | - Jaseung Koo
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Won Ho Park
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
47
|
Orsi D, Vaccari M, Baraldi A, Cristofolini L. A portable NIR fluorimeter directly quantifies singlet oxygen generated by nanostructures for Photodynamic Therapy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120357. [PMID: 34534771 DOI: 10.1016/j.saa.2021.120357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
This paper reports on the setting up and calibration of a portable NIR fluorimeter specifically developed for quantitative direct detection of the highly reactive singlet oxygen (1O2) chemical specie, of great importance in Photodynamic therapies. This quantification relies on the measurement of fluorescence emission of 1O2, which is peaked in the near-infrared (NIR) at λ=1270nm. In recent years, several nanostructures capable of generating reactive oxygen species (ROS) when activated by penetrating radiation (X-rays, NIR light) have been developed to apply Photodynamic Therapy (PDT) to tumours in deep tissue, where visible light cannot penetrate. A bottleneck in the characterization of these nanostructures is the lack of a fast and reliable technique to quantitatively assess their performances in generating ROS, and in particular 1O2. For instance, the widely used PDT "Singlet Oxygen Sensor Green" kit suffers from self-activation under X-ray irradiation. To solve this difficulty, we propose here direct detection of 1O2 by spectroscopic means, using an apparatus developed by us around a recent thermoelectrically-cooled InGaAs single photon avalanche photodiode (SPAD). The SPAD is coupled to a custom-made integrating sphere designed for use under irradiation with high-energy X-ray beams from clinical Radiotherapy sources. We determine the detection threshold for our apparatus, which turns to be ∼9·1081O2 in realistic experimental condition and for measurements extending to 1 min of integration. After calibrations on standard photosensitizers, we demonstrate the potentiality of this instrument characterizing some photosensitizing nanostructures developed by us.
Collapse
Affiliation(s)
- Davide Orsi
- Università di Parma, Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Parma (IT), Italy.
| | - Marco Vaccari
- Università di Parma, Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Parma (IT), Italy
| | - Andrea Baraldi
- Università di Parma, Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Parma (IT), Italy
| | - Luigi Cristofolini
- Università di Parma, Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Parma (IT), Italy.
| |
Collapse
|
48
|
Yang C, Jiang W, Yu Y, Zhang H, Cai C, Shen Q. Anisotropic Plasmonic Pd-Tipped Au Nanorods for Near-Infrared Light-Activated Photoacoustic Imaging Guided Photothermal-Photodynamic Cancer Therapy. J Mater Chem B 2022; 10:2028-2037. [DOI: 10.1039/d2tb00002d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The integration of photothermal therapy (PTT) and photodynamic therapy (PDT) has become a promising cancer treatment method. Herein, anisotropic metal hetero-nanostructure Pd-tipped Au nanorods (PTA NRs) were fabricated, which exhibit...
Collapse
|
49
|
Lipid-based nanoparticles for photosensitive drug delivery systems. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022; 52:151-160. [PMID: 35013696 PMCID: PMC8731178 DOI: 10.1007/s40005-021-00553-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/28/2021] [Indexed: 12/16/2022]
Abstract
Background Numerous drug delivery strategies have been studied, but many hurdles exist in drug delivery rates to the target site. Recently, researchers have attempted to remotely control the in vivo behavior of drugs with light to overcome the shortcomings of conventional drug delivery systems. Photodynamic and photothermal systems are representative strategies wherein a photosensitive material is activated in response to a specific wavelength of light. Area covered Photosensitive materials generally exhibit poor solubility and low biocompatibility. Additionally, their low photostability negatively affects delivery performance. A formulation of lipid-based nanoparticles containing photosensitive substances can help achieve photosensitive drug delivery with improved biocompatibility. The lipid bilayer structure, which can be assembled and disassembled by modulating the surrounding conditions (temperature, pH, etc.), can also be crucial for controlled release of drugs. Expert opinion To the best of our knowledge, translation research on photoresponsive nanoparticles is scarce. However, as various drugs based on lipid nanoparticles have been clinically approved, the development potential of the lipid-based photoresponsive nanoparticles seems high. Thus, the identification of valid indications and development of optimum medical devices will increase the interest in photoresponsive material-based nanoparticles.
Collapse
|
50
|
Xu W, Xu L, Jia W, Mao X, Liu S, Dong H, Zhang H, Zhang Y. Nanomaterials based on phase change materials for antibacterial application. Biomater Sci 2022; 10:6388-6398. [DOI: 10.1039/d2bm01220k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review presented the applications of PCM-based nanomaterials in bacterial infections. Firstly, the composition and biotoxicity were outlined. Secondly, various antibacterial tactics were highlighted. Lastly, the perspectives were discussed.
Collapse
Affiliation(s)
- Wenjing Xu
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Linfeng Xu
- Hepatopancreatobiliary Center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Weilu Jia
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Xinyu Mao
- Hepatopancreatobiliary Center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Shiwei Liu
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Hui Dong
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Haidong Zhang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| |
Collapse
|