1
|
Elsayed N. Selective imaging, gene, and therapeutic delivery using PEGylated and pH-Sensitive nanoparticles for enhanced lung disorder treatment. Int J Pharm 2024; 666:124819. [PMID: 39424084 DOI: 10.1016/j.ijpharm.2024.124819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Lung inflammation involves the activation of immune cells and inflammatory mediators in response to injury and infection. When inflammation persists, fibroblasts, which are resident lung cells, become activated, leading to pulmonary fibrosis (PF), abnormal wound healing, and long-term damage to the alveolar epithelium. This persistent inflammation and fibrosis can also elevate the risk of lung cancer, emphasizing the need for innovative treatments. Current therapies, such as inhaled corticosteroids (ICS) and chemotherapy, have significant limitations. Although conventional nanoparticles (NPs) provide a promising avenue for treating lung disorders, they have limited selectivity and stability. Polyethylene glycol (PEG) grafting can prevent NP aggregation and phagocytosis, thus prolonging their circulation time. When combined with targeting ligands, PEGylated NPs can deliver drugs precisely to specific cells or tissues. Moreover, pH-sensitive NPs offer the advantage of selective drug delivery to inflammatory or tumor-acidic environments, reducing side effects. These NPs can change their size, shape, or surface charge in response to pH variations, improving drug delivery efficiency. This review examines the techniques of PEGylation, the polymers used in pH-sensitive NPs, and their therapeutic applications for lung inflammation, fibrosis, and cancer. By harnessing innovative NP technologies, researchers can develop effective therapies for respiratory conditions, addressing unmet medical needs and enhancing patient outcomes.
Collapse
Affiliation(s)
- Nourhan Elsayed
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, Subang Jaya, Malaysia.
| |
Collapse
|
2
|
Cong X, Zhang Z, Li H, Yang YG, Zhang Y, Sun T. Nanocarriers for targeted drug delivery in the vascular system: focus on endothelium. J Nanobiotechnology 2024; 22:620. [PMID: 39396002 PMCID: PMC11470712 DOI: 10.1186/s12951-024-02892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024] Open
Abstract
Endothelial cells (ECs) are pivotal in maintaining vascular health, regulating hemodynamics, and modulating inflammatory responses. Nanocarriers hold transformative potential for precise drug delivery within the vascular system, particularly targeting ECs for therapeutic purposes. However, the complex interactions between vascular ECs and nanocarriers present significant challenges for the development and clinical translation of nanotherapeutics. This review assesses recent advancements and key strategies in employing nanocarriers for drug delivery to vascular ECs. It suggested that through precise physicochemical design and surface modifications, nanocarriers can enhance targeting specificity and improve drug internalization efficiency in ECs. Additionally, we elaborated on the applications of nanocarriers specifically designed for targeting ECs in the treatment of cardiovascular diseases, cancer metastasis, and inflammatory disorders. Despite these advancements, safety concerns, the complexity of in vivo processes, and the challenge of achieving subcellular drug delivery remain significant obstacles to the effective targeting of ECs with nanocarriers. A comprehensive understanding of endothelial cell biology and its interaction with nanocarriers is crucial for realizing the full potential of targeted drug delivery systems.
Collapse
Affiliation(s)
- Xiuxiu Cong
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China
| | - Zebin Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China
| | - He Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China
- International Center of Future Science, Jilin University, Changchun, 130015, Jilin, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100143, China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China.
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, 130015, Jilin, China.
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, Jilin, China.
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100143, China.
| |
Collapse
|
3
|
Nazli A, Irshad Khan MZ, Rácz Á, Béni S. Acid-sensitive prodrugs; a promising approach for site-specific and targeted drug release. Eur J Med Chem 2024; 276:116699. [PMID: 39089000 DOI: 10.1016/j.ejmech.2024.116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 08/03/2024]
Abstract
Drugs administered through conventional formulations are devoid of targeting and often spread to various undesired sites, leading to sub-lethal concentrations at the site of action and the emergence of undesired effects. Hence, therapeutic agents should be delivered in a controlled manner at target sites. Currently, stimuli-based drug delivery systems have demonstrated a remarkable potential for the site-specific delivery of therapeutic moieties. pH is one of the widely exploited stimuli for drug delivery as several pathogenic conditions such as tumor cells, infectious and inflammatory sites are characterized by a low pH environment. This review article aims to demonstrate various strategies employed in the design of acid-sensitive prodrugs, providing an overview of commercially available acid-sensitive prodrugs. Furthermore, we have compiled the progress made for the development of new acid-sensitive prodrugs currently undergoing clinical trials. These prodrugs include albumin-binding prodrugs (Aldoxorubicin and DK049), polymeric micelle (NC-6300), polymer conjugates (ProLindac™), and an immunoconjugate (IMMU-110). The article encompasses a broad spectrum of studies focused on the development of acid-sensitive prodrugs for anticancer, antibacterial, and anti-inflammatory agents. Finally, the challenges associated with the acid-sensitive prodrug strategy are discussed, along with future directions.
Collapse
Affiliation(s)
- Adila Nazli
- Department of Pharmacognosy, Semmelweis University, 1085, Budapest, Hungary.
| | | | - Ákos Rácz
- Department of Pharmacognosy, Semmelweis University, 1085, Budapest, Hungary.
| | - Szabolcs Béni
- Integrative Health and Environmental Analysis Research Laboratory, Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117, Budapest, Hungary.
| |
Collapse
|
4
|
Chen TY, Chen KC, Zhang YH, Lin CA, Hsu WY, Lin NY, Lai PS. Development of a dexamethasone-hyaluronic acid conjugate with selective targeting effect for acute lung injury therapy. Int J Biol Macromol 2024; 280:136149. [PMID: 39353517 DOI: 10.1016/j.ijbiomac.2024.136149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/22/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Acute lung injury (ALI), a critical complication of COVID-19, is characterized by widespread inflammation and severe pulmonary damage, necessitating intensive care for those affected. Although glucocorticoids (GCs), such as dexamethasone (Dex), have been employed clinically to lower mortality, their nonspecific systemic distribution has led to significant side effects, limiting their use in ALI treatment. In this study, we explored the conjugation of Dex to hyaluronic acid (HA) to achieve targeted delivery to inflamed lung tissues. We achieved a conjugation efficiency exceeding 98 % using a cosolvent system, with subsequent ester bond cleavage releasing the active Dex, as verified by liquid chromatography. Biodistribution and cellular uptake studies indicated the potential of the HA conjugate for cluster of differentiation 44 (CD44)-mediated targeting and accumulation. In a lipopolysaccharide-induced ALI mouse model, intravenous (IV) HA-Dex administration showed superior anti-inflammatory effects compared to free Dex administration. Flow cytometry analysis suggested that the HA conjugate preferentially accumulated in lung macrophages, suggesting the possibility of reducing clinical Dex dosages through this targeted delivery approach.
Collapse
Affiliation(s)
- Tzu-Yang Chen
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan; Basic Research Division, Holy Stone Healthcare Co., Ltd., 114 Taipei, Taiwan
| | - Ke-Cheng Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Han Zhang
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chih-An Lin
- Ph.D. Program of Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Wan-Yun Hsu
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Neng-Yu Lin
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan; Ph.D. Program of Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
5
|
Fu L, Huo S, Lin P, Wang J, Zhao J, You Y, Nie X, Ding S. Precise antibiotic delivery to the lung infection microenvironment boosts the treatment of pneumonia with decreased gut dysbiosis. Acta Biomater 2024; 184:352-367. [PMID: 38909721 DOI: 10.1016/j.actbio.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Bacterial pneumonia is a common disease with significant health risks. However, the overuse antibiotics in clinics face challenges such as inadequate targeting and limited drug utilization, leading to drug resistance and gut dysbiosis. Herein, a dual-responsive lung inflammatory tissue targeted nanoparticle (LITTN), designed for targeting lung tissue and bacteria, is screened from a series of prepared nanoparticles consisting of permanent cationic lipids, acid-responsive lipids, and reactive oxygen species-responsive and phenylboronic acid-modified lipids with different surface properties. Such nanoparticle is further verified to enhance the adsorption of vitronectin in serum. Additionally, the optimized nanoparticle exhibits more positive charge and coordination of boric acid with cis-diol in the infected microenvironment, facilitating electrostatic interactions with bacteria and biofilm penetration. Importantly, the antibacterial efficiency of dual-responsive rifampicin-loaded LITTN (Rif@LITTN) against methicillin-resistant staphylococcus aureus is 10 times higher than that of free rifampicin. In a mouse model of bacterial pneumonia, the intravenous administration of Rif@LITTN could precisely target the lungs, localize in the lung infection microenvironment, and trigger the responsive release of rifampicin, thereby effectively alleviating lung inflammation and reducing damage. Notably, the targeted delivery of rifampicin helps protect against antibiotic-induced changes in the gut microbiota. This study establishes a new strategy for precise delivery to the lung-infected microenvironment, promoting treatment efficacy while minimizing the impact on gut microbiota. STATEMENT OF SIGNIFICANCE: Intravenous antibiotics play a critical role in clinical care, particularly for severe bacterial pneumonia. However, the inability of antibiotics to reach target tissues causes serious side effects, including liver and kidney damage and intestinal dysbiosis. Therefore, achieving precise delivery of antibiotics is of great significance. In this study, we developed a novel lung inflammatory tissue-targeted nanoparticle that could target lung tissue after intravenous administration and then target the inflammatory microenvironment to trigger dual-responsive antibiotics release to synergistically treat pneumonia while maintaining the balance of gut microbiota and reducing the adverse effects of antibiotics. This study provides new ideas for targeted drug delivery and reference for clinical treatment of pneumonia.
Collapse
Affiliation(s)
- Ling Fu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Shaohu Huo
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China; Beijing Children's Hospital, Capital Medical University, China National Clinical, Research Center of Respiratory Diseases, Beijing 100045, PR China
| | - Paiyu Lin
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Jing Wang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Jiaying Zhao
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yezi You
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and, Engineering, University of Science and Technology of China, Hefei 230026, PR China.
| | - Xuan Nie
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui 230001, PR China.
| | - Shenggang Ding
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China; Beijing Children's Hospital, Capital Medical University, China National Clinical, Research Center of Respiratory Diseases, Beijing 100045, PR China.
| |
Collapse
|
6
|
Wu S, Guo P, Zhou Q, Yang X, Dai J. M1 Macrophage-Targeted Curcumin Nanocrystals with l-Arginine-Modified for Acute Lung Injury by Inhalation. J Pharm Sci 2024; 113:2492-2505. [PMID: 38772450 DOI: 10.1016/j.xphs.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
Acute Lung Injury/Acute Respiratory Distress Syndrome (ALI/ARDS) with clinical manifestations of respiratory distress and hypoxemia remains a significant cause of respiratory failure, boasting a persistently high incidence and mortality rate. Given the central role of M1 macrophages in the pathogenesis of acute lung injury (ALI), this study utilized the anti-inflammatory agent curcumin as a model drug. l-arginine (L-Arg) was employed as a targeting ligand, and chitosan was initially modified with l-arginine. Subsequently, it was utilized as a surface modifier to prepare inhalable nano-crystals loaded with curcumin (Arg-CS-Cur), aiming for specific targeting of pulmonary M1 macrophages. Compared with unmodified chitosan-curcumin nanocrystals (CS-Cur), Arg-CS-Cur exhibited higher uptake in vitro by M1 macrophages, as evidenced by flow cytometry showing the highest fluorescence intensity in the Arg-CS-Cur group (P < 0.01). In vivo accumulation was greater in inflamed lung tissues, as indicated by small animal imaging demonstrating higher lung fluorescence intensity in the DiR-Arg-CS-Cur group compared to the DiR-CS-Cur group in the rat ALI model (P < 0.05), peaking at 12 h. Moreover, Arg-CS-Cur demonstrated enhanced therapeutic effects in both LPS-induced RAW264.7 cells and ALI rat models. Specifically, treatment with Arg-CS-Cur significantly suppressed NO release and levels of TNF-α and IL-6 in RAW264.7 cells (p < 0.01), while in ALI rat models, expression levels of TNF-α and IL-6 in lung tissues were significantly lower than those in the model group (P < 0.01). Furthermore, lung tissue damage was significantly reduced, with histological scores significantly lower than those in the CS-Cur group (P < 0.01). In conclusion, these findings underscore the targeting potential of l-arginine-modified nanocrystals, which effectively enhance curcumin concentration in inflammatory environments by selectively targeting M1 macrophages. This study thus introduces novel perspectives and theoretical support for the development of targeted therapeutic interventions for acute inflammatory lung diseases, including ALI/ARDS.
