1
|
Wu S, Yan M, Wu Y, Wu Y, Lan X, Cheng J, Zhao W. Designing a photocatalytic and self-renewed g-C 3N 4 nanosheet/poly-Schiff base composite coating towards long-term biofouling resistance. MATERIALS HORIZONS 2024; 11:4438-4453. [PMID: 38953849 DOI: 10.1039/d4mh00550c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Inhibiting the adhesion and growth of marine microorganisms through photocatalysis is a potentially efficient and environmentally friendly antifouling strategy. However, the undesired "shading effect" caused by resin coatings and microbial deposition reduces the utilization of the catalysts and leads to a failure in the antifouling active substance on the coating surface. Here, we successfully developed a composite coating (DPC-x) combining g-C3N4 nanosheet (g-C-NS) photocatalysts with degradable green poly-Schiff base resins, which integrates the dual functions of enhanced dynamic self-renewal and photocatalytic antibacterial activities towards long-term anti-biofouling. The controllable and complete degradability of the poly-Schiff base polymer chains and the self-renewal mechanism of the DPC-x coating exposed the internal g-C-NS, which provided a constant stream of photocatalytic reactive interfaces for 100% utilization and release of the photocatalysts. g-C-NS were homogeneously dispersed in the degradable resin coating, significantly enhancing and adjusting the self-renewal rate of the poly-Schiff base resin coating in visible light. The degradation reaction rate of DPC-0.2 (20 wt% g-C-NS) was 40 times that of DPC, thus improving the capabilities of surface self-renewal and fouling-release. Due to the synergistic antifouling mechanism of the efficient antibacterial properties and the enhanced degradation/self-renewal, the antimicrobial rates of DPC and DPC-0.2 were 94.58% and 99.31% in the dark, and 98.2% and 99.87% in visible light. DPC-x has excellent all-weather antimicrobial efficacy and could offer a new perspective on eco-friendly marine antifouling strategies.
Collapse
Affiliation(s)
- Saijun Wu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minglong Yan
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
| | - Yinghao Wu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
| | - Yangmin Wu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
| | - Xijian Lan
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
| | - Jianjun Cheng
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
| | - Wenjie Zhao
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
| |
Collapse
|
2
|
Yang G, Wang DY, Song J, Ren Y, An Y, Busscher HJ, van der Mei HC, Shi L. Cetyltrimethylammonium-chloride assisted in situ metabolic incorporation of nano-sized ROS-generating cascade-reaction containers in Gram-positive and Gram-negative peptidoglycan layers for the control of bacterially-induced sepsis. Acta Biomater 2024; 181:347-361. [PMID: 38702010 DOI: 10.1016/j.actbio.2024.04.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/03/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Cascade-reaction containers generating reactive oxygen species (ROS) as an alternative for antibiotic-based strategies for bacterial infection control, require endogenous oxygen-sources and ROS-generation close to or preferably inside target bacteria. Here, this is achieved by cetyltrimethylammonium-chloride (CTAC) assisted in situ metabolic labeling and incorporation of mesoporous SiO2-nanoparticles, dual-loaded with glucose-oxidase and Fe3O4-nanoparticles as cascade-reaction containers, inside bacterial cell walls. First, azide-functionalized d-alanine (D-Ala-N3) was inserted in cell wall peptidoglycan layers of growing Gram-positive pathogens. In Gram-negatives, this could only be achieved after outer lipid-membrane permeabilization, using a low concentration of CTAC. Low concentrations of CTAC had no adverse effect on in vitro blood clotting or hemolysis nor on the health of mice when blood-injected. Next, dibenzocyclooctyne-polyethylene-glycol modified, SiO2-nanoparticles were in situ click-reacted with d-Ala-N3 in bacterial cell wall peptidoglycan layers. Herewith, a two-step cascade-reaction is facilitated inside bacteria, in which glucose-oxidase generates H2O2 at endogenously-available glucose concentrations, while subsequently Fe3O4-nanoparticles catalyze generation of •OH from the H2O2 generated. Generation of •OH inside bacterial cell walls by dual-loaded mesoporous SiO2-nanoparticles yielded more effective in vitro killing of both planktonic Gram-positive and Gram-negative bacteria suspended in 10 % plasma than SiO2-nanoparticles solely loaded with glucose-oxidase. Gram-positive or Gram-negative bacterially induced sepsis in mice could be effectively treated by in situ pre-treatment with tail-vein injected CTAC and d-Ala-N3, followed by injection of dual-loaded cascade-reaction containers without using antibiotics. This makes in situ metabolic incorporation of cascade-reaction containers as described attractive for further investigation with respect to the control of other types of infections comprising planktonic bacteria. STATEMENT OF SIGNIFICANCE: In situ metabolic-incorporation of cascade-reaction-containers loaded with glucose-oxidase and Fe3O4 nanoparticles into bacterial cell-wall peptidoglycan is described, yielding ROS-generation from endogenous glucose, non-antibiotically killing bacteria before ROS inactivates. Hitherto, only Gram-positives could be metabolically-labeled, because Gram-negatives possess two lipid-membranes. The outer membrane impedes direct access to the peptidoglycan. This problem was solved by outer-membrane permeabilization using a quaternary-ammonium compound. Several studies on metabolic-labeling perform crucial labeling steps during bacterial-culturing that in real-life should be part of a treatment. In situ metabolic-incorporation as described, can be applied in well-plates during in vitro experiments or in the body as during in vivo animal experiments. Surprisingly, metabolic-incorporation proceeded unhampered in blood and a murine, bacterially-induced sepsis could be well treated.
