1
|
Sun X, Wu H, Li Z, Zhu R, Li G, Su Z, Zhang J, Gao X, Pascual J, Abate A, Li M. Multifunctional Modification of the Buried Interface in Mixed Tin-Lead Perovskite Solar Cells. Angew Chem Int Ed Engl 2024:e202409330. [PMID: 39101678 DOI: 10.1002/anie.202409330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 08/06/2024]
Abstract
Mixed tin-lead perovskite solar cells can reach band gaps as low as 1.2 eV, offering high theoretical efficiency and serving as base materials for all-perovskite tandem solar cells. However, instability and high defect densities at the interfaces, particularly the buried surface, have limited performance improvements. In this work, we present the modification of the bottom perovskite interface with multifunctional hydroxylamine salts. These salts can effectively coordinate the different perovskite components, having critical influences in regulating the crystallization process and passivating defects of varying nature. The surface modification reduced traps at the interface and prevented the formation of excessive lead iodide, enhancing the quality of the films. The modified devices presented fill factors reaching 81 % and efficiencies of up to 23.8 %. The unencapsulated modified devices maintained over 95 % of their initial efficiency after 2000 h of shelf storage.
Collapse
Affiliation(s)
- Xinru Sun
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Nanoscience and Materials Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| | - Hongzhuo Wu
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Nanoscience and Materials Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| | - Zhihao Li
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Nanoscience and Materials Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| | - Rui Zhu
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Nanoscience and Materials Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| | - Guixiang Li
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Zhenhuang Su
- Shanghai Synchrotron Radiation Facility Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai, 201204, P. R. China
| | - Junhan Zhang
- Shanghai Synchrotron Radiation Facility Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai, 201204, P. R. China
| | - Xingyu Gao
- Shanghai Synchrotron Radiation Facility Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai, 201204, P. R. China
| | - Jorge Pascual
- Polymat, University of the Basque Country UPV/EHU, 20018, Donostia-San Sebastián, Spain
| | - Antonio Abate
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Meng Li
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Nanoscience and Materials Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| |
Collapse
|
2
|
Zhang Y, Wang Q, Hu F, Wang Y, Wu D, Wang R, Duhm S. Photoelectron Spectroscopy Reveals the Impact of Solvent Additives on Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) Thin Film Formation. ACS PHYSICAL CHEMISTRY AU 2023; 3:311-319. [PMID: 37249934 PMCID: PMC10214517 DOI: 10.1021/acsphyschemau.2c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 05/31/2023]
Abstract
The conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is used in a manifold of electronic applications, and controlling its conductivity is often the key to attain a superior device performance. To that end, solvent additives like Triton, ethylene glycol (EG), or dimethyl sulfoxide (DMSO) are regularly incorporated. In our comprehensive study, we prepare PEDOT:PSS thin films with seven different additive combinations and with thicknesses ranging from 6 to 300 nm on indium-tin-oxide (ITO) substrates. We utilize X-ray photoelectron spectroscopy (XPS) to access the PSS-to-PEDOT ratio and the PSS--to-PSSH ratio in the near-surface region and ultraviolet photoelectron spectroscopy (UPS) to get the work function (WF). In addition, the morphology and conductivity of these samples are obtained. We found that the WF of the prepared thin films for each combination becomes saturated at a thickness of around 50 nm and thinner films show a lower WF due to the inferior coverage on the ITO. Furthermore, the WF shows a better correlation with the PSS--to-PSSH ratio than the commonly used PSS-to-PEDOT ratio as PSS- can directly affect the surface dipole. By adding solvent additives, a dramatic increase in the conductivity is observed for all PEDOT:PSS films, especially when DMSO is involved. Moreover, adding the additive Triton (surfactant) helps to suppress the WF fluctuation for most films of each additive combination and contributes to weaken the surface dipole, eventually leading to a lower and thickness-independent WF.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute
of Functional Nano & Soft Materials (FUNSOM), Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, People’s Republic of China
- Jiangsu
Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, People’s Republic of China
| | - Qi Wang
- Institute
of Functional Nano & Soft Materials (FUNSOM), Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, People’s Republic of China
- Jiangsu
Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, People’s Republic of China
| | - Fengyang Hu
- Institute
of Functional Nano & Soft Materials (FUNSOM), Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, People’s Republic of China
- Jiangsu
Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, People’s Republic of China
| | - Yuhao Wang
- Institute
of Functional Nano & Soft Materials (FUNSOM), Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, People’s Republic of China
- Jiangsu
Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, People’s Republic of China
| | - Di Wu
- Institute
of Functional Nano & Soft Materials (FUNSOM), Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, People’s Republic of China
- Jiangsu
Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, People’s Republic of China
| | - Rongbin Wang
- Institut
für Physik and IRIS Adlershof, Humboldt-Universität
zu Berlin, Brook-Taylor-Str. 6, 12489 Berlin, Germany
| | - Steffen Duhm
- Institute
of Functional Nano & Soft Materials (FUNSOM), Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, People’s Republic of China
- Jiangsu
Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, People’s Republic of China
| |
Collapse
|
3
|
Jung S, Choi S, Shin W, Oh H, Oh J, Ryu MY, Kim W, Park S, Lee H. Enhancement in Power Conversion Efficiency of Perovskite Solar Cells by Reduced Non-Radiative Recombination Using a Brij C10-Mixed PEDOT:PSS Hole Transport Layer. Polymers (Basel) 2023; 15:772. [PMID: 36772072 PMCID: PMC9921526 DOI: 10.3390/polym15030772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Interface properties between charge transport and perovskite light-absorbing layers have a significant impact on the power conversion efficiency (PCE) of perovskite solar cells (PSCs). Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is a polyelectrolyte composite that is widely used as a hole transport layer (HTL) to facilitate hole transport from a perovskite layer to an anode. However, PEDOT:PSS must be modified using a functional additive because PSCs with a pristine PEDOT:PSS HTL do not exhibit a high PCE. Herein, we demonstrate an increase in the PCE of PSCs with a polyethylene glycol hexadecyl ether (Brij C10)-mixed PEDOT:PSS HTL. Photoelectron spectroscopy results show that the Brij C10 content becomes significantly high in the HTL surface composition with an increase in the Brij C10 concentration (0-5 wt%). The enhanced PSC performance, e.g., a PCE increase from 8.05 to 11.40%, is attributed to the reduction in non-radiative recombination at the interface between PEDOT:PSS and perovskite by the insulating Brij C10. These results indicate that the suppression of interface recombination is essential for attaining a high PCE for PSCs.
Collapse
Affiliation(s)
- Sehyun Jung
- Department of Physics and Institute of Quantum Convergence Technology, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si 24341, Republic of Korea
| | - Seungsun Choi
- Department of Physics and Institute of Quantum Convergence Technology, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si 24341, Republic of Korea
| | - Woojin Shin
- Department of Physics and Institute of Quantum Convergence Technology, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si 24341, Republic of Korea
| | - Hyesung Oh
- Department of Physics and Institute of Quantum Convergence Technology, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si 24341, Republic of Korea
| | - Jaewon Oh
- Department of Physics and Institute of Quantum Convergence Technology, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si 24341, Republic of Korea
| | - Mee-Yi Ryu
- Department of Physics and Institute of Quantum Convergence Technology, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si 24341, Republic of Korea
| | - Wonsik Kim
- Advanced Analysis Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Soohyung Park
- Advanced Analysis Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hyunbok Lee
- Department of Physics and Institute of Quantum Convergence Technology, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si 24341, Republic of Korea
| |
Collapse
|
4
|
Wang W, Li Y, Duan Y, Qiu M, An H, Peng Z. Performance Enhancement of Perovskite Quantum Dot Light-Emitting Diodes via Management of Hole Injection. MICROMACHINES 2022; 14:mi14010011. [PMID: 36677071 PMCID: PMC9863841 DOI: 10.3390/mi14010011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 06/01/2023]
Abstract
Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is widely used in optoelectronic devices due to its excellent hole current conductivity and suitable work function. However, imbalanced carrier injection in the PEDOT:PSS layer impedes obtaining high-performance perovskite light-emitting diodes (PeLEDs). In this work, a novel poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,40-(N-(p-butylphenyl))diphenylamine)] (TFB) is applied as the hole transport layers (HTLs) to facilitate the hole injection with cascade-like energy alignment between PEDOT:PSS and methylammonium lead tribromide (MAPbBr3) film. Our results indicate that the introduced TFB layer did not affect the surface morphology or lead to any additional surface defects of the perovskite film. Consequently, the optimal PeLEDs with TFB HTLs show a maximum current efficiency and external quantum efficiency (EQE) of 21.26 cd A-1 and 6.68%, respectively. Such EQE is 2.5 times higher than that of the control devices without TFB layers. This work provides a facile and robust route to optimize the device structure and improve the performance of PeLEDs.