Collapse
Affiliation(s)
- Shiyue Wu
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Pengchuan Guo
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Qiren Zhou
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Xiaowen Yang
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Jundong Dai
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China.
| |
Collapse
|
7
|
Chintapula U, Karim SU, Iyer PR, Asokan-Sheeja H, Neupane B, Nazneen F, Dong H, Bai F, Nguyen KT. A novel nanocomposite drug delivery system for SARS-CoV-2 infections. NANOSCALE ADVANCES 2024; 6:3747-3758. [PMID: 39050946 PMCID: PMC11265598 DOI: 10.1039/d4na00361f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/19/2024] [Indexed: 07/27/2024]
Abstract
To develop an inhalable drug delivery system, we synthesized poly (lactic-co-glycolic acid) nanoparticles with Remdesivir (RDV NPs) as an antiviral agent against SARS-CoV-2 replication and formulated Remdesivir-loaded nanocomposites (RDV NCs) via coating of RDV NPs with novel supramolecular cell-penetrating peptide nanofibers (NFs) to enhance cellular uptake and intracellular drug delivery. RDV NPs and RDV NCs were characterized using variou techniques, including Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), and fluorescent microscopy. The cytotoxicity of RDV NCs was assessed in Vero E6 cells and primary human lung epithelial cells, with no significant cytotoxicity observed up to 1000 μg mL-1 and 48 h. RDV NCs were spherically shaped with a size range of 200-300 nm and a zeta potential of ∼+31 mV as well as indicating the presence of coated nanofibers. Reverse Transcription-quantitative Polymerase Chain Reaction (RT-qPCR), immunofluorescence and plaque assays of SARS-CoV-2 infected Vero E6 treated with RDV NCs showed significantly higher antiviral activities compared to those of free drug and uncoated RDV NPs. RDV NCs exhibited high antiviral activity against SARS-CoV-2, and the nanocomposite platform has the potential to be developed into an inhalable drug delivery system for other viral infections in the lungs.
Collapse
Affiliation(s)
- Uday Chintapula
- Department of Bioengineering, University of Texas at Arlington Arlington TX 76010 USA
| | - Shazeed-Ul Karim
- Department of Cell and Molecular Biology, University of Southern Mississippi Hattiesburg MS 39406 USA
| | | | - Haritha Asokan-Sheeja
- Department of Chemistry and Biochemistry, University of Texas at Arlington Arlington TX 76010 USA
| | - Biswas Neupane
- Department of Cell and Molecular Biology, University of Southern Mississippi Hattiesburg MS 39406 USA
| | - Farzana Nazneen
- Department of Cell and Molecular Biology, University of Southern Mississippi Hattiesburg MS 39406 USA
| | - He Dong
- Department of Chemistry and Biochemistry, University of Texas at Arlington Arlington TX 76010 USA
| | - Fengwei Bai
- Department of Cell and Molecular Biology, University of Southern Mississippi Hattiesburg MS 39406 USA
| | - Kytai T Nguyen
- Department of Bioengineering, University of Texas at Arlington Arlington TX 76010 USA
| |
Collapse
|
8
|
Sun M, Wei J, Su Y, He Y, Ge L, Shen Y, Xu B, Bi Y, Zheng C. Red Blood Cell-Hitchhiking Delivery of Simvastatin to Relieve Acute Respiratory Distress Syndrome. Int J Nanomedicine 2024; 19:5317-5333. [PMID: 38859953 PMCID: PMC11164090 DOI: 10.2147/ijn.s460890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/22/2024] [Indexed: 06/12/2024] Open
Abstract
Purpose The purpose of this study is to address the high mortality and poor prognosis associated with Acute Respiratory Distress Syndrome (ARDS), conditions characterized by acute and progressive respiratory failure. The primary goal was to prolong drug circulation time, increase drug accumulation in the lungs, and minimize drug-related side effects. Methods Simvastatin (SIM) was used as the model drug in this study. Employing a red blood cell surface-loaded nanoparticle drug delivery technique, pH-responsive cationic nanoparticles loaded with SIM were non-covalently adsorbed onto the surface of red blood cells (RBC), creating a novel drug delivery system (RBC@SIM-PEI-PPNPs). Results The RBC@SIM-PEI-PPNPs delivery system effectively extended the drug's circulation time, providing an extended therapeutic window. Additionally, this method substantially improved the targeted accumulation of SIM in lung tissues, thereby enhancing the drug's efficacy in treating ARDS and impeding its progression to ARDS. Crucially, the system showed a reduced risk of adverse drug reactions. Conclusion RBC@SIM-PEI-PPNPs demonstrates promise in ARDS and ARDS treatment. This innovative approach successfully overcomes the limitations associated with SIM's poor solubility and low bioavailability, resulting in improved therapeutic outcomes and fewer drug-related side effects. This research holds significant clinical implications and highlights its potential for broader application in drug delivery and lung disease treatment.
Collapse
Affiliation(s)
- Mengjuan Sun
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Jun Wei
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Yanhui Su
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Yangjingwan He
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Liang Ge
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Yan Shen
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Bohui Xu
- School of Pharmacy, Nantong University, Nantong, People’s Republic of China
| | - Yanlong Bi
- Pediatric Intensive Care Unit, Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Chunli Zheng
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| |
Collapse
|
9
|
Qiao Q, Li X, Ou X, Liu X, Fu C, Wang Y, Niu B, Kong L, Yang C, Zhang Z. Hybrid biomineralized nanovesicles to enhance inflamed lung biodistribution and reduce side effect of glucocorticoid for ARDS therapy. J Control Release 2024; 369:746-764. [PMID: 38599547 DOI: 10.1016/j.jconrel.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is a critical illness characterized by severe lung inflammation. Improving the delivery efficiency and achieving the controlled release of anti-inflammatory drugs at the lung inflammatory site are major challenges in ARDS therapy. Taking advantage of the increased pulmonary vascular permeability and a slightly acidic-inflammatory microenvironment, pH-responsive mineralized nanoparticles based on dexamethasone sodium phosphate (DSP) and Ca2+ were constructed. By further biomimetic modification with M2 macrophage membranes, hybrid mineralized nanovesicles (MM@LCaP) were designed to possess immunomodulatory ability from the membranes and preserve the pH-sensitivity from core nanoparticles for responsive drug release under acidic inflammatory conditions. Compared with healthy mice, the lung/liver accumulation of MM@LCaP in inflammatory mice was increased by around 5.5 times at 48 h after intravenous injection. MM@LCaP promoted the polarization of anti-inflammatory macrophages, calmed inflammatory cytokines, and exhibited a comprehensive therapeutic outcome. Moreover, MM@LCaP improved the safety profile of glucocorticoids. Taken together, the hybrid mineralized nanovesicles-based drug delivery strategy may offer promising ideas for enhancing the efficacy and reducing the toxicity of clinical drugs.
Collapse
Affiliation(s)
- Qi Qiao
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaonan Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangjun Ou
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiong Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chuansheng Fu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Boning Niu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiping Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
10
|
Wang Z, Li W, Jiang Y, Park J, Gonzalez KM, Wu X, Zhang QY, Lu J. Cholesterol-modified sphingomyelin chimeric lipid bilayer for improved therapeutic delivery. Nat Commun 2024; 15:2073. [PMID: 38453918 PMCID: PMC10920917 DOI: 10.1038/s41467-024-46331-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Cholesterol (Chol) fortifies packing and reduces fluidity and permeability of the lipid bilayer in vesicles (liposomes)-mediated drug delivery. However, under the physiological environment, Chol is rapidly extracted from the lipid bilayer by biomembranes, which jeopardizes membrane stability and results in premature leakage for delivered payloads, yielding suboptimal clinic efficacy. Herein, we report a Chol-modified sphingomyelin (SM) lipid bilayer via covalently conjugating Chol to SM (SM-Chol), which retains membrane condensing ability of Chol. Systemic structure activity relationship screening demonstrates that SM-Chol with a disulfide bond and longer linker outperforms other counterparts and conventional phospholipids/Chol mixture systems on blocking Chol transfer and payload leakage, increases maximum tolerated dose of vincristine while reducing systemic toxicities, improves pharmacokinetics and tumor delivery efficiency, and enhances antitumor efficacy in SU-DHL-4 diffuse large B-cell lymphoma xenograft model in female mice. Furthermore, SM-Chol improves therapeutic delivery of structurally diversified therapeutic agents (irinotecan, doxorubicin, dexamethasone) or siRNA targeting multi-drug resistant gene (p-glycoprotein) in late-stage metastatic orthotopic KPC-Luc pancreas cancer, 4T1-Luc2 triple negative breast cancer, lung inflammation, and CT26 colorectal cancer animal models in female mice compared to respective FDA-approved nanotherapeutics or lipid compositions. Thus, SM-Chol represents a promising platform for universal and improved drug delivery.
Collapse
Affiliation(s)
- Zhiren Wang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Wenpan Li
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Yanhao Jiang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Jonghan Park
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Karina Marie Gonzalez
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Xiangmeng Wu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Qing-Yu Zhang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, 85721, USA
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA.
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, 85721, USA.
- Clinical and Translational Oncology Program (CTOP), The University of Arizona Cancer Center, Tucson, AZ, 85721, USA.