Collapse
Affiliation(s)
- Guang Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China; University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Da-Yuan Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China; University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Jianwen Song
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Yijin Ren
- University of Groningen and University Medical Center Groningen, Department of Orthodontics, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Yingli An
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Henk J Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
3
|
Huang X, Chang L, Ge J, Wang P, Yin R, Liu G, Wang G. Visualized Enzyme-Activated Fluorescence Probe for Accurately Detecting β-Gal in Living Cells and BALB/c Nude Mice. J Fluoresc 2024:10.1007/s10895-024-03680-2. [PMID: 38607528 DOI: 10.1007/s10895-024-03680-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024]
Abstract
Colorectal cancer was one of the major malignant tumors threatening human health and β-Gal was recognized as a principal biomarker for primary colorectal cancer. Thus, designing specific and efficient quantitative detection methods for measuring β-Gal enzyme activity was of great clinical test significance. Herein, an ultrasensitive detection method based on Turn-on fluorescence probe (CS-βGal) was reported for visualizing the detection of exogenous and endogenous β-galactosidase enzyme activity. The test method possessed a series of excellent performances, such as a significant fluorescence enhancement (about 11.3-fold), high selectivity as well as superior sensitivity. Furthermore, under the optimal experimental conditions, a relatively low limit of detection down to 0.024 U/mL was achieved for fluorescence titration experiment. It was thanks to the better biocompatibility and low cytotoxicity, CS-βGal had been triumphantly employed to visual detect endogenous and exogenous β-Gal concentration variations in living cells with noteworthy anti-interference performance. More biologically significant was the fact that the application of CS-βGal in BALB/c nude mice was also achieved successfully for monitoring endogenous β-Gal enzyme activity.
Collapse
Affiliation(s)
- Xiaoli Huang
- Department of Gastroenterology, Nanjing Jiangbei Hospital, Nanjing, 210048, Jiangsu, PR China
| | - Le Chang
- Nanjing Aoyin Biotechnology Co., Ltd., Nanjing, 210061, Jiangsu, PR China
| | - Jianxin Ge
- Department of Gastroenterology, Nanjing Jiangbei Hospital, Nanjing, 210048, Jiangsu, PR China
| | - Ping Wang
- Department of Gastroenterology, Nanjing Jiangbei Hospital, Nanjing, 210048, Jiangsu, PR China
| | - Rui Yin
- Department of Gastroenterology, Nanjing Jiangbei Hospital, Nanjing, 210048, Jiangsu, PR China
| | - Guanqi Liu
- Department of Gastroenterology, Nanjing Jiangbei Hospital, Nanjing, 210048, Jiangsu, PR China
| | - Guopin Wang
- Department of Gastroenterology, Nanjing Jiangbei Hospital, Nanjing, 210048, Jiangsu, PR China.
| |
Collapse
|
4
|
Plotniece A, Sobolev A, Supuran CT, Carta F, Björkling F, Franzyk H, Yli-Kauhaluoma J, Augustyns K, Cos P, De Vooght L, Govaerts M, Aizawa J, Tammela P, Žalubovskis R. Selected strategies to fight pathogenic bacteria. J Enzyme Inhib Med Chem 2023; 38:2155816. [PMID: 36629427 PMCID: PMC9848314 DOI: 10.1080/14756366.2022.2155816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 01/12/2023] Open
Abstract
Natural products and analogues are a source of antibacterial drug discovery. Considering drug resistance levels emerging for antibiotics, identification of bacterial metalloenzymes and the synthesis of selective inhibitors are interesting for antibacterial agent development. Peptide nucleic acids are attractive antisense and antigene agents representing a novel strategy to target pathogens due to their unique mechanism of action. Antisense inhibition and development of antisense peptide nucleic acids is a new approach to antibacterial agents. Due to the increased resistance of biofilms to antibiotics, alternative therapeutic options are necessary. To develop antimicrobial strategies, optimised in vitro and in vivo models are needed. In vivo models to study biofilm-related respiratory infections, device-related infections: ventilator-associated pneumonia, tissue-related infections: chronic infection models based on alginate or agar beads, methods to battle biofilm-related infections are discussed. Drug delivery in case of antibacterials often is a serious issue therefore this review includes overview of drug delivery nanosystems.