Collapse
Affiliation(s)
- Weigao Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yiyang Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yu Duan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mingxia Qiu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Hua An
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhengchun Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
5
|
Review on Tailoring PEDOT:PSS Layer for Improved Device Stability of Perovskite Solar Cells. NANOMATERIALS 2021; 11:nano11113119. [PMID: 34835883 PMCID: PMC8619312 DOI: 10.3390/nano11113119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/27/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022]
Abstract
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has high optical transparency in the visible light range and low-temperature processing condition, making it one of the most widely used polymer hole transport materials inverted perovskite solar cells (PSCs), because of its high optical transparency in the visible light range and low-temperature processing condition. However, the stability of PSCs based on pristine PEDOT:PSS is far from satisfactory, which is ascribed to the acidic and hygroscopic nature of PEDOT:PSS, and property differences between PEDOT:PSS and perovskite materials, such as conductivity, work function and surface morphology. This review summaries recent efficient strategies to improve the stability of PEDOT:PSS in PSCs and discusses the underlying mechanisms. This review is expected to provide helpful insights for further increasing the stability of PSCs based on commercial PEDOT:PSS.
Collapse
|
6
|
Liu Z, Xue X, Kang Z, Wang R, Zhang H, Ji W. Achieving high-performance in situ fabricated FAPbBr 3 and electroluminescence. OPTICS LETTERS 2021; 46:4378-4381. [PMID: 34470019 DOI: 10.1364/ol.439183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Currently, metal halide perovskite films still encounter the issues of inferior film quality and interfacial electrical properties when they were constructed electroluminescence devices. Herein, efficient and pinhole-free perovskite emissive film was obtained on the poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) layer modified by an ultrathin LiF layer. Owing to the synergetic effect of the LiF interlayer, including better regulation of the perovskite film and a more balanced charge injection capability, an efficient green light-emitting diode based on the perovskite film was achieved with a maximum current efficiency of 25.6 cd/A, which is 58% higher than that of the control device with a plasma-treated PEDOT:PSS layer. Our results not only provide a facile strategy for acquiring efficient perovskite films but also circumvent the expensive and time-consuming plasma treatment process commonly used to improve the wetting properties of the underlying films.
Collapse
|
7
|
Han W, Ren G, Liu J, Li Z, Bao H, Liu C, Guo W. Recent Progress of Inverted Perovskite Solar Cells with a Modified PEDOT:PSS Hole Transport Layer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49297-49322. [PMID: 33089987 DOI: 10.1021/acsami.0c13576] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organic-inorganic hybrid perovskite solar cells (PSCs) has achieved the power conversion efficiency (PCE) of 25.2% in the last 10 years, and the PCE of inverted PSCs has reached >22%. The rapid enhancement has partly benefited from the employment of suitable hole transport layers. Especially, poly(3,4-ethenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is one of the most widely used polymer hole transport materials in inverted PSCs, because of its high optical transparency in the visible region and low-temperature processing condition. However, the PCE and stability of PSCs based on pristine PEDOT:PSS are far from satisfactory, which are ascribed to low fitness between PEDOT:PSS and perovskite materials, in terms of work function, conductivity, film growth, and hydrophobicity. This paper summaries recent progress regarding to modifying/remedy the drawbacks of PEDOT:PSS to improve the PCE and stability. The systematically understanding of the mechanism of modified PEDOT:PSS and various characteristic methods are summarized here. This Review has the potential to guide the development of PSCs based on commercial PEDOT:PSS.