- BIO5 Institute, The University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
11
|
Li R, Hu X, Li W, Wu W, Xu J, Lin Y, Shi S, Dong C. Nebulized pH-Responsive Nanospray Combined with Pentoxifylline and Edaravone to Lungs for Efficient Treatments of Acute Respiratory Distress Syndrome. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8310-8320. [PMID: 38343060 DOI: 10.1021/acsami.3c15691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The COVID-19 pandemic has become an unprecedented global medical emergency, resulting in more than 5 million deaths. Acute respiratory distress syndrome (ARDS) caused by COVID-19, characterized by the release of a large number of pro-inflammatory cytokines and the production of excessive toxic ROS, is the most common serious complication leading to death. To develop new strategies for treating ARDS caused by COVID-19, a mouse model of ARDS was established by using lipopolysaccharide (LPS). Subsequently, we have constructed a novel nanospray with anti-inflammatory and antioxidant capacity by loading pentoxifylline (PTX) and edaravone (Eda) on zeolite imidazolate frameworks-8 (ZIF-8). This nanospray was endowed with synergetic therapy, which could kill two birds with one stone: (1) the loaded PTX played a powerful anti-inflammatory role by inhibiting the activation of inflammatory cells and the synthesis of pro-inflammatory cytokines; (2) Eda served as a free radical scavenger in ARDS. Furthermore, compared with the traditional intravenous administration, nanosprays can be administered directly and inhaled efficiently and reduce the risk of systemic adverse reactions greatly. This nanospray could not only coload two drugs efficiently but also realize acid-responsive release on local lung tissue. Importantly, ZIF8-EP nanospray showed an excellent therapeutic effect on ARDS in vitro and in vivo, which provided a new direction for the treatment of ARDS.
Collapse
Affiliation(s)
- Ruihao Li
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Xiaochun Hu
- School of Medicine, Shanghai University, Shanghai 200444, P. R. China
| | - Wenhui Li
- Shanghai Institute of Quality Inspection and Technical Research, Shanghai 201100, P. R. China
| | - Wenjing Wu
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Jin Xu
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Yun Lin
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Shuo Shi
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Chunyan Dong
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
12
|
Huang C, Liu Q, Xu J, Chen C, You Q, Wang D, Qian H, Hu M. Intratracheal administration of programmable DNA nanostructures combats acute lung injury by targeting microRNA-155. Int J Pharm 2024; 651:123750. [PMID: 38159585 DOI: 10.1016/j.ijpharm.2023.123750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Acute lung injury (ALI) is an acute inflammatory process that can result in life-threatening consequences. Programmable DNA nanostructures have emerged as excellent nanoplatforms for microRNA-based therapeutics, offering potential nanomedicines for ALI treatment. Nonetheless, the traditional systematic administration of nanomedicines is constrained by low delivery efficiency, poor pharmacokinetics, and nonspecific side effects. Here, we identify macrophage microRNA-155 as a novel therapeutic target using the magnetic bead sorting technique. We further construct a DNA nanotubular nucleic acid drug antagonizing microRNA-155 (NT-155) for ALI treatment through intratracheal administration. Flow cytometry results demonstrate that NT-155, when inhaled, is taken up much more effectively by macrophages and dendritic cells in the bronchoalveolar lavage fluid of ALI mice. Furthermore, NT-155 effectively silences the overexpressed microRNA-155 in macrophages and exerts excellent inflammation inhibition effects in vitro and ALI mouse models. Mechanistically, NT-155 suppresses microRNA-155 expression and activates its target gene SOCS1, inhibiting the p-P65 signaling pathway and suppressing proinflammatory cytokine secretion. The current study suggests that deliberately designed nucleic acid drugs are promising nanomedicines for ALI treatment and the local administration may open up new practical applications of DNA in the future.
Collapse
Affiliation(s)
- Chaowang Huang
- Department of Geriatrics and Special Services Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China; Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Qian Liu
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China; Laboratory of Pharmacy and Chemistry, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Jing Xu
- Department of Geriatrics and Special Services Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Chunfa Chen
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Qianyi You
- Department of Geriatrics and Special Services Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China; Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Dan Wang
- Department of Geriatrics and Special Services Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Hang Qian
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China; Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing 400037, China.
| | - Mingdong Hu
- Department of Geriatrics and Special Services Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China; Department of Health Management, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
13
|
Sun S, Liu X, Zhao D, Zheng L, Han X, Tian Y, Feng S. Discovery of the Active Compounds of the Ethyl Acetate Extract Site of Ardisia japonica (Thunb.) Blume for the Treatment of Acute Lung Injury. Molecules 2024; 29:770. [PMID: 38398522 PMCID: PMC10891587 DOI: 10.3390/molecules29040770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The objective of this study was to identify and evaluate the pharmacodynamic constituents of Ardisiae Japonicae Herba (AJH) for the treatment of acute lung injury (ALI). To fully analyze the chemical contents of various extraction solvents (petroleum ether site (PE), ethyl acetate site (EA), n-butanol site (NB), and water site (WS)) of AJH, the UPLC-Orbitrap Fusion-MS technique was employed. Subsequently, the anti-inflammatory properties of the four extracted components of AJH were assessed using the lipopolysaccharide (LPS)-induced MH-S cellular inflammation model. The parts that exhibited anti-inflammatory activity were identified. Additionally, a technique was developed to measure the levels of specific chemical constituents in the anti-inflammatory components of AJH. The correlation between the "anti-inflammatory activity" and the constituents was analyzed, enabling the identification of a group of pharmacodynamic components with anti-inflammatory properties. ALI model rats were created using the tracheal drip LPS technique. The pharmacodynamic indices were evaluated for the anti-inflammatory active portions of AJH. The research revealed that the PE, EA, NB, and WS extracts of AJH included 215, 289, 128, and 69 unique chemical components, respectively. Additionally, 528 chemical components were discovered after removing duplicate values from the data. The EA exhibited significant anti-inflammatory activity in the cellular assay. A further analysis was conducted to determine the correlation between anti-inflammatory activity and components. Seventeen components, such as caryophyllene oxide, bergenin, and gallic acid, were identified as potential pharmacodynamic components with anti-inflammatory activity. The pharmacodynamic findings demonstrated that the intermediate and high doses of the EA extract from AJH exhibited a more pronounced effect in enhancing lung function, blood counts, and lung histology in a way that depended on the dosage. To summarize, when considering the findings from the previous study on the chemical properties of AJH, it was determined that the EA contained a group of 13 constituents that primarily contributed to its pharmacodynamic effects against ALI. The constituents include bergenin, quercetin, epigallocatechingallate, and others.
Collapse
Affiliation(s)
- Shuding Sun
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450003, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of China, Zhengzhou 450046, China
| | - Xuefang Liu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450003, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of China, Zhengzhou 450046, China
| | - Di Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450003, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of China, Zhengzhou 450046, China
| | - Lishi Zheng
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450003, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of China, Zhengzhou 450046, China
| | - Xiaoxiao Han
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yange Tian
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450003, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of China, Zhengzhou 450046, China
| | - Suxiang Feng
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450003, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of China, Zhengzhou 450046, China
| |
Collapse
|
14
|
Yang N, Sun M, Wang H, Hu D, Zhang A, Khan S, Chen Z, Chen D, Xie S. Progress of stimulus responsive nanosystems for targeting treatment of bacterial infectious diseases. Adv Colloid Interface Sci 2024; 324:103078. [PMID: 38215562 DOI: 10.1016/j.cis.2024.103078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
In recent decades, due to insufficient concentration at the lesion site, low bioavailability and increasingly serious resistance, antibiotics have become less and less dominant in the treatment of bacterial infectious diseases. It promotes the development of efficient drug delivery systems, and is expected to achieve high absorption, targeted drug release and satisfactory therapy effects. A variety of endogenous stimulation-responsive nanosystems have been constructed by using special infection microenvironments (pH, enzymes, temperature, etc.). In this review, we firstly provide an extensive review of the current research progress in antibiotic treatment dilemmas and drug delivery systems. Then, the mechanism of microenvironment characteristics of bacterial infected lesions was elucidated to provide a strong theoretical basis for bacteria-targeting nanosystems design. In particular, the discussion focuses on the design principles of single-stimulus and dual-stimulus responsive nanosystems, as well as the use of endogenous stimulus-responsive nanosystems to deliver antimicrobial agents to target locations for combating bacterial infectious diseases. Finally, the challenges and prospects of endogenous stimulus-responsive nanosystems were summarized.
Collapse
Affiliation(s)
- Niuniu Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health,Huazhong Agricultural University, Shenzhen, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Mengyuan Sun
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Huixin Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Danlei Hu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Aoxue Zhang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Suliman Khan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Zhen Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health,Huazhong Agricultural University, Shenzhen, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
15
|
Ran Y, Yin S, Xie P, Liu Y, Wang Y, Yin Z. ICAM-1 targeted and ROS-responsive nanoparticles for the treatment of acute lung injury. NANOSCALE 2024; 16:1983-1998. [PMID: 38189459 DOI: 10.1039/d3nr04401g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Acute lung injury (ALI) is an inflammatory disease caused by multiple factors such as infection, trauma, and chemicals. Without effective intervention during the early stages, it usually quickly progresses to acute respiratory distress syndrome (ARDS). Since ordinary pharmaceutical preparations cannot precisely target the lungs, their clinical application is limited. In response, we constructed a γ3 peptide-decorated and ROS-responsive nanoparticle system encapsulating therapeutic dexamethasone (Dex/PSB-γ3 NPs). In vitro, Dex/PSB-γ3 NPs had rapid H2O2 responsiveness, low cytotoxicity, and strong intracellular ROS removal capacity. In a mouse model of ALI, Dex/PSB-γ3 NPs accumulated at the injured lung rapidly, alleviating pulmonary edema and cytokine levels significantly. The modification of NPs by γ3 peptide achieved highly specific positioning of NPs in the inflammatory area. The ROS-responsive release mechanism ensured the rapid release of therapeutic dexamethasone at the inflammatory site. This combined approach improves treatment accuracy, and drug bioavailability, and effectively inhibits inflammation progression. Our study could effectively reduce the risk of ALI progressing to ARDS and hold potential for the early treatment of ALI.
Collapse
Affiliation(s)
- Yu Ran
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Shanmei Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Pei Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
- Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712038, China
| | - Yaxue Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Ying Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Zongning Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
16
|
Zhang J, Guo Y, Mak M, Tao Z. Translational medicine for acute lung injury. J Transl Med 2024; 22:25. [PMID: 38183140 PMCID: PMC10768317 DOI: 10.1186/s12967-023-04828-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/24/2023] [Indexed: 01/07/2024] Open
Abstract
Acute lung injury (ALI) is a complex disease with numerous causes. This review begins with a discussion of disease development from direct or indirect pulmonary insults, as well as varied pathogenesis. The heterogeneous nature of ALI is then elaborated upon, including its epidemiology, clinical manifestations, potential biomarkers, and genetic contributions. Although no medication is currently approved for this devastating illness, supportive care and pharmacological intervention for ALI treatment are summarized, followed by an assessment of the pathophysiological gap between human ALI and animal models. Lastly, current research progress on advanced nanomedicines for ALI therapeutics in preclinical and clinical settings is reviewed, demonstrating new opportunities towards developing an effective treatment for ALI.
Collapse
Affiliation(s)
- Jianguo Zhang
- Department of Emergency Medicine, The Affiliated Hospital, Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Yumeng Guo
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Michael Mak
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, 06520, USA
| | - Zhimin Tao
- Department of Emergency Medicine, The Affiliated Hospital, Jiangsu University, Zhenjiang, 212001, Jiangsu, China.
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, 06520, USA.