Collapse
Affiliation(s)
- Aiva Plotniece
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Riga Stradiņš University, Riga, Latvia
| | | | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Fabrizio Carta
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, University of Copenhagen, Copenhagen East, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, University of Copenhagen, Copenhagen East, Denmark
| | - Jari Yli-Kauhaluoma
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Koen Augustyns
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Paul Cos
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Linda De Vooght
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Matthias Govaerts
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Juliana Aizawa
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Päivi Tammela
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
| |
Collapse
|
5
|
Sravani AB, Ghate V, Lewis S. Human papillomavirus infection, cervical cancer and the less explored role of trace elements. Biol Trace Elem Res 2023; 201:1026-1050. [PMID: 35467267 PMCID: PMC9898429 DOI: 10.1007/s12011-022-03226-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/29/2022] [Indexed: 02/06/2023]
Abstract
Cervical cancer is an aggressive type of cancer affecting women worldwide. Many affected individuals rely on smear tests for the diagnosis, surgery, chemotherapy, or radiation for their treatment. However, due to a broad set of undesired results and side-effects associated with the existing protocols, the search for better diagnostic and therapeutic interventions is a never-ending pursuit. In the purview, the bio-concentration of trace elements (copper, selenium, zinc, iron, arsenic, manganese, and cadmium) is seen to fluctuate during the occurrence of cervical cancer and its progression from pre-cancerous to metastatic nature. Thus, during the occurrence of cervical cancer, the detection of trace elements and their supplementation will prove to be highly advantageous in developing diagnostic tools and therapeutics, respectively. This review provides a detailed overview of cervical cancer, its encouragement by human papillomavirus infections, the mechanism of pathology, and resistance. Majorly, the review emphasizes the less explored role of trace elements, their contribution to the growth and inhibition of cervical cancer. Numerous clinical trials have been listed, thereby providing a comprehensive reference to the exploration of trace elements in the management of cervical cancer.
Collapse
Affiliation(s)
- Anne Boyina Sravani
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Vivek Ghate
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Shaila Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
6
|
Gnanasekar S, Kasi G, He X, Zhang K, Xu L, Kang ET. Recent advances in engineered polymeric materials for efficient photodynamic inactivation of bacterial pathogens. Bioact Mater 2023; 21:157-174. [PMID: 36093325 PMCID: PMC9421094 DOI: 10.1016/j.bioactmat.2022.08.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/27/2022] Open
Abstract
Nowadays, infectious diseases persist as a global crisis by causing significant destruction to public health and the economic stability of countries worldwide. Especially bacterial infections remain a most severe concern due to the prevalence and emergence of multi-drug resistance (MDR) and limitations with existing therapeutic options. Antibacterial photodynamic therapy (APDT) is a potential therapeutic modality that involves the systematic administration of photosensitizers (PSs), light, and molecular oxygen (O2) for coping with bacterial infections. Although the existing porphyrin and non-porphyrin PSs were effective in APDT, the poor solubility, limited efficacy against Gram-negative bacteria, and non-specific distribution hinder their clinical applications. Accordingly, to promote the efficiency of conventional PSs, various polymer-driven modification and functionalization strategies have been adopted to engineer multifunctional hybrid phototherapeutics. This review assesses recent advancements and state-of-the-art research in polymer-PSs hybrid materials developed for APDT applications. Further, the key research findings of the following aspects are considered in-depth with constructive discussions: i) PSs-integrated/functionalized polymeric composites through various molecular interactions; ii) PSs-deposited coatings on different substrates and devices to eliminate healthcare-associated infections; and iii) PSs-embedded films, scaffolds, and hydrogels for regenerative medicine applications. Synthetic strategies of engineered polymer-based hybrid materials integrated with photosensitizers for APDT. Utilization of photosensitizer-incorporated polymeric materials in health care applications. Challenges and opportunities in the future development of polymeric biomaterials with improved photo-bactericidal properties.
Collapse
|
7
|
Ghosh R, Jayakannan M. Theranostic FRET Gate to Visualize and Quantify Bacterial Membrane Breaching. Biomacromolecules 2023; 24:739-755. [PMID: 36598256 DOI: 10.1021/acs.biomac.2c01202] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Designing new antimicrobial-cum-probes to study real-time bacterial membrane breaching and concurrently developing inquisitorial image-based analytical tools is essential for the treatment of infectious diseases. An array of aggregation-induced emission (AIE) polymers (donor) consisting of neutral, anionic, and cationic charges were designed and employed as antimicrobial theranostic gatekeepers for the permeabilization of the peptidoglycan layer-adherable crystal violet (CV, acceptor). An AIE-active tetraphenylethylene (TPE)-tagged polycaprolactone biodegradable platform was chosen, and their self-assembled tiny amphiphilic nanoparticles were employed as a gatekeeper in the construction of bacterial membrane-reinforced fluorescent resonance energy transfer (FRET) probes. Electrostatic adhering of the cationic AIE polymer and subsequent gate opening aided fluorescent FRET probe activation on the membrane of Gram-negative bacteria, Escherichia coli. The selective photoexcitation energy transfer process in confocal microscopy experiments facilitated the building of a visualization-based FRET assay for the quantification of bactericidal activity. Nonantimicrobial AIE polymers (neutral and anionic) did not breach the bacterial membrane, resulting in no FRET signal. Detailed photophysical studies were done to establish the FRET probe mechanism, and a proof of concept was established.