Collapse
Affiliation(s)
- Wenbin Han
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Guanhua Ren
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Jiuming Liu
- School of Information Science and Technology, Shanghai Technology University, Shanghai, 201210, China
| | - Zhiqi Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Hongchang Bao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Chunyu Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
- College of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Wenbin Guo
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| |
Collapse
|
8
|
Veeramuthu L, Liang FC, Zhang ZX, Cho CJ, Ercan E, Chueh CC, Chen WC, Borsali R, Kuo CC. Improving the Performance and Stability of Perovskite Light-Emitting Diodes by a Polymeric Nanothick Interlayer-Assisted Grain Control Process. ACS OMEGA 2020; 5:8972-8981. [PMID: 32337461 PMCID: PMC7178802 DOI: 10.1021/acsomega.0c00758] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
CsPbBr3 is a promising light-emitting material due to its wet solution processability, high photoluminescence quantum yield (PLQY), narrow color spectrum, and cost-effectiveness. Despite such advantages, the morphological defects, unsatisfactory carrier injection, and stability issues retard its widespread applications in light-emitting devices (LEDs). In this work, we demonstrated a facile and cost-effective method to improve the morphology, efficiency, and stability of the CsPbBr3 emissive layer using a dual polymeric encapsulation governed by an interface-assisted grain control process (IAGCP). An eco-friendly low-cost hydrophilic polymer poly(vinylpyrrolidone) (PVP) was blended into the CsPbBr3 precursor solution, which endows the prepared film with a better surface coverage with a smoothened surface. Furthermore, it is revealed that inserting a thin PVP nanothick interlayer at the poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/emissive layer interface further promotes the film quality and the performance of the derived LED. It is mainly attributed to three major consequences: (i) reduced grain size of the emissive layer, which facilitates charge recombination, (ii) reduced current leakage due to the enhanced electron-blocking effect, and (iii) improved color purity and air stability owing to better defect passivation. As a result, the optimized composite emissive film can retain the luminescence properties even on exposure to ambient conditions for 80 days and ∼62% of its initial PL intensity can be preserved after 30 days of storage without any encapsulation.
Collapse
Affiliation(s)
- Loganathan Veeramuthu
- Institute
of Organic and Polymeric Materials, Research and Development Center
of Smart Textile Technology, National Taipei
University of Technology, 10608 Taipei, Taiwan
| | - Fang-Cheng Liang
- Institute
of Organic and Polymeric Materials, Research and Development Center
of Smart Textile Technology, National Taipei
University of Technology, 10608 Taipei, Taiwan
- Centre
de Recherches sur les Macromolécules Végétales
(CERMAV), affiliated with Grenoble Alpes
University, Institut Carnot PolyNat, BP53, 38041 Grenoble Cedex 9, France
| | - Zhi-Xuan Zhang
- Institute
of Organic and Polymeric Materials, Research and Development Center
of Smart Textile Technology, National Taipei
University of Technology, 10608 Taipei, Taiwan
| | - Chia-Jung Cho
- Institute
of Organic and Polymeric Materials, Research and Development Center
of Smart Textile Technology, National Taipei
University of Technology, 10608 Taipei, Taiwan
| | - Ender Ercan
- Department
of Chemical Engineering and Advanced Research Center for Green Materials
Science and Technology, National Taiwan
University, 106 Taipei, Taiwan
| | - Chu-Chen Chueh
- Department
of Chemical Engineering and Advanced Research Center for Green Materials
Science and Technology, National Taiwan
University, 106 Taipei, Taiwan
| | - Wen-Chang Chen
- Department
of Chemical Engineering and Advanced Research Center for Green Materials
Science and Technology, National Taiwan
University, 106 Taipei, Taiwan
| | - Redouane Borsali
- Centre
de Recherches sur les Macromolécules Végétales
(CERMAV), affiliated with Grenoble Alpes
University, Institut Carnot PolyNat, BP53, 38041 Grenoble Cedex 9, France
| | - Chi-Ching Kuo
- Institute
of Organic and Polymeric Materials, Research and Development Center
of Smart Textile Technology, National Taipei
University of Technology, 10608 Taipei, Taiwan