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
17
|
García-Fernández A, Sancho M, Garrido E, Bisbal V, Sancenón F, Martínez-Máñez R, Orzáez M. Targeted Delivery of the Pan-Inflammasome Inhibitor MM01 as an Alternative Approach to Acute Lung Injury Therapy. Adv Healthc Mater 2023; 12:e2301577. [PMID: 37515468 DOI: 10.1002/adhm.202301577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Acute lung injury (ALI) is a severe pulmonary disorder responsible for high percentage of mortality and morbidity in intensive care unit patients. Current treatments are ineffective, so the development of efficient and specific therapies is an unmet medical need. The activation of NLPR3 inflammasome during ALI produces the release of proinflammatory factors and pyroptosis, a proinflammatory form of cell death that contributes to lung damage spreading. Herein, it is demonstrated that modulating inflammasome activation through inhibition of ASC oligomerization by the recently described MM01 compound can be an alternative pharmacotherapy against ALI. Besides, the added efficacy of using a drug delivery nanosystem designed to target the inflamed lungs is determined. The MM01 drug is incorporated into mesoporous silica nanoparticles capped with a peptide (TNFR-MM01-MSNs) to target tumor necrosis factor receptor-1 (TNFR-1) to proinflammatory macrophages. The prepared nanoparticles can deliver the cargo in a controlled manner after the preferential uptake by proinflammatory macrophages and exhibit anti-inflammatory activity. Finally, the therapeutic effect of MM01 free or nanoparticulated to inhibit inflammatory response and lung injury is successfully demonstrated in lipopolysaccharide-mouse model of ALI. The results suggest the potential of pan-inflammasome inhibitors as candidates for ALI therapy and the use of nanoparticles for targeted lung delivery.
Collapse
Affiliation(s)
- Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camí de vera s/n, Valencia, 46022, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5, Madrid, 28029, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, Valencia, 46012, Spain
| | - Mónica Sancho
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, Valencia, 46012, Spain
- Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera 3, Valencia, 46012, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, E-46100, Spain
| | - Eva Garrido
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camí de vera s/n, Valencia, 46022, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5, Madrid, 28029, Spain
| | - Viviana Bisbal
- Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera 3, Valencia, 46012, Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camí de vera s/n, Valencia, 46022, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5, Madrid, 28029, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, Valencia, 46012, Spain
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta, Valencia, 46026, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camí de vera s/n, Valencia, 46022, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5, Madrid, 28029, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, Valencia, 46012, Spain
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta, Valencia, 46026, Spain
| | - Mar Orzáez
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, Valencia, 46012, Spain
- Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera 3, Valencia, 46012, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, E-46100, Spain
| |
Collapse
|
18
|
Muhammad W, Zhang Y, Zhu J, Xie J, Wang S, Wang R, Feng B, Zhou J, Chen W, Xu Y, Yao Q, Yu Y, Cao H, Gao C. Co-delivery of azithromycin and ibuprofen by ROS-responsive polymer nanoparticles synergistically attenuates the acute lung injury. BIOMATERIALS ADVANCES 2023; 154:213621. [PMID: 37714042 DOI: 10.1016/j.bioadv.2023.213621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
Bacterial infection causes lung inflammation and recruitment of several inflammatory factors that may result in acute lung injury (ALI). During bacterial infection, reactive oxygen species (ROS) and other signaling pathways are activated, which intensify inflammation and increase ALI-related mortality and morbidity. To improve the ALI therapy outcome, it is imperative clinically to manage bacterial infection and excessive inflammation simultaneously. Herein, a synergistic nanoplatform (AZI+IBF@NPs) constituted of ROS-responsive polymers (PFTU), and antibiotic (azithromycin, AZI) and anti-inflammatory drug (ibuprofen, IBF) was developed to enable an antioxidative effect, eliminate bacteria, and modulate the inflammatory milieu in ALI. The ROS-responsive NPs (PFTU NPs) loaded with dual-drugs (AZI and IBF) scavenged excessive ROS efficiently both in vitro and in vivo. The AZI+IBF@NPs eradicated Pseudomonas aeruginosa (PA) bacterial strain successfully. To imitate the entry of bacterial-derived compounds in body, a lipopolysaccharide (LPS) model was adopted. The administration of AZI+IBF@NPs via the tail veins dramatically reduced the number of neutrophils, significantly reduced cell apoptosis and total protein concentration in vivo. Furthermore, nucleotide oligomerization domain-like receptor thermal protein domain associated protein 3 (NLRP3) and Interleukin-1 beta (IL-1β) expressions were most effectively inhibited by the AZI+IBF@NPs. These findings present a novel nanoplatform for the effective treatment of ALI.
Collapse
Affiliation(s)
- Wali Muhammad
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yiru Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Jiaqi Zhu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Jieqi Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shuqin Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ruo Wang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Bing Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Jiahang Zhou
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Wenyi Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Yanping Xu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Yingduo Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China; Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312099, China.
| |
Collapse
|
19
|
He W, Fu D, Gai Y, Liu X, Yang C, Ye Z, Chen X, Liu J, Chang B. An infection-microenvironment-targeted and responsive peptide-drug nanosystem for sepsis emergency by suppressing infection and inflammation. Asian J Pharm Sci 2023; 18:100869. [PMID: 38161786 PMCID: PMC10755722 DOI: 10.1016/j.ajps.2023.100869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 11/19/2023] [Indexed: 01/03/2024] Open
Abstract
Sepsis is a life-threatening emergency that causes millions of deaths every year due to severe infection and inflammation. Nevertheless, current therapeutic regimens are inadequate to promptly address the vast diversity of potential pathogens. Omiganan, an antimicrobial peptide, has shown promise for neutralizing endotoxins and eliminating diverse pathogens. However, its clinical application is hindered by safety and stability concerns. Herein, we present a nanoscale drug delivery system (Omi-hyd-Dex@HA NPs) that selectively targets infectious microenvironments (IMEs) and responds to specific stimuli for efficient intervention in sepsis. The system consists of omiganan-dexamethasone conjugates linked by hydrazone bonds which self-assemble into nanoparticles coated with a hyaluronic acid (HA). The HA coating not only facilitates IMEs-targeting through interaction with intercellular-adhesion-molecule-1 on inflamed endotheliocytes, but also improves the biosafety of the nanosystem and enhances drug accumulation in primary infection sites triggered by hyaluronidase. The nanoparticles release dual drugs in IMEs through pH-sensitive cleavage of hydrazone bonds to eradicate pathogens and suppress inflammation. In multiple tissue infection and sepsis animal models, Omi-hyd-Dex@HA NPs exhibited rapid source control and comprehensive inflammation reduction, thereby preventing subsequent fatal complications and significantly improving survival outcomes. The bio-responsive and self-delivering nanosystem offers a promising strategy for systemic sepsis treatment in emergencies.
Collapse
Affiliation(s)
- Wei He
- The Second Clinical College, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Daan Fu
- Department of Anesthesiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Hubei Province Key Laboratory of Molecular Imaging, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xingxin Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu 610065, China
| | - Chang Yang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Zhilan Ye
- Department of Geriatrics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xu Chen
- The Second Clinical College, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bingcheng Chang
- The Second Clinical College, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| |
Collapse
|
20
|
Eka Rani YD, Rahmadi M, Hariyadi DM. Characteristics and release of isoniazid from inhalable alginate/carrageenan microspheres. Ther Deliv 2023; 14:689-704. [PMID: 38084393 DOI: 10.4155/tde-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Aim: Inhalable microspheres made of polymers as a targeted drug delivery system have been developed to overcome the limitation of current treatments in Tuberculosis. Materials & methods: Isoniazid inhalable microspheres were created using a gelation ionotropic method with sodium alginate, carrageenan and calcium chloride in four different formulations. Result: The particle morphology has smooth surfaces and round spherical shapes with sizes below 5 μm; good flowability. The drug loading and entrapment efficiency values ranged from 1.69 to 2.75% and 62.44 to 85.30%, respectively. The microspheres drug release followed the Korsmeyer-Peppas model, indicating Fickian diffusion. Conclusion: Isoniazid inhalable microspheres achieved as targeted lung delivery for tuberculosis treatment.
Collapse
Affiliation(s)
- Yotomi Desia Eka Rani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C Mulyorejo, Surabaya, 60115, Indonesia
| | - Mahardian Rahmadi
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Campus C Jl. Mulyorejo, Surabaya, 60115, Indonesia
| | - Dewi Melani Hariyadi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C Mulyorejo, Surabaya, 60115, Indonesia
- Nanotechnology & Drug Delivery System Research Group, Faculty of Pharmacy, Universitas Airlangga, Campus C Mulyorejo, Surabaya, 60115, Indonesia
| |
Collapse
|
21
|
Trimaille T, Verrier B. Copolymer Micelles: A Focus on Recent Advances for Stimulus-Responsive Delivery of Proteins and Peptides. Pharmaceutics 2023; 15:2481. [PMID: 37896241 PMCID: PMC10609739 DOI: 10.3390/pharmaceutics15102481] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Historically used for the delivery of hydrophobic drugs through core encapsulation, amphiphilic copolymer micelles have also more recently appeared as potent nano-systems to deliver protein and peptide therapeutics. In addition to ease and reproducibility of preparation, micelles are chemically versatile as hydrophobic/hydrophilic segments can be tuned to afford protein immobilization through different approaches, including non-covalent interactions (e.g., electrostatic, hydrophobic) and covalent conjugation, while generally maintaining protein biological activity. Similar to many other drugs, protein/peptide delivery is increasingly focused on stimuli-responsive nano-systems able to afford triggered and controlled release in time and space, thereby improving therapeutic efficacy and limiting side effects. This short review discusses advances in the design of such micelles over the past decade, with an emphasis on stimuli-responsive properties for optimized protein/peptide delivery.
Collapse
Affiliation(s)
- Thomas Trimaille
- Ingénierie des Matériaux Polymères, Univ Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, CEDEX, 69622 Villeurbanne, France
| | - Bernard Verrier
- Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, Univ Lyon, CNRS, Université Claude Bernard Lyon 1, UMR 5305, 7 Passage du Vercors, CEDEX 07, 69367 Lyon, France;
| |
Collapse
|
22
|
Nyandoro VO, Omolo CA, Ismail EA, Yong L, Govender T. Inflammation-responsive drug delivery nanosystems for treatment of bacterial-induced sepsis. Int J Pharm 2023; 644:123346. [PMID: 37633537 DOI: 10.1016/j.ijpharm.2023.123346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Sepsis, a complication of dysregulated host immune systemic response to an infection, is life threatening and causes multiple organ injuries. Sepsis is recognized by WHO as a big contributor to global morbidity and mortality. The heterogeneity in sepsis pathophysiology, antimicrobial resistance threat, the slowdown in the development of antimicrobials, and limitations of conventional dosage forms jeopardize the treatment of sepsis. Drug delivery nanosystems are promising tools to overcome some of these challenges. Among the drug delivery nanosystems, inflammation-responsive nanosystems have attracted considerable interest in sepsis treatment due to their ability to respond to specific stimuli in the sepsis microenvironment to release their payload in a precise, targeted, controlled, and rapid manner compared to non-responsive nanosystems. These nanosystems posit superior therapeutic potential to enhance sepsis treatment. This review critically evaluates the recent advances in the design of drug delivery nanosystems that are inflammation responsive and their potential in enhancing sepsis treatment. The sepsis microenvironment's unique features, such as acidic pH, upregulated receptors, overexpressed enzymes, and enhanced oxidative stress, that form the basis for their design have been adequately discussed. These inflammation-responsive nanosystems have been organized into five classes namely: Receptor-targeted nanosystems, pH-responsive nanosystems, redox-responsive nanosystems, enzyme-responsive nanosystems, and multi-responsive nanosystems. Studies under each class have been thematically grouped and discussed with an emphasis on the polymers used in their design, nanocarriers, key characterization, loaded actives, and key findings on drug release and therapeutic efficacy. Further, this information is concisely summarized into tables and supplemented by inserted figures. Additionally, this review adeptly points out the strengths and limitations of the studies and identifies research avenues that need to be explored. Finally, the challenges and future perspectives on these nanosystems have been thoughtfully highlighted.