Collapse
Affiliation(s)
- Ruma Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
8
|
Ferric oxide quantum dots (FOQDs) for photovoltaic and biological applications: Synthesis and characterization. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Parra-Ortiz E, Malmsten M. Photocatalytic nanoparticles - From membrane interactions to antimicrobial and antiviral effects. Adv Colloid Interface Sci 2022; 299:102526. [PMID: 34610862 DOI: 10.1016/j.cis.2021.102526] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/23/2022]
Abstract
As a result of increasing resistance among pathogens against antibiotics and anti-viral therapeutics, nanomaterials are attracting current interest as antimicrobial agents. Such materials offer triggered functionalities to combat challenging infections, based on either direct membrane action, effects of released ions, thermal shock induced by either light or magnetic fields, or oxidative photocatalysis. In the present overview, we focus on photocatalytic antimicrobial effects, in which light exposure triggers generation of reactive oxygen species. These, in turn, cause oxidative damage to key components in bacteria and viruses, including lipid membranes, lipopolysaccharides, proteins, and DNA/RNA. While an increasing body of studies demonstrate that potent antimicrobial effects can be achieved by photocatalytic nanomaterials, understanding of the mechanistic foundation underlying such effects is still in its infancy. Addressing this, we here provide an overview of the current understanding of the interaction of photocatalytic nanomaterials with pathogen membranes and membrane components, and how this translates into antibacterial and antiviral effects.
Collapse
Affiliation(s)
- Elisa Parra-Ortiz
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Martin Malmsten
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark; Physical Chemistry 1, University of Lund, S-221 00 Lund, Sweden.
| |
Collapse
|
10
|
Guo J, Dai J, Peng X, Wang Q, Wang S, Lou X, Xia F, Zhao Z, Tang BZ. 9,10-Phenanthrenequinone: A Promising Kernel to Develop Multifunctional Antitumor Systems for Efficient Type I Photodynamic and Photothermal Synergistic Therapy. ACS NANO 2021; 15:20042-20055. [PMID: 34846125 DOI: 10.1021/acsnano.1c07730] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Synergistic phototherapy provides a promising strategy to conquer the hypoxia and heterogeneity of tumors and realize a better therapeutic effect than monomodal photodynamic therapy (PDT) or photothermal therapy (PTT). The development of efficient multifunctional organic phototheranostic systems still remains a challenging task. Herein, 9,10-phenanthrenequinone (PQ) with strong electron-withdrawing ability is conjugated with the rotor-type electron-donating triphenylamine derivatives to create a series of tailor-made photosensitizers. The highly efficient Type I reactive oxygen species generation and outstanding photothermal conversion capacity are tactfully integrated into these PQ-cored photosensitizers. The underlying photophysical and photochemical mechanisms of the combined photothermal and Type I photodynamic effects are deciphered by experimental and theoretical methods and are closely associated with the active intramolecular bond stretching vibration, facilitated intersystem crossing, and specific redox cycling activity of the PQ core. Both in vitro and in vivo evaluations demonstrate that the nanoagents fabricated by these PQ-based photosensitizers are excellent candidates for Type I photodynamic and photothermal combined antitumor therapy. This study thus broadens the horizon for the development of high-performance PTT/Type I PDT nanoagents for synergistic phototheranostic treatments.
Collapse
Affiliation(s)
- Jingjing Guo
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoluo Peng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Quan Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- AIE Institute, Guangzhou Development District, Huangpu 510530, Guangzhou, China
| |
Collapse
|
11
|
Gao H, Wei X, Li M, Wang L, Wei T, Dai Z. Co-Quenching Effect between Lanthanum Metal-Organic Frameworks Luminophore and Crystal Violet for Enhanced Electrochemiluminescence Gene Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103424. [PMID: 34605175 DOI: 10.1002/smll.202103424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Exploring new electrochemiluminescence (ECL) luminophores to construct high-efficiency sensing systems is always a hot direction for developing ECL sensors. Compared with other luminophores, metal-organic frameworks (MOFs) exhibit high mass transfer ability for accelerating the reactivity in its pore channels, which is conducive to improving the performance of ECL sensors. In this work, La3+ -BTC MOFs (LaMOFs) are prepared as the highly active reactor and novel ECL luminophore. On this basis, a novel co-quenching effect mechanism is proposed based on double-stranded DNA (dsDNA) triggered cooperation between LaMOFs and crystal violet (CV) molecules. Under the confined pore channels of LaMOFs, CV can play an important role as the photon-acceptor due to the matched absorption spectrum with the ECL spectrum of LaMOFs, and the electron-acceptor on account of its lowest unoccupied molecular orbital level. Based on the proposed co-quenching effect mechanism, a constructed ECL gene sensor shows good assay performance toward p53 gene in the detection range of 1 pm to 100 nm with a detection limit of 0.33 pm. The co-quenching effect integrating LaMOFs with CV is expected to be a versatile approach in the construction of ECL gene sensor, which has good prospect in expanding the application range of ECL technology.