| |
Collapse
|
9
|
Ali J, Li Y, Gao P, Hao T, Song J, Zhang Q, Zhu L, Wang J, Feng W, Hu H, Liu F. Interfacial and structural modifications in perovskite solar cells. NANOSCALE 2020; 12:5719-5745. [PMID: 32118223 DOI: 10.1039/c9nr10788f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The rapid and continuous progress made in perovskite solar cell (PSC) technology has drawn considerable attention from the photovoltaic research community, and the application of perovskites in other electronic devices (such as photodetectors, light-emitting diodes, and batteries) has become imminent. Because of the diversity in device configurations, optimization of film deposition, and exploration of material systems, the power conversion efficiency (PCE) of PSCs has been certified to be as high as 25.2%, making this type of solar cells the fastest advancing technology until now. As demonstrated by researchers worldwide, controlling the morphology and defects in perovskite films is essential for attaining high-performance PSCs. In this regard, interface engineering has proven to be a very efficient way to address these issues, obtaining better charge collection efficiency, and reducing recombination losses. In this review, the interfacial modification between perovskite films and charge-transport layers (CTLs) as well as CTLs and electrodes of PSCs has been widely summarized. Grain boundary (GB) engineering and stress engineering are also included since they are closely related to the improvement in device performance and stability.
Collapse
Affiliation(s)
- Jazib Ali
- School of Physics and Astronomy, and Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Yu Li
- School of Physics and Astronomy, and Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Peng Gao
- School of Physics and Astronomy, and Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Tianyu Hao
- School of Physics and Astronomy, and Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Jingnan Song
- School of Physics and Astronomy, and Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Quanzeng Zhang
- School of Physics and Astronomy, and Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Lei Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jing Wang
- School of Physics and Astronomy, and Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Wei Feng
- State Key Laboratory of Fluorinated Materials, Zibo City, Shandong Province 256401, China
| | - Hailin Hu
- Instituto de Energías Renovables, UNAM, Priv. Xochicalco S/N, Temixco, Morelos 62580, Mexico
| | - Feng Liu
- School of Physics and Astronomy, and Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, 200240, Shanghai, China. and Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China and Center for Advanced Electronic Materials and Devices, Shanghai Jiao Tong University, 200240, Shanghai, China
| |
Collapse
|
10
|
Research Progress on Polymer Solar Cells Based on PEDOT:PSS Electrodes. Polymers (Basel) 2020; 12:polym12010145. [PMID: 31936017 PMCID: PMC7022521 DOI: 10.3390/polym12010145] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 11/30/2022] Open
Abstract
Solution-processed polymer solar cells (PSCs) have attracted dramatically increasing attention over the past few decades owing to their advantages of low cost, solution processability, light weight, and excellent flexibility. Recent progress in materials synthesis and devices engineering has boosted the power conversion efficiency (PCE) of single-junction PSCs over 17%. As an emerging technology, it is still a challenge to prepare solution-processed flexible electrodes for attractive flexible PSCs. Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is one of the most promising candidates for electrodes due to its high conductivity (>4000 S/cm), excellent transmittance (>90%), intrinsically high work function (WF > 5.0 eV), and aqueous solution processability. To date, a great number of single-junction PSCs based on PEDOT:PSS electrodes have realized a PCE over 12%. In this review, we introduce the current research on the conductive complex PEDOT:PSS as well as trace the development of PEDOT:PSS used in electrodes for high performance PSCs and perovskite solar cells. We also discuss and comment on the aspects of conductivity, transmittance, work-function adjustment, film preparing methods, and device fabrications. A perspective on the challenges and future directions in this field is be offered finally.