Collapse
Affiliation(s)
- Vincent O Nyandoro
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Pharmaceutical Chemistry and Pharmaceutics, School of Pharmacy, Kabarak University, Nakuru, Kenya
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, Nairobi, Kenya.
| | - Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Liu Yong
- Wenzhou Institute, University of Chinese Academy of Sciences (WIUCAS), China
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
23
|
Lin P, Gao R, Fang Z, Yang W, Tang Z, Wang Q, Wu Y, Fang J, Yu W. Precise nanodrug delivery systems with cell-specific targeting for ALI/ARDS treatment. Int J Pharm 2023; 644:123321. [PMID: 37591476 DOI: 10.1016/j.ijpharm.2023.123321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/22/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common acute and critical diseases in clinics and have no effective treatment to date. With the concept of "precision medicine", research into the precise drug delivery of therapeutic and diagnostic drugs has become a frontier in nanomedicine research and has entered the era of design of precise nanodrug delivery systems (NDDSs) with cell-specific targeting. Owing to the distinctive characteristics of ALI/ARDS, designing NDDSs for specific focal sites is an important strategy for changing drug distribution in the body and specifically increasing drug concentration at target sites while decreasing drug concentration at non-target sites. This strategy enhances drug efficacy, reduces adverse reactions, and ensures accurate nano-targeted treatment. On the basis of the characteristics of pathological ALI/ARDS microenvironments, this paper reviews NDDSs targeting vascular endothelial cells, neutrophils, alveolar macrophages, and alveolar epithelial cells to provide reference for designing accurate NDDSs for ALI/ARDS and novel insights into targeted treatments for ALI/ARDS.
Collapse
Affiliation(s)
- Peihong Lin
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Rui Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Zhengyu Fang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Wenjing Yang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Zhan Tang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Qiao Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Yueguo Wu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Jie Fang
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou 310013, China.
| | - Wenying Yu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 310013, China.
| |
Collapse
|
24
|
Zhou X, Jin W, Ma J. Lung inflammation perturbation by engineered nanoparticles. Front Bioeng Biotechnol 2023; 11:1199230. [PMID: 37304133 PMCID: PMC10248179 DOI: 10.3389/fbioe.2023.1199230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
In recent years, the unique and diverse physicochemical properties of nanoparticles have brought about their wide use in many fields; however, it is necessary to better understand the possible human health risks caused by their release in the environment. Although the adverse health effects of nanoparticles have been proposed and are still being clarified, their effects on lung health have not been fully studied. In this review, we focus on the latest research progress on the pulmonary toxic effects of nanoparticles, and we summarized their disturbance of the pulmonary inflammatory response. First, the activation of lung inflammation by nanoparticles was reviewed. Second, we discussed how further exposure to nanoparticles aggravated the ongoing lung inflammation. Third, we summarized the inhibition of the ongoing lung inflammation by nanoparticles loaded with anti-inflammatory drugs. Forth, we introduced how the physicochemical properties of nanoparticles affect the related pulmonary inflammatory disturbance. Finally, we discussed the main gaps in current research and the challenges and countermeasures in future research.
Collapse
Affiliation(s)
| | | | - Jingjun Ma
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| |
Collapse
|
25
|
Teng L, Zhang Y, Chen L, Shi G. Fabrication of a curcumin encapsulated bioengineered nano-cocktail formulation for stimuli-responsive targeted therapeutic delivery to enhance anti-inflammatory, anti-oxidant, and anti-bacterial properties in sepsis management. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-25. [PMID: 37163302 DOI: 10.1080/09205063.2023.2181554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This study aimed to fabricate an eco-friendly functionalized chitosan (CS) nanocarrier to establish a pH-responsive drug delivery system for the treatment of sepsis. Curcumin (Cur) and cerium oxide (CeO2) were loaded onto an octenylsuccinic anhydride (OSA)-functionalized CS nanoformulation (Cur@Ce/OCS) to achieve an effective nanocarrier (NC) for sepsis treatment. The physicochemical characteristics of the developed nanocarriers were determined using various characterization techniques. The developed CeO2-OCS nanoformulation has been showed effective anti-bacterial activity (∼97%) against G+ and G- bacterial pathogens, and also have improved drug loading (94% ± 2), and encapsulation efficiency (89.8% ± 1.5), with uniform spherical particles having an average diameter of between 100 and 150 nm. The in vivo experimental results establish that Cur-loaded Ce/OCS NPs could have enhanced therapeutic potential against lung infection model by reducing bacterial burden and extensively decreasing inflammatory responses in sepsis model. Additionally, we determined the in vivo biosafety of the nanoformulations by histological observation of different mouse organs (heart, liver, spleen, and kidney), and observed no signs of toxicity in the treatment groups. The findings of this study clearly demonstrate the therapeutic potential of pH-sensitive nanoplatforms in the management of infectious sepsis.
Collapse
Affiliation(s)
- Li Teng
- Department of Pharmacy, Yantai City Yantaishan Hospital, Yantai 264600, Shandong Province, China
| | - Yiliang Zhang
- Department of Pharmacy, Yantai City Yantaishan Hospital, Yantai 264600, Shandong Province, China
| | - Li Chen
- Second Department of Paediatrics, Zhumadian Women and Children's Hospital, Zhumadian 46300, Henan Province, PR China
| | - Ge Shi
- Second Department of Paediatrics, Zhumadian Women and Children's Hospital, Zhumadian 46300, Henan Province, PR China
| |
Collapse
|
26
|
Gao J, Su Y, Wang Z. Remote Co-loading of amphipathic acid drugs in neutrophil nanovesicles infilled with cholesterol mitigates lung bacterial infection and inflammation. Biomaterials 2023; 296:122071. [PMID: 36878092 PMCID: PMC9973434 DOI: 10.1016/j.biomaterials.2023.122071] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/07/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Lung bacterial infections could result in acute lung inflammation/injury (ALI) that propagates to its severe form, acute respiratory distress syndrome (ADRS) leading to the death. The molecular mechanism of ALI is associated with bacterial invasion and the host inflammation response. Here, we proposed a novel strategy to specifically target both bacteria and inflammatory pathways by co-loading of antibiotics (azlocillin, AZ) and anti-inflammatory agents (methylprednisolone sodium, MPS) in neutrophil nanovesicles. We found that cholesterol infilling in the membrane of nanovesicles can maintain a pH gradient between intra-vesicles and outer-vesicles, so we remotely loaded both AZ and MPS in single nanovesicles. The results showed that loading efficiency of both drugs can achieve more than 30% (w/w), and delivery of both drugs using nanovesicles accelerated bacterial clearance and resolved inflammation responses, thus preventing the potential lung damage due to infections. Our studies show that remote loading of multiple drugs in neutrophil nanovesicles which specifically target the infectious lung could be translational to treat ARDS.
Collapse
Affiliation(s)
- Jin Gao
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - Yujie Su
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA.
| |
Collapse
|
27
|
Wei C, Fu Q. Cell death mediated by nanotechnology via the cuproptosis pathway: A novel horizon for cancer therapy. VIEW 2023. [DOI: 10.1002/viw.20230001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
28
|
Wang Y, Zhang H, Wang J, Tang G, Bai H. An Engineered Design of Self-Assembly Nanomedicine Guided by Molecular Dynamic Simulation for Photodynamic and Hypoxia-Directed Therapy. Mol Pharm 2023; 20:2128-2137. [PMID: 36848620 DOI: 10.1021/acs.molpharmaceut.2c01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
To overcome the hypoxia barrier in tumor therapy, a hypoxia-activated prodrug of docetaxel (DTX-PNB) was synthesized and self-assembled with indocyanine green (ICG), forming a combination nanomedicine ISDNN. With the guidance of molecular dynamic simulation, the ISDNN construction could be accurately controlled, achieving uniform size distribution and high drug loading up to 90%. Within the hypoxic tumor environment, ISDNN exerted ICG-mediated photodynamic therapy and aggravated hypoxia to boost DTX-PNB activation for chemotherapy, enabling enhanced antitumor efficacy.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Haotian Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianwei Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Guping Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hongzhen Bai
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
29
|
PLGA-Based Micro/Nanoparticles: An Overview of Their Applications in Respiratory Diseases. Int J Mol Sci 2023; 24:ijms24054333. [PMID: 36901762 PMCID: PMC10002081 DOI: 10.3390/ijms24054333] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), are critical areas of medical research, as millions of people are affected worldwide. In fact, more than 9 million deaths worldwide were associated with respiratory diseases in 2016, equivalent to 15% of global deaths, and the prevalence is increasing every year as the population ages. Due to inadequate treatment options, the treatments for many respiratory diseases are limited to relieving symptoms rather than curing the disease. Therefore, new therapeutic strategies for respiratory diseases are urgently needed. Poly (lactic-co-glycolic acid) micro/nanoparticles (PLGA M/NPs) have good biocompatibility, biodegradability and unique physical and chemical properties, making them one of the most popular and effective drug delivery polymers. In this review, we summarized the synthesis and modification methods of PLGA M/NPs and their applications in the treatment of respiratory diseases (asthma, COPD, cystic fibrosis (CF), etc.) and also discussed the research progress and current research status of PLGA M/NPs in respiratory diseases. It was concluded that PLGA M/NPs are the promising drug delivery vehicles for the treatment of respiratory diseases due to their advantages of low toxicity, high bioavailability, high drug loading capacity, plasticity and modifiability. And at the end, we presented an outlook on future research directions, aiming to provide some new ideas for future research directions and hopefully to promote their widespread application in clinical treatment.
Collapse
|
30
|
Wei J, Zhu L, Lu Q, Li G, Zhou Y, Yang Y, Zhang L. Recent progress and applications of poly(beta amino esters)-based biomaterials. J Control Release 2023; 354:337-353. [PMID: 36623697 DOI: 10.1016/j.jconrel.2023.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023]
Abstract
Poly(beta-amino esters, PBAEs) are a promising class of cationic polymers synthesized from diacrylates and amines via Michael addition. Recently, PBAEs have been widely developed for drug delivery, immunotherapy, gene therapy, antibacterial, tissue engineering and other applications due to their convenient synthesis, good bio-compatibility and degradation properties. Herein, we mainly summarize the recent progress in the PBAEs synthesis and their applications. The amine groups of PBAEs could be protonated in low pH environment, exhibiting proton sponge and pH-sensitive abilities. Furthermore, the positive PBAEs can interact with negative genes via electrostatic interactions for efficient delivery of nucleic acids. Moreover, positive PBAEs could also directly kill bacteria by disrupting their membranes at high doses. Finally, PBAEs can augment the immune responses, and improve the bioactivity of hydrogels in tissue engineering.