Collapse
Affiliation(s)
- Huan Gao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xuan Wei
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Meize Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Lei Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Tianxiang Wei
- School of Environment, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zhihui Dai
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| |
Collapse
|
12
|
Olmos D, González-Benito J. Polymeric Materials with Antibacterial Activity: A Review. Polymers (Basel) 2021; 13:613. [PMID: 33670638 PMCID: PMC7922637 DOI: 10.3390/polym13040613] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
Infections caused by bacteria are one of the main causes of mortality in hospitals all over the world. Bacteria can grow on many different surfaces and when this occurs, and bacteria colonize a surface, biofilms are formed. In this context, one of the main concerns is biofilm formation on medical devices such as urinary catheters, cardiac valves, pacemakers or prothesis. The development of bacteria also occurs on materials used for food packaging, wearable electronics or the textile industry. In all these applications polymeric materials are usually present. Research and development of polymer-based antibacterial materials is crucial to avoid the proliferation of bacteria. In this paper, we present a review about polymeric materials with antibacterial materials. The main strategies to produce materials with antibacterial properties are presented, for instance, the incorporation of inorganic particles, micro or nanostructuration of the surfaces and antifouling strategies are considered. The antibacterial mechanism exerted in each case is discussed. Methods of materials preparation are examined, presenting the main advantages or disadvantages of each one based on their potential uses. Finally, a review of the main characterization techniques and methods used to study polymer based antibacterial materials is carried out, including the use of single force cell spectroscopy, contact angle measurements and surface roughness to evaluate the role of the physicochemical properties and the micro or nanostructure in antibacterial behavior of the materials.
Collapse
Affiliation(s)
- Dania Olmos
- Department of Materials Science and Engineering and Chemical Engineering, Instituto de Química y Materiales Álvaro Alonso Barba (IQMAA), Universidad Carlos III de Madrid, Leganés, 28911 Madrid, Spain
| | - Javier González-Benito
- Department of Materials Science and Engineering and Chemical Engineering, Instituto de Química y Materiales Álvaro Alonso Barba (IQMAA), Universidad Carlos III de Madrid, Leganés, 28911 Madrid, Spain
| |
Collapse
|
13
|
An Assessment of InP/ZnS as Potential Anti-Cancer Therapy: Quantum Dot Treatment Increases Apoptosis in HeLa Cells. JOURNAL OF NANOTHERANOSTICS 2021. [DOI: 10.3390/jnt2010002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
InP/ZnS quantum dots (QDs) are an emerging option in QD technologies for uses of fluorescent imaging as well as targeted drug and anticancer therapies based on their customizable properties. In this study we explored effects of InP/ZnS when treated with HeLa cervical cancer cells. We employed XTT viability assays, reactive oxygen species (ROS) analysis, and apoptosis analysis to better understand cytotoxicity extents at different concentrations of InP/ZnS. In addition, we compared the transcriptome profile from the QD-treated HeLa cells with that of untreated HeLa cells to identify changes to the transcriptome in response to the QD. RT-qPCR assay was performed to confirm the findings of transcriptome analysis, and the QD mode of action was illustrated. Our study determined both IC50 concentration of 69 µg/mL and MIC concentration of 167 µg/mL of InP/ZnS. It was observed via XTT assay that cell viability was decreased significantly at the MIC. Production of superoxide, measured by ROS assay with flow cytometry, was decreased, whereas levels of nitrogen radicals increased. Using analysis of apoptosis, we found that induced cell death in the QD-treated samples was shown to be significantly increased when compared to untreated cells. We conclude InP/ZnS QD to decrease cell viability by inducing stress via ROS levels, apoptosis induction, and alteration of transcriptome.