Collapse
|
11
|
Zu F, Schultz T, Wolff CM, Shin D, Frohloff L, Neher D, Amsalem P, Koch N. Position-locking of volatile reaction products by atmosphere and capping layers slows down photodecomposition of methylammonium lead triiodide perovskite. RSC Adv 2020; 10:17534-17542. [PMID: 35515637 PMCID: PMC9053590 DOI: 10.1039/d0ra03572f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/23/2020] [Indexed: 11/21/2022] Open
Abstract
The remarkable progress of metal halide perovskites in photovoltaics has led to the power conversion efficiency approaching 26%. However, practical applications of perovskite-based solar cells are challenged by the stability issues, of which the most critical one is photo-induced degradation. Bare CH3NH3PbI3 perovskite films are known to decompose rapidly, with methylammonium and iodine as volatile species and residual solid PbI2 and metallic Pb, under vacuum under white light illumination, on the timescale of minutes. We find, in agreement with previous work, that the degradation is non-uniform and proceeds predominantly from the surface, and that illumination under N2 and ambient air (relative humidity 20%) does not induce substantial degradation even after several hours. Yet, in all cases the release of iodine from the perovskite surface is directly identified by X-ray photoelectron spectroscopy. This goes in hand with a loss of organic cations and the formation of metallic Pb. When CH3NH3PbI3 films are covered with a few nm thick organic capping layer, either charge selective or non-selective, the rapid photodecomposition process under ultrahigh vacuum is reduced by more than one order of magnitude, and becomes similar in timescale to that under N2 or air. We conclude that the light-induced decomposition reaction of CH3NH3PbI3, leading to volatile methylammonium and iodine, is largely reversible as long as these products are restrained from leaving the surface. This is readily achieved by ambient atmospheric pressure, as well as a thin organic capping layer even under ultrahigh vacuum. In addition to explaining the impact of gas pressure on the stability of this perovskite, our results indicate that covalently “locking” the position of perovskite components at the surface or an interface should enhance the overall photostability. Gas pressure and capping layers under ultrahigh vacuum prevent methylammonium lead triiodide photo-degradation due to efficient back-reaction of volatile compounds.![]()
Collapse
Affiliation(s)
- Fengshuo Zu
- Institut für Physik & IRIS Adlershof
- Humboldt-Universität zu Berlin
- 12489 Berlin
- Germany
| | - Thorsten Schultz
- Institut für Physik & IRIS Adlershof
- Humboldt-Universität zu Berlin
- 12489 Berlin
- Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
| | - Christian M. Wolff
- Institut für Physik und Astronomie
- Universität Potsdam
- 14776 Potsdam
- Germany
| | - Dongguen Shin
- Institut für Physik & IRIS Adlershof
- Humboldt-Universität zu Berlin
- 12489 Berlin
- Germany
| | - Lennart Frohloff
- Institut für Physik & IRIS Adlershof
- Humboldt-Universität zu Berlin
- 12489 Berlin
- Germany
| | - Dieter Neher
- Institut für Physik und Astronomie
- Universität Potsdam
- 14776 Potsdam
- Germany
| | - Patrick Amsalem
- Institut für Physik & IRIS Adlershof
- Humboldt-Universität zu Berlin
- 12489 Berlin
- Germany
| | - Norbert Koch
- Institut für Physik & IRIS Adlershof
- Humboldt-Universität zu Berlin
- 12489 Berlin
- Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
| |
Collapse
|