Collapse
Affiliation(s)
- Jingjing Wei
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Linglin Zhu
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Qiuyun Lu
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Guicai Li
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Youlang Zhou
- Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Yumin Yang
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, 226001 Nantong, Jiangsu, PR China.
| | - Luzhong Zhang
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, 226001 Nantong, Jiangsu, PR China.
| |
Collapse
|
31
|
Fan XP, Huang J, Ren TB, Yuan L, Zhang XB. De Novo Design of Activatable Photoacoustic/Fluorescent Probes for Imaging Acute Lung Injury In Vivo. Anal Chem 2023; 95:1566-1573. [PMID: 36584357 DOI: 10.1021/acs.analchem.2c04642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Effective monitoring of the physiological progression of acute lung injury (ALI) in real time is crucial for early theranostics to reduce its high mortality. In particular, activatable fluorescence and photoacoustic molecule probes have attracted attention to assess ALI by detecting related indicators. However, the existing fluorophores often encounter issues of low retention in the lungs and slow clearance from the body, which compromise the probe's actual capability for in situ imaging by intravenous injection in vivo. Herein, a novel near-infrared hemicyanines fluorophore (FJH) bearing a quaternary ammonium group was first developed by combining with the rational design and screening strategy. The properties of good hydrophilicity and blood circulation effectively enable FJH accumulation for lung imaging. Inspired by the high retention efficiency, the probe FJH-C that turns on fluorescence and photoacoustic signals in response to the ALI indicator (esterase) was subsequently synthesized. Notably, the probe FJH-C successfully achieved the selectivity and sensitivity toward esterase in vitro and in living cells. More importantly, FJH-C can be further used to assess lipopolysaccharides and silica-induced ALI through the desired fluo-photoacoustic signal. Therefore, this study not only shows the first activatable probe for real-time imaging of lung function but also highlights the fluorophore structure with high lung retention. It is believed that FJH and FJH-C can serve as an efficient platform to reveal the pathological progression of other lung diseases for early diagnosis and medical intervention.
Collapse
Affiliation(s)
- Xiao-Peng Fan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, P.R. China
| | - Jing Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
32
|
Liu C, Liu Y, Xi L, He Y, Liang Y, Mak JCW, Mao S, Wang Z, Zheng Y. Interactions of Inhaled Liposome with Macrophages and Neutrophils Determine Particle Biofate and Anti-Inflammatory Effect in Acute Lung Inflammation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:479-493. [PMID: 36583377 DOI: 10.1021/acsami.2c17660] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Since most current studies have focused on exploring how phagocyte internalization of drug-loaded nanovesicles by macrophages would affect the function and therapeutic effects of infiltrated neutrophils or monocytes, research has evaluated the specificity of the inhaled nanovesicles for targeting various phagocytes subpopulations. In this study, liposomes with various charges (including neutral (L1), anionic (L2), and cationic at inflammatory sites (L3)) were constructed to investigate how particle charge determined their interactions with key phagocytes (including macrophages and neutrophils) in acute lung injury (ALI) models and to establish correlations with their biofate and overall anti-inflammatory effect. Our results clearly indicated that neutrophils were capable of rapidly sequestering L3 with a 3.2-fold increase in the cellular liposome distribution, compared to that in AMs, while 70.5% of L2 were preferentially uptaken by alveolar macrophages (AMs). Furthermore, both AMs and the infiltrated neutrophils performed as the potential vesicles for the inhaled liposomes to prolong their lung retention in ALI models, whereas AMs function as sweepers to recognize and process liposomes in the healthy lung. Finally, inhaled roflumilast-loaded macrophage or neutrophil preferential liposomes (L2 or L3) exhibited optimal anti-inflammatory effect because of the decreased AMs phagocytic capacity or the prolonged circulation times of neutrophils. Such findings will be beneficial in exploiting a potential pathway to specifically manipulate lung phagocyte functions in lung inflammatory diseases where these cells play crucial roles.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau999078, China
| | - Yihan Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau999078, China
| | - Long Xi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau999078, China
| | - Yuan He
- Department of Pharmacy, Xuzhou Medical University, Xuzhou221004, China
| | - Yingmin Liang
- School of Clinical Medicine, Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong999077, China
| | - Judith Choi Wo Mak
- School of Clinical Medicine, Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong999077, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Zhenping Wang
- Department of Dermatology, School of Medicine, University of California, San Diego, San Diego, California92093, United States
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau999078, China
| |
Collapse
|
33
|
Tang J, Ouyang Q, Li Y, Zhang P, Jin W, Qu S, Yang F, He Z, Qin M. Nanomaterials for Delivering Antibiotics in the Therapy of Pneumonia. Int J Mol Sci 2022; 23:ijms232415738. [PMID: 36555379 PMCID: PMC9779065 DOI: 10.3390/ijms232415738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 12/14/2022] Open
Abstract
Bacterial pneumonia is one of the leading causes of death worldwide and exerts a significant burden on health-care resources. Antibiotics have long been used as first-line drugs for the treatment of bacterial pneumonia. However, antibiotic therapy and traditional antibiotic delivery are associated with important challenges, including drug resistance, low bioavailability, and adverse side effects; the existence of physiological barriers further hampers treatment. Fortunately, these limitations may be overcome by the application of nanotechnology, which can facilitate drug delivery while improving drug stability and bioavailability. This review summarizes the challenges facing the treatment of bacterial pneumonia and also highlights the types of nanoparticles that can be used for antibiotic delivery. This review places a special focus on the state-of-the-art in nanomaterial-based approaches to the delivery of antibiotics for the treatment of pneumonia.
Collapse
Affiliation(s)
- Jie Tang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Qiuhong Ouyang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanyan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Peisen Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weihua Jin
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Shuang Qu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fengmei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
- Correspondence: (Z.H.); (M.Q.)
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (Z.H.); (M.Q.)
| |
Collapse
|
34
|
Ismail EA, Devnarain N, Govender T, Omolo CA. Stimuli-responsive and biomimetic delivery systems for sepsis and related complications. J Control Release 2022; 352:1048-1070. [PMID: 36372385 DOI: 10.1016/j.jconrel.2022.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/18/2022]
Abstract
Sepsis, a consequence of an imbalanced immune response to infection, is currently one of the leading causes of death globally. Despite advances in the discoveries of potential targets and nanotechnology, sepsis still lacks effective drug delivery systems for optimal treatment. Stimuli-responsive and biomimetic nano delivery systems, specifically, are emerging as advanced bio-inspired nanocarriers for enhancing the treatment of sepsis. Herein, we present a critical review of different stimuli-responsive systems, including pH-; enzyme-; ROS- and toxin-responsive nanocarriers, reported in the delivery of therapeutics for sepsis. Biomimetic nanocarriers, utilizing natural pathways in the inflammatory cascade to optimize sepsis therapy, are also reviewed, in addition to smart, multifunctional vehicles. The review highlights the nanomaterials designed for constructing these systems; their physicochemical properties; the mechanisms of drug release; and their potential for enhancing the therapeutic efficacy of their cargo. Current challenges are identified and future avenues for research into the optimization of bio-inspired nano delivery systems for sepsis are also proposed. This review confirms the potential of stimuli-responsive and biomimetic nanocarriers for enhanced therapy against sepsis and related complications.
Collapse
Affiliation(s)
- Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Wad Medani, Sudan
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, Nairobi, Kenya.
| |
Collapse
|
35
|
Li J, Xue Y, Wang X, Smith LS, He B, Liu S, Zhu H. Tissue- and cell-expression of druggable host proteins provide insights into repurposing drugs for COVID-19. Clin Transl Sci 2022; 15:2796-2811. [PMID: 36259251 PMCID: PMC9747131 DOI: 10.1111/cts.13400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 01/26/2023] Open
Abstract
Several human host proteins play important roles in the lifecycle of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Many drugs targeting these host proteins have been investigated as potential therapeutics for coronavirus disease 2019 (COVID-19). The tissue-specific expressions of selected host proteins were summarized using proteomics data retrieved from the Human Protein Atlas, ProteomicsDB, Human Proteome Map databases, and a clinical COVID-19 study. Protein expression features in different cell lines were summarized based on recent proteomics studies. The half-maximal effective concentration or half-maximal inhibitory concentration values were collected from in vitro studies. The pharmacokinetic data were mainly from studies in healthy subjects or non-COVID-19 patients. Considerable tissue-specific expression patterns were observed for several host proteins. ACE2 expression in the lungs was significantly lower than in many other tissues (e.g., the kidneys and intestines); TMPRSS2 expression in the lungs was significantly lower than in other tissues (e.g., the prostate and intestines). The expression levels of endocytosis-associated proteins CTSL, CLTC, NPC1, and PIKfyve in the lungs were comparable to or higher than most other tissues. TMPRSS2 expression was markedly different between cell lines, which could be associated with the cell-dependent antiviral activities of several drugs. Drug delivery receptor ICAM1 and CTSB were expressed at a higher level in the lungs than in other tissues. In conclusion, the cell- and tissue-specific proteomics data could help interpret the in vitro antiviral activities of host-directed drugs in various cells and aid the transition of the in vitro findings to clinical research to develop safe and effective therapeutics for COVID-19.
Collapse
Affiliation(s)
- Jiapeng Li
- Department of Clinical PharmacyUniversity of Michigan College of PharmacyAnn ArborMichiganUSA
| | - Yanling Xue
- Department of Clinical PharmacyUniversity of Michigan College of PharmacyAnn ArborMichiganUSA
| | - Xinwen Wang
- Department of Pharmaceutical SciencesNortheast Ohio Medical University College of PharmacyRootstownOhioUSA
| | - Logan S. Smith
- Department of Clinical PharmacyUniversity of Michigan College of PharmacyAnn ArborMichiganUSA
| | - Bing He
- Department of Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMichiganUSA
| | - Shuhan Liu
- Department of Clinical PharmacyUniversity of Michigan College of PharmacyAnn ArborMichiganUSA
| | - Hao‐Jie Zhu
- Department of Clinical PharmacyUniversity of Michigan College of PharmacyAnn ArborMichiganUSA
| |
Collapse
|
36
|
Recent Advances in Nanomaterials for Asthma Treatment. Int J Mol Sci 2022; 23:ijms232214427. [PMID: 36430906 PMCID: PMC9696023 DOI: 10.3390/ijms232214427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Asthma is a chronic airway inflammatory disease with complex mechanisms, and these patients often encounter difficulties in their treatment course due to the heterogeneity of the disease. Currently, clinical treatments for asthma are mainly based on glucocorticoid-based combination drug therapy; however, glucocorticoid resistance and multiple side effects, as well as the occurrence of poor drug delivery, require the development of more promising treatments. Nanotechnology is an emerging technology that has been extensively researched in the medical field. Several studies have shown that drug delivery systems could significantly improve the targeting, reduce toxicity and improve the bioavailability of drugs. The use of multiple nanoparticle delivery strategies could improve the therapeutic efficacy of drugs compared to traditional delivery methods. Herein, the authors presented the mechanisms of asthma development and current therapeutic methods. Furthermore, the design and synthesis of different types of nanomaterials and micromaterials for asthma therapy are reviewed, including polymetric nanomaterials, solid lipid nanomaterials, cell membranes-based nanomaterials, and metal nanomaterials. Finally, the challenges and future perspectives of these nanomaterials are discussed to provide guidance for further research directions and hopefully promote the clinical application of nanotherapeutics in asthma treatment.