Collapse
|
14
|
Alavi M, Jabari E, Jabbari E. Functionalized carbon-based nanomaterials and quantum dots with antibacterial activity: a review. Expert Rev Anti Infect Ther 2020; 19:35-44. [PMID: 32791928 DOI: 10.1080/14787210.2020.1810569] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Emergence of antibiotic resistance in bacteria is a complicated issue, especially when treating infectious immunodeficiency related diseases. In recent years, when compared to bulk materials, nanomaterials (NMs) with specific antibacterial activities have played a novel role in treating bacterial infections. Among NMs, quantum dots (QDs), specifically carbon containing QDs including graphene oxide QD (GOQD), graphene QD (GQD), and carbon QD (CQD), have demonstrated bacteriostatic and bactericidal activities via photodynamic (PD) effects against antibiotic resistant bacteria under a certain wavelength of light. AREA COVERED In this mini-review, recent advances and challenges related to antibacterial and biocompatibility activities of modified GQD, GOQD, CQD, and carbon nanotubes (CNTs) are discussed. EXPERT OPINION Lower stability and biocompatibility of QDs at higher doses in physiological conditions are major disadvantages. In this regard, functionalization of these QDs can result in appropriate bactericidal, biocompatibility, and biodegradability properties. In the case of CNTs including single-wall carbon nanotube (SWCNTs) and multiwall carbon nanotube (MWCNTs), aspect ratio (AR) is a determinant factor for the antibacterial value. Moreover, MWCNTs show a lower antibacterial ability compared to SWCNTs, which can be improved by modifying their surface.
Collapse
Affiliation(s)
- Mehran Alavi
- Nanobiotechnology Laboratory, Department of Biology, Faculty of Science, Razi University , Kermanshah, Iran
| | - Erfan Jabari
- Fischell Department of Bioengineering, University of Maryland , College Park, MD, USA
| | - Esmaiel Jabbari
- Biomimetic Materials and Tissue Engineering Laboratories, Department of Chemical Engineering, University of South Carolina , Columbia, SC, USA
| |
Collapse
|
15
|
Balhaddad AA, Garcia IM, Ibrahim MS, Rolim JPML, Gomes EAB, Martinho FC, Collares FM, Xu H, Melo MAS. Prospects on Nano-Based Platforms for Antimicrobial Photodynamic Therapy Against Oral Biofilms. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 38:481-496. [PMID: 32716697 DOI: 10.1089/photob.2020.4815] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective: This review clusters the growing field of nano-based platforms for antimicrobial photodynamic therapy (aPDT) targeting pathogenic oral biofilms and increase interactions between dental researchers and investigators in many related fields. Background data: Clinically relevant disinfection of dental tissues is difficult to achieve with aPDT alone. It has been found that limited penetrability into soft and hard dental tissues, diffusion of the photosensitizers, and the small light absorption coefficient are contributing factors. As a result, the effectiveness of aPDT is reduced in vivo applications. To overcome limitations, nanotechnology has been implied to enhance the penetration and delivery of photosensitizers to target microorganisms and increase the bactericidal effect. Materials and methods: The current literature was screened for the various platforms composed of photosensitizers functionalized with nanoparticles and their enhanced performance against oral pathogenic biofilms. Results: The evidence-based findings from the up-to-date literature were promising to control the onset and the progression of dental biofilm-triggered diseases such as dental caries, endodontic infections, and periodontal diseases. The antimicrobial effects of aPDT with nano-based platforms on oral bacterial disinfection will help to advance the design of combination strategies that increase the rate of complete and durable clinical response in oral infections. Conclusions: There is enthusiasm about the potential of nano-based platforms to treat currently out of the reach pathogenic oral biofilms. Much of the potential exists because these nano-based platforms use unique mechanisms of action that allow us to overcome the challenging of intra-oral and hard-tissue disinfection.
Collapse
Affiliation(s)
- Abdulrahman A Balhaddad
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Isadora M Garcia
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Salem Ibrahim
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Juliana P M L Rolim
- Department of Dentistry, Christus University Center (Unichristus), Fortaleza, Brazil
| | - Edison A B Gomes
- Department of Dentistry, Christus University Center (Unichristus), Fortaleza, Brazil
| | - Frederico C Martinho
- Endodontic Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Fabricio M Collares
- Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Hockin Xu
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Mary Anne S Melo
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Owusu EGA, Yaghini E, Naasani I, Parkin IP, Allan E, MacRobert AJ. Synergistic interactions of cadmium-free quantum dots embedded in a photosensitised polymer surface: efficient killing of multidrug-resistant strains at low ambient light levels. NANOSCALE 2020; 12:10609-10622. [PMID: 32373810 PMCID: PMC7497474 DOI: 10.1039/c9nr10421f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Cadmium-free quantum dots (QD) were combined with crystal violet photosensitising dye and incorporated into medical grade polyurethane via a non-covalent dipping process known as 'swell-encapsulation-shrink'. The antibacterial efficacy of the prepared quantum dot-crystal violet polyurethane substrates (QD + CV PU) was investigated under low power visible light illumination at similar intensities (500 lux) to those present in clinical settings. The antibacterial performance of QD + CV PU was superior to the constituent polymer substrates, eliminating ∼99.9% of an environmental P. aeruginosa strain, a clinical P. aeruginosa strain from a cystic fibrosis patient and a clinical E. coli strain. The nature of the reactive oxygen species (ROS) involved in antibacterial activity of the QD + CV PU surface was investigated using ROS inhibitors and time-resolved optical spectroscopy. The photo-physical interactions of the green-emitting QDs with CV lead to a combination of Type I and II electron transfer and energy transfer processes, with the highly potent ROS singlet oxygen playing a dominant role. This study is the first to demonstrate highly efficient synergistic killing of clinical and environmental strains of intrinsically resistant and multi-drug resistant Gram-negative bacteria using light-activated surfaces containing biocompatible cadmium-free QDs and crystal violet dye at ambient light levels.
Collapse
Affiliation(s)
- Ethel G. A. Owusu
- UCL Division of Surgery and Interventional Science
, University College London
,
Charles Bell House
, 43-45 Foley Street
, London W1 W 7TS
, UK
.
- Materials Chemistry Research Centre
, Department of Chemistry
, University College London
,
20 Gordon Street
, London WC1H 0AJ
, UK
- Department of Microbial Diseases
, UCL Eastman Dental Institute
, University College London
,
256 Gray's Inn Road
, London WC1X 8LD
, UK
| | - Elnaz Yaghini
- UCL Division of Surgery and Interventional Science
, University College London
,
Charles Bell House
, 43-45 Foley Street
, London W1 W 7TS
, UK
.
| | - Imad Naasani
- Nanoco Technologies Ltd
,
46 Grafton Street
, Manchester M13 9NT
, UK
| | - Ivan P. Parkin
- Materials Chemistry Research Centre
, Department of Chemistry
, University College London
,
20 Gordon Street
, London WC1H 0AJ
, UK
| | - Elaine Allan
- Department of Microbial Diseases
, UCL Eastman Dental Institute
, University College London
,
256 Gray's Inn Road
, London WC1X 8LD
, UK
| | - Alexander J. MacRobert
- UCL Division of Surgery and Interventional Science
, University College London
,
Charles Bell House
, 43-45 Foley Street
, London W1 W 7TS
, UK
.
| |
Collapse
|
17
|
Demir Duman F, Sebek M, Thanh NTK, Loizidou M, Shakib K, MacRobert AJ. Enhanced photodynamic therapy and fluorescence imaging using gold nanorods for porphyrin delivery in a novel in vitro squamous cell carcinoma 3D model. J Mater Chem B 2020; 8:5131-5142. [PMID: 32420578 DOI: 10.1039/d0tb00810a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanocomposites of gold nanorods (Au NRs) with the cationic porphyrin TMPyP (5,10,15,20-tetrakis(1- methyl 4-pyridinio)porphyrin tetra(p-toluenesulfonate)) were investigated as a nanocarrier system for photodynamic therapy (PDT) and fluorescence imaging. To confer biocompatibility and facilitate the cellular uptake, the NRs were encapsulated with polyacrylic acid (PAA) and efficiently loaded with the cationic porphyrin by electrostatic interaction. The nanocomposites were tested with and without light exposure following incubation in 2D monolayer cultures and a 3D compressed collagen construct of head and neck squamous cell carcinoma (HNSCC). The results showed that Au NRs enhance the absorption and emission intensity of TMPyP and improve its photodynamic efficiency and fluorescence imaging capability in both 2D cultures and 3D cancer constructs. Au NRs are promising theranostic agents for delivery of photosensitisers for HNSCC treatment and imaging.
Collapse
Affiliation(s)
- Fatma Demir Duman
- Division of Surgery and Interventional Science, Centre for Nanomedicine and Surgical Theranostics, University College London, Royal Free Campus, Rowland Hill St, London, NW3 2PE, UK.
| | | | | | | | | | | |
Collapse
|
18
|
Wang C, Chen P, Qiao Y, Kang Y, Yan C, Yu Z, Wang J, He X, Wu H. pH responsive superporogen combined with PDT based on poly Ce6 ionic liquid grafted on SiO 2 for combating MRSA biofilm infection. Theranostics 2020; 10:4795-4808. [PMID: 32308750 PMCID: PMC7163436 DOI: 10.7150/thno.42922] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Biofilm infection caused by multidrug-resistant bacteria is difficult to eradicate by conventional therapies. Photodynamic therapy (PDT) is an effective antibacterial method for fighting against biofilm infection. However, the blocked photosensitizers outside of biofilm greatly limit the efficacy of PDT. Methods: Herein, a novel acid-responsive superporogen and photosensitizer (SiO2-PCe6-IL) was developed. Because of the protonation of the photosensitizer and the high binding energy of the polyionic liquid, SiO2-PCe6-IL changed to positive SiO2-PIL+ in an acidic microenvironment of biofilm infection. SiO2-PIL+ could combine with negatively charged extracellular polymeric substances (EPS) and create holes to remove the biofilm barrier. To strengthen the interaction between SiO2-PIL+ and EPS, SiO2-PIL+ of high charge density was prepared by grafting the high-density initiation site of ATRP onto the surface of the SiO2 base. Results: Due to the rapid protonation rate of COO- and the strong binding energy of SiO2-PIL+ with EPS, SiO2-PCe6-IL could release 90% of Ce6 in 10 s. With the stronger electrostatic and hydrophobic interaction of SiO2-PIL+ with EPS, the surface potential, hydrophobicity, adhesion and mechanical strength of biofilm were changed, and holes in the biofilm were created in 10 min. Combining with the release of photosensitizers and the porous structure of the biofilm, Ce6 was efficiently concentrated in the biofilm. The in vitro and in vivo antibacterial experiments proved that SiO2-PCe6-IL dramatically improved the PDT efficacy against MRSA biofilm infection. Conclusion: These findings suggest that SiO2-PCe6-IL could rapidly increase the concentration of photosensitizer in biofilm and it is an effective therapy for combating biofilm infection.