Collapse
|
37
|
Nanomedicine for targeting the lung cancer cells by interpreting the signaling pathways. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Qiao Q, Liu X, Cui K, Li X, Tian T, Yu Y, Niu B, Kong L, Yang C, Zhang Z. Hybrid Biomimetic Nanovesicles to Drive High Lung Biodistribution and Prevent Cytokine Storm for ARDS Treatment. ACS NANO 2022; 16:15124-15140. [PMID: 36037505 DOI: 10.1021/acsnano.2c06357] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Acute respiratory distress syndrome (ARDS) has been a life threat for patients in ICUs. Vast efforts have been devoted, while no medication has proved viable, which may be ascribed to inadequate drug delivery to damaged tissues and insufficient control of lung inflammation. Given the anti-inflammatory role of M2-type macrophages, M2 macrophage-derived nanovesicles and lung-targeting liposomes are cofused to fabricate hybrid liposomes-nanovesicles (LNVs). Benefiting from the incorporated lung-homing moiety, LNVs demonstrate high pulmonary accumulation with a lung/liver ratio of 14.9, which is approximately 53.3-fold of free nanovesicles. Thus, M2 macrophage-derived nanovesicles can be delivered to lung tissues for executing immunoregulatory functions. LNVs display phagocytosis by the infiltrated neutrophils and macrophages, exhibiting sustained release of preloaded IKK-2 inhibitor (TPCA-1). The integrated nanosystems demonstrate multidimensional suppression of the overwhelming inflammation, such as decreasing infiltration of inflammatory cells, achieving restraint on cytokine storms and alleviating oxidative stress. Therefore, the improved therapeutic outcome in ARDS mice is obtained. Altogether, the hybrid nanoplatform provides a versatile drug delivery paradigm for integrating biological nanovesicles and therapeutic molecules by cofusion of nanovesicles with liposomes, improving lung biodistribution and accomplishing a boosted anti-inflammatory response for ARDS therapy.
Collapse
Affiliation(s)
- Qi Qiao
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiong Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kexin Cui
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaonan Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tianyi Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yulin Yu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Boning Niu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Engineering Research Centre for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
39
|
Cornelison C, Fadel S. Clickable Biomaterials for Modulating Neuroinflammation. Int J Mol Sci 2022; 23:8496. [PMID: 35955631 PMCID: PMC9369181 DOI: 10.3390/ijms23158496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
Crosstalk between the nervous and immune systems in the context of trauma or disease can lead to a state of neuroinflammation or excessive recruitment and activation of peripheral and central immune cells. Neuroinflammation is an underlying and contributing factor to myriad neuropathologies including neurodegenerative diseases like Alzheimer's disease and Parkinson's disease; autoimmune diseases like multiple sclerosis; peripheral and central nervous system infections; and ischemic and traumatic neural injuries. Therapeutic modulation of immune cell function is an emerging strategy to quell neuroinflammation and promote tissue homeostasis and/or repair. One such branch of 'immunomodulation' leverages the versatility of biomaterials to regulate immune cell phenotypes through direct cell-material interactions or targeted release of therapeutic payloads. In this regard, a growing trend in biomaterial science is the functionalization of materials using chemistries that do not interfere with biological processes, so-called 'click' or bioorthogonal reactions. Bioorthogonal chemistries such as Michael-type additions, thiol-ene reactions, and Diels-Alder reactions are highly specific and can be used in the presence of live cells for material crosslinking, decoration, protein or cell targeting, and spatiotemporal modification. Hence, click-based biomaterials can be highly bioactive and instruct a variety of cellular functions, even within the context of neuroinflammation. This manuscript will review recent advances in the application of click-based biomaterials for treating neuroinflammation and promoting neural tissue repair.
Collapse
Affiliation(s)
- Chase Cornelison
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | | |
Collapse
|
40
|
Red Blood Cell Inspired Strategies for Drug Delivery: Emerging Concepts and New Advances. Pharm Res 2022; 39:2673-2698. [PMID: 35794397 DOI: 10.1007/s11095-022-03328-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/29/2022] [Indexed: 12/09/2022]
Abstract
In the past five decades, red blood cells (RBCs) have been extensively explored as drug delivery systems due to their distinguishing potential in modulating the pharmacokinetic, pharmacodynamics, and biological activity of carried payloads. The extensive interests in RBC-mediated drug delivery technologies are in part derived from RBCs' unique biological features such as long circulation time, wide access to many tissues in the body, and low immunogenicity. Owing to these outstanding properties, a large body of efforts have led to the development of various RBC-inspired strategies to enable precise drug delivery with enhanced therapeutic efficacy and reduced off-target toxicity. In this review, we discuss emerging concepts and new advances in such RBC-inspired strategies, including native RBCs, ghost RBCs, RBC-mimetic nanoparticles, and RBC-derived extracellular vesicles, for drug delivery.
Collapse
|
41
|
Preparation and application of pH-responsive drug delivery systems. J Control Release 2022; 348:206-238. [PMID: 35660634 DOI: 10.1016/j.jconrel.2022.05.056] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/08/2023]
Abstract
Microenvironment-responsive drug delivery systems (DDSs) can achieve targeted drug delivery, reduce drug side effects and improve drug efficacies. Among them, pH-responsive DDSs have gained popularity since the pH in the diseased tissues such as cancer, bacterial infection and inflammation differs from a physiological pH of 7.4 and this difference could be harnessed for DDSs to release encapsulated drugs specifically to these diseased tissues. A variety of synthetic approaches have been developed to prepare pH-sensitive DDSs, including introduction of a variety of pH-sensitive chemical bonds or protonated/deprotonated chemical groups. A myriad of nano DDSs have been explored to be pH-responsive, including liposomes, micelles, hydrogels, dendritic macromolecules and organic-inorganic hybrid nanoparticles, and micron level microspheres. The prodrugs from drug-loaded pH-sensitive nano DDSs have been applied in research on anticancer therapy and diagnosis of cancer, inflammation, antibacterial infection, and neurological diseases. We have systematically summarized synthesis strategies of pH-stimulating DDSs, illustrated commonly used and recently developed nanocarriers for these DDSs and covered their potential in different biomedical applications, which may spark new ideas for the development and application of pH-sensitive nano DDSs.
Collapse
|
42
|
Zoulikha M, Huang F, Wu Z, He W. COVID-19 inflammation and implications in drug delivery. J Control Release 2022; 346:260-274. [PMID: 35469984 PMCID: PMC9045711 DOI: 10.1016/j.jconrel.2022.04.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/15/2022] [Indexed: 01/09/2023]
Abstract
Growing evidence indicates that hyperinflammatory syndrome and cytokine storm observed in COVID-19 severe cases are narrowly associated with the disease's poor prognosis. Therefore, targeting the inflammatory pathways seems to be a rational therapeutic strategy against COVID-19. Many anti-inflammatory agents have been proposed; however, most of them suffer from poor bioavailability, instability, short half-life, and undesirable biodistribution resulting in off-target effects. From a pharmaceutical standpoint, the implication of COVID-19 inflammation can be exploited as a therapeutic target and/or a targeting strategy against the pandemic. First, the drug delivery systems can be harnessed to improve the properties of anti-inflammatory agents and deliver them safely and efficiently to their therapeutic targets. Second, the drug carriers can be tailored to develop smart delivery systems able to respond to the microenvironmental stimuli to release the anti-COVID-19 therapeutics in a selective and specific manner. More interestingly, some biosystems can simultaneously repress the hyperinflammation due to their inherent anti-inflammatory potency and endow their drug cargo with a selective delivery to the injured sites.
Collapse
Affiliation(s)
- Makhloufi Zoulikha
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Feifei Huang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
43
|
Macrophage-Targeted Nanomedicines for ARDS/ALI: Promise and Potential. Inflammation 2022; 45:2124-2141. [PMID: 35641717 PMCID: PMC9154210 DOI: 10.1007/s10753-022-01692-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/11/2022] [Accepted: 05/24/2022] [Indexed: 11/05/2022]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by progressive lung impairment typically triggered by inflammatory processes. The mortality toll for ARDS/ALI yet remains high because of the poor prognosis, lack of disease-specific inflammation management therapies, and prolonged hospitalizations. The urgency for the development of new effective therapeutic strategies has become acutely evident for patients with coronavirus disease 2019 (COVID-19) who are highly susceptible to ARDS/ALI. We propose that the lack of target specificity in ARDS/ALI of current treatments is one of the reasons for poor patient outcomes. Unlike traditional therapeutics, nanomedicine offers precise drug targeting to inflamed tissues, the capacity to surmount pulmonary barriers, enhanced interactions with lung epithelium, and the potential to reduce off-target and systemic adverse effects. In this article, we focus on the key cellular drivers of inflammation in ARDS/ALI: macrophages. We propose that as macrophages are involved in the etiology of ARDS/ALI and regulate inflammatory cascades, they are a promising target for new therapeutic development. In this review, we offer a survey of multiple nanomedicines that are currently being investigated with promising macrophage targeting potential and strategies for pulmonary delivery. Specifically, we will focus on nanomedicines that have shown engagement with proinflammatory macrophage targets and have the potential to reduce inflammation and reverse tissue damage in ARDS/ALI.
Collapse
|
44
|
Hao DL, Wang YJ, Yang JY, Xie R, Jia LY, Cheng JT, Ma H, Tian JX, Guo SS, Liu T, Sui F, Zhao Y, Chen YJ, Zhao QH. The Alleviation of LPS-Induced Murine Acute Lung Injury by GSH-Mediated PEGylated Artesunate Prodrugs. Front Pharmacol 2022; 13:860492. [PMID: 35668945 PMCID: PMC9163345 DOI: 10.3389/fphar.2022.860492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
Acute lung injury (ALI) or its aggravated stage acute respiratory distress syndrome (ARDS) is a common severe clinical syndrome in intensive care unit, may lead to a life-threatening form of respiratory failure, resulting in high mortality up to 30–40% in most studies. Nanotechnology-mediated anti-inflammatory therapy is an emerging novel strategy for the treatment of ALI, has been demonstrated with unique advantages in solving the dilemma of ALI drug therapy. Artesunate (ART), a derivative of artemisinin, has been reported to have anti-inflammatory effects. Therefore, in the present study, we designed and synthesized PEGylated ART prodrugs and assessed whether ART prodrugs could attenuate lipopolysaccharide (LPS) induced ALI in vitro and in vivo. All treatment groups were conditioned with ART prodrugs 1 h before challenge with LPS. Significant increased inflammatory cytokines production and decreased GSH levels were observed in the LPS stimulated mouse macrophage cell line RAW264.7. Lung histopathological changes, lung W/D ratio, MPO activity and total neutrophil counts were increased in the LPS-induced murine model of ALI via nasal administration. However, these results can be reversed to some extent by treatment of ART prodrugs. The effectiveness of mPEG2k-SS-ART in inhibition of ALI induced by LPS was confirmed. In conclusion, our results demonstrated that the ART prodrugs could attenuate LPS-induced ALI effectively, and mPEG2k-SS-ART may serve as a novel strategy for treatment of inflammation induced lung injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Yu Zhao
- *Correspondence: Yu Zhao, ; Yan-Jun Chen, ; Qing-He Zhao,
| | - Yan-Jun Chen
- *Correspondence: Yu Zhao, ; Yan-Jun Chen, ; Qing-He Zhao,
| | - Qing-He Zhao
- *Correspondence: Yu Zhao, ; Yan-Jun Chen, ; Qing-He Zhao,
| |
Collapse
|
45
|
Targeting vascular inflammation through emerging methods and drug carriers. Adv Drug Deliv Rev 2022; 184:114180. [PMID: 35271986 PMCID: PMC9035126 DOI: 10.1016/j.addr.2022.114180] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 02/18/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
Abstract
Acute inflammation is a common dangerous component of pathogenesis of many prevalent conditions with high morbidity and mortality including sepsis, thrombosis, acute respiratory distress syndrome (ARDS), COVID-19, myocardial and cerebral ischemia-reperfusion, infection, and trauma. Inflammatory changes of the vasculature and blood mediate the course and outcome of the pathology in the tissue site of insult, remote organs and systemically. Endothelial cells lining the luminal surface of the vasculature play the key regulatory functions in the body, distinct under normal vs. pathological conditions. In theory, pharmacological interventions in the endothelial cells might enable therapeutic correction of the overzealous damaging pro-inflammatory and pro-thrombotic changes in the vasculature. However, current agents and drug delivery systems (DDS) have inadequate pharmacokinetics and lack the spatiotemporal precision of vascular delivery in the context of acute inflammation. To attain this level of precision, many groups design DDS targeted to specific endothelial surface determinants. These DDS are able to provide specificity for desired tissues, organs, cells, and sub-cellular compartments needed for a particular intervention. We provide a brief overview of endothelial determinants, design of DDS targeted to these molecules, their performance in experimental models with focus on animal studies and appraisal of emerging new approaches. Particular attention is paid to challenges and perspectives of targeted therapeutics and nanomedicine for advanced management of acute inflammation.
Collapse
|
46
|
Mukherjee D, Bhatt S. Biocomposite-based nanostructured delivery systems for treatment and control of inflammatory lung diseases. Nanomedicine (Lond) 2022; 17:845-863. [PMID: 35477308 DOI: 10.2217/nnm-2021-0425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Diseases related to the lungs are among the most prevalent medical problems threatening human life. The treatment options and therapeutics available for these diseases are hindered by inadequate drug concentrations at pathological sites, a dearth of cell-specific targeting and different biological barriers in the alveoli or conducting airways. Nanostructured delivery systems for lung drug delivery have been significant in addressing these issues. The strategies used include surface engineering by altering the material structure or incorporation of specific ligands to reach prespecified targets. The unique characteristics of nanoparticles, such as controlled size and distribution, surface functional groups and therapeutic release triggering capabilities, are tailored to specific requirements to overcome the major therapeutic barriers in pulmonary diseases. In the present review, the authors intend to deliver significant up-to-date research in nanostructured therapies in inflammatory lung diseases with an emphasis on biocomposite-based nanoparticles.
Collapse
Affiliation(s)
- Dhrubojyoti Mukherjee
- Department of Pharmaceutics, Faculty of Pharmacy, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, 560054, India
| | - Shvetank Bhatt
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, Madhya Pradesh, 474005, India
| |
Collapse
|
47
|
Zheng H, Yuan C, Cai J, Pu W, Wu P, Li C, Li G, Zhang Y, Zhang J, Guo J, Huang D. Early diagnosis of breast cancer lung metastasis by nanoprobe-based luminescence imaging of the pre-metastatic niche. J Nanobiotechnology 2022; 20:134. [PMID: 35292019 PMCID: PMC8922882 DOI: 10.1186/s12951-022-01346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/02/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Early detection of breast cancer lung metastasis remains highly challenging, due to few metastatic cancer cells at an early stage. Herein we propose a new strategy for early diagnosis of lung metastasis of breast cancer by luminescence imaging of pulmonary neutrophil infiltration via self-illuminating nanoprobes. METHODS Luminescent nanoparticles (LAD NPs) were engineered using a biocompatible, neutrophil-responsive self-illuminating cyclodextrin material and an aggregation-induced emission agent. The chemiluminescence resonance energy transfer (CRET) effect and luminescence properties of LAD NPs were fully characterized. Using mouse peritoneal neutrophils, in vitro luminescence properties of LAD NPs were thoroughly examined. In vivo luminescence imaging and correlation analyses were performed in mice inoculated with 4T1 cancer cells. Moreover, an active targeting nanoprobe was developed by surface decoration of LAD NPs with a neutrophil-targeting peptide, which was also systemically evaluated by in vitro and in vivo studies. RESULTS LAD NPs can generate long-wavelength and persistent luminescence due to the CRET effect. In a mouse model of 4T1 breast cancer lung metastasis, we found desirable correlation between neutrophils and tumor cells in the lungs, demonstrating the effectiveness of early imaging of the pre-metastatic niche by the newly developed LAD NPs. The active targeting nanoprobe showed further enhanced luminescence imaging capability for early detection of pulmonary metastasis. Notably, the targeting nanoprobe-based luminescence imaging strategy remarkably outperformed PET/CT imaging modalities in the examined mouse model. Also, preliminary tests demonstrated good safety of LAD NPs. CONCLUSIONS The neutrophil-targeting imaging strategy based on newly developed luminescence nanoparticles can serve as a promising modality for early diagnosis of lung metastasis of breast cancers.
Collapse
Affiliation(s)
- Hanwen Zheng
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Main Street, Chongqing, 400038, China
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), 30 Gaotanyan Main Street, Chongqing, 400038, China
- Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University (Army Medical University), 30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Chunsen Yuan
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Jiajun Cai
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), 30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Wendan Pu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), 30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Peng Wu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), 30 Gaotanyan Main Street, Chongqing, 400038, China
- College of Pharmacy and Medical Technology, Hanzhong Vocational and Technical College, Hanzhong, 723000, Shaanxi, China
| | - Chenwen Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), 30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Gang Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), 30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Yang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), 30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), 30 Gaotanyan Main Street, Chongqing, 400038, China.
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Jiawei Guo
- Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University (Army Medical University), 30 Gaotanyan Main Street, Chongqing, 400038, China.
| | - Dingde Huang
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Main Street, Chongqing, 400038, China.
| |
Collapse
|
48
|
Li J, Fan YY, Wen J, Zhang J, Zhang ZQ. Metal-Enhanced Aggregation-Induced Emission Strategy for the HIV-I RNA-Binding Ligand Assay. Anal Chem 2022; 94:4695-4702. [PMID: 35258935 DOI: 10.1021/acs.analchem.1c04889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The HIV-Ι trans-activation responsive (TAR) RNA-trans-activator of transcription (Tat) protein complex is crucial for the efficient transcription of the integrated human immunodeficiency virus-I genome and is an established therapeutic target for AIDS diagnosis and treatment. Developing a sensitive strategy for the TAR RNA-binding ligand assay could provide antiviral leads with a radically new mechanism for the treatment of AIDS. Herein, a new TAR RNA-binding ligand assay platform was established using a signal amplification strategy that combines aggregation-induced emission (AIE) with a metal-enhanced fluorescence (MEF) concept. The tetraphenylethylene (TPE) derivative was labeled on the Tat peptide as a fluorescent molecule, while the TAR RNA was immobilized on the surface of the Fe3O4@Au@Ag@SiO2 nanoparticles (NPs) to specifically bind the TPE-Tat peptide. The TPE-Tat peptide was weakly emissive itself while emitting strongly in the NP-TAR-TPE-Tat complex by the AIE and MEF signal amplification effect. It was confirmed by known Tat peptide competitors that this system could be applied to the screening and detection of TAR RNA-binding ligands because they could replace the TPE-Tat peptide from the complex and make the system fluorescence decrease. When this system was adopted to test four candidate ligands, it was found that bisantrene had a favorable TAR RNA-binding ability. The proposed AIE-MEF strategy not only provides a sensitive and reliable method for the TAR RNA-binding ligand assay but also can avoid the influence of ligands on fluorescent detection in the conventional displacement assay.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yao-Yao Fan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jie Wen
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jing Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Zhi-Qi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
49
|
Yuan Y, Nie T, Fang Y, You X, Huang H, Wu J. Stimuli-responsive cyclodextrin-based supramolecular assemblies as drug carriers. J Mater Chem B 2022; 10:2077-2096. [PMID: 35233592 DOI: 10.1039/d1tb02683f] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclodextrins (CDs) are widely employed in biomedical applications because of their unique structures. Various biomedical applications can be achieved in a spatiotemporally controlled manner by integrating the host-guest chemistry of CDs with stimuli-responsive functions. In this review, we summarize the recent advances in stimuli-responsive supramolecular assemblies based on the host-guest chemistry of CDs. The stimuli considered in this review include endogenous (pH, redox, and enzymes) and exogenous stimuli (light, temperature, and magnetic field). We mainly discuss the mechanisms of the stimuli-responsive ability and present typical designs of the corresponding supramolecular assemblies for drug delivery and other potential biomedical applications. The limitations and perspectives of CD-based stimuli-responsive supramolecular assemblies are discussed to further promote the translation of laboratory products into clinical applications.
Collapse
Affiliation(s)
- Ying Yuan
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, P. R. China.
| | - Tianqi Nie
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Yifen Fang
- Guangzhou University of Chinese Medicine, Second Clinical School of Medicine, Guangzhou, 511436, P. R. China
| | - Xinru You
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, P. R. China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, P. R. China.
| |
Collapse
|
50
|
Tu Z, Zhong Y, Hu H, Shao D, Haag R, Schirner M, Lee J, Sullenger B, Leong KW. Design of therapeutic biomaterials to control inflammation. NATURE REVIEWS. MATERIALS 2022; 7:557-574. [PMID: 35251702 PMCID: PMC8884103 DOI: 10.1038/s41578-022-00426-z] [Citation(s) in RCA: 188] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 05/03/2023]
Abstract
Inflammation plays an important role in the response to danger signals arising from damage to our body and in restoring homeostasis. Dysregulated inflammatory responses occur in many diseases, including cancer, sepsis and autoimmunity. The efficacy of anti-inflammatory drugs, developed for the treatment of dysregulated inflammation, can be potentiated using biomaterials, by improving the bioavailability of drugs and by reducing side effects. In this Review, we first outline key elements and stages of the inflammatory environment and then discuss the design of biomaterials for different anti-inflammatory therapeutic strategies. Biomaterials can be engineered to scavenge danger signals, such as reactive oxygen and nitrogen species and cell-free DNA, in the early stages of inflammation. Materials can also be designed to prevent adhesive interactions of leukocytes and endothelial cells that initiate inflammatory responses. Furthermore, nanoscale platforms can deliver anti-inflammatory agents to inflammation sites. We conclude by discussing the challenges and opportunities for biomaterial innovations in addressing inflammation.
Collapse
Affiliation(s)
- Zhaoxu Tu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
- Department of Biomedical Engineering, Columbia University, New York, NY USA
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Yiling Zhong
- Department of Biomedical Engineering, Columbia University, New York, NY USA
- School of Chemistry, University of New South Wales, Sydney, New South Wales Australia
| | - Hanze Hu
- Department of Biomedical Engineering, Columbia University, New York, NY USA
| | - Dan Shao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Michael Schirner
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Jaewoo Lee
- School of Medicine, Duke University, Durham, NC USA
| | | | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY USA
- Department of Systems Biology, Columbia University, New York, NY USA
| |
Collapse
|