Collapse
|
19
|
Malik Z. Photodynamic inactivation of antibiotic‐resistant Gram‐positive bacteria: Challenges and opportunities. TRANSLATIONAL BIOPHOTONICS 2020. [DOI: 10.1002/tbio.201900030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Zvi Malik
- Faculty of Life ScienceBar‐Ilan University Ramat‐Gan Israel
- Zefat Academic College Zefat Israel
| |
Collapse
|
20
|
Zhuang Z, Dai J, Yu M, Li J, Shen P, Hu R, Lou X, Zhao Z, Tang BZ. Type I photosensitizers based on phosphindole oxide for photodynamic therapy: apoptosis and autophagy induced by endoplasmic reticulum stress. Chem Sci 2020; 11:3405-3417. [PMID: 34745515 PMCID: PMC8515424 DOI: 10.1039/d0sc00785d] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/20/2020] [Indexed: 12/21/2022] Open
Abstract
Photodynamic therapy (PDT) is considered a pioneering and effective modality for cancer treatment, but it is still facing challenges of hypoxic tumors. Recently, Type I PDT, as an effective strategy to address this issue, has drawn considerable attention. Few reports are available on the capability for Type I reactive oxygen species (ROS) generation of purely organic photosensitizers (PSs). Herein, we report two new Type I PSs, α-TPA-PIO and β-TPA-PIO, from phosphindole oxide-based isomers with efficient Type I ROS generation abilities. A detailed study on photophysical and photochemical mechanisms is conducted to shed light on the molecular design of PSs based on the Type I mechanism. The in vitro results demonstrate that these two PSs can selectively accumulate in a neutral lipid region, particularly in the endoplasmic reticulum (ER), of cells and efficiently induce ER-stress mediated apoptosis and autophagy in PDT. In vivo models indicate that β-TPA-PIO successfully achieves remarkable tumor ablation. The ROS-based ER stress triggered by β-TPA-PIO-mediated PDT has high potential as a precursor of the immunostimulatory effect for immunotherapy. This work presents a comprehensive protocol for Type I-based purely organic PSs and highlights the significance of considering the working mechanism in the design of PSs for the optimization of cancer treatment protocols. Phosphindole oxide-based photosensitizers with Type I reactive oxygen species generation ability are developed and used for endoplasmic reticulum stress-mediated photodynamic therapy of tumors.![]()
Collapse
Affiliation(s)
- Zeyan Zhuang
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- South China University of Technology
- Guangzhou 510640
- China
| | - Jun Dai
- Department of Obstetrics and Gynecology
- Tongji Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Maoxing Yu
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- South China University of Technology
- Guangzhou 510640
- China
| | - Jianqing Li
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- South China University of Technology
- Guangzhou 510640
- China
| | - Pingchuan Shen
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- South China University of Technology
- Guangzhou 510640
- China
| | - Rong Hu
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- South China University of Technology
- Guangzhou 510640
- China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- South China University of Technology
- Guangzhou 510640
- China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
21
|
Rajendiran K, Zhao Z, Pei DS, Fu A. Antimicrobial Activity and Mechanism of Functionalized Quantum Dots. Polymers (Basel) 2019; 11:E1670. [PMID: 31614993 PMCID: PMC6835343 DOI: 10.3390/polym11101670] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/05/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023] Open
Abstract
An essential characteristic of quantum dots (QDs) is their antimicrobial activity. Compared with conventional antibiotics, QDs not only possess photoluminescence properties for imaging and photodynamic therapy but also have high structural stability. To enhance their antimicrobial efficiency, QDs usually are functionalized by polymers, including poly(ethylene glycol), polyethyleneimine, and poly-l-lysine. Also, QDs conjugated with polymers, such as poly(vinylpyrrolidone) and polyvinylidene fluoride, are prepared as antimicrobial membranes. The main antimicrobial mechanisms of QDs are associated with inducing free radicals, disrupting cell walls/membranes, and arresting gene expression. The different mechanisms from traditional antibiotics allow QDs to play antimicrobial roles in multi-drug-resistant bacteria and fungi. Since the toxicity of the QDs on animal cells is relatively low, they have broad application in antimicrobial research as an effective alternative of traditional antibiotics.
Collapse
Affiliation(s)
- Keerthiga Rajendiran
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Zizhen Zhao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - De-Sheng Pei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| | - Ailing Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|