1
|
Nisa K, Lone IA, Arif W, Singh P, Rehmen SU, Kumar R. Applications of supramolecular assemblies in drug delivery and photodynamic therapy. RSC Med Chem 2023; 14:2438-2458. [PMID: 38107171 PMCID: PMC10718592 DOI: 10.1039/d3md00396e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/11/2023] [Indexed: 12/19/2023] Open
Abstract
One of the world's serious health challenges is cancer. Anti-cancer agents delivered to normal cells and tissues pose several problems and challenges. In this connection, photodynamic therapy (PDT) is a minimally invasive therapeutic technique used for selectively destroying malignant cells while sparing the normal tissues. Development in photosensitisers (PSs) and light sources have to be made for PDT as a first option treatment for patients. In the pursuit of developing new attractive molecules and their formulations for PDT, researchers are working on developing such type of PSs that perform better than those being currently used. For the widespread clinical utilization of PDT, effective PSs are of particular importance. Host-guest interactions based on nanographene assemblies such as functionalized hexa-cata-hexabenzocoronenes, hexa-peri-hexabenzocoronenes and coronene have attracted increasing attention owing to less complicated synthetic steps and purification processes (gel permeation chromatography) during fabrication. Noncovalent interactions provide easy and facile approaches for building supramolecular PSs and enable them to have sensitive and controllable photoactivities, which are important for maximizing photodynamic effects and minimizing side effects. Various versatile supramolecular assemblies based on cyclodextrins, cucurbiturils, calixarenes, porphyrins and pillararenes have been designed in order to make PDT an effective therapeutic technique for curing cancer and tumours. The supramolecular assemblies of porphyrins display efficient electron transfer and fluorescence for use in bioimaging and PDT. The multifunctionalization of supramolecular assemblies is used for designing biomedically active PSs, which are helpful in PDT. It is anticipated that the development of these functionalized supramolecular assemblies will provide more fascinating advances in PDT and will dramatically expand the potential and possibilities in cancer treatments.
Collapse
Affiliation(s)
- Kharu Nisa
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| | - Ishfaq Ahmad Lone
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| | - Waseem Arif
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| | - Preeti Singh
- Department of Chemistry, Faculty of Science, Swami Vivekanand Subharti University Meerut-250005 India
| | - Sajad Ur Rehmen
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| | - Ravi Kumar
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| |
Collapse
|
2
|
Zhao Z, Yang J, Liu Y, Wang S, Zhou W, Li ZT, Zhang DW, Ma D. Acyclic cucurbit[ n]uril-based nanosponges significantly enhance the photodynamic therapeutic efficacy of temoporfin in vitro and in vivo. J Mater Chem B 2023; 11:9027-9034. [PMID: 37721029 DOI: 10.1039/d3tb01422c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Acyclic cucurbit[n]uril-based nanosponges are prepared based on supramolecular vesicle-templated cross-linking. The nanosponges are capable of encapsulating the clinically approved photodynamic therapeutic (PDT) drug temoporfin. When loaded with nanosponges, the PDT bioactivity of temoporfin is enhanced 7.5-fold for HeLa cancer cells and 20.8 fold for B16-F10 cancer cells, respectively. The reason for the significant improvement in PDT efficacy is confirmed to be an enhanced cell uptake by confocal laser scanning microscopy and flow cytometry. Animal studies show that nanosponges could dramatically increase the tumor suppression effect of temoporfin. In vitro and in vivo experiments demonstrate that nanosponges are nontoxic and biocompatible.
Collapse
Affiliation(s)
- Zizhen Zhao
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Jingyu Yang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Yamin Liu
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Shuyi Wang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Road, Taizhou, Zhejiang 318000, China.
| | - Wei Zhou
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Zhan-Ting Li
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Dan-Wei Zhang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Da Ma
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Road, Taizhou, Zhejiang 318000, China.
| |
Collapse
|
3
|
Yin H, Cheng Q, Bardelang D, Wang R. Challenges and Opportunities of Functionalized Cucurbiturils for Biomedical Applications. JACS AU 2023; 3:2356-2377. [PMID: 37772183 PMCID: PMC10523374 DOI: 10.1021/jacsau.3c00273] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 09/30/2023]
Abstract
Cucurbit[n]uril (CB[n]) macrocycles (especially CB[5] to CB[8]) have shown exceptional attributes since their discovery in 2000. Their stability, water solubility, responsiveness to several stimuli, and remarkable binding properties have enabled a growing number of biological applications. Yet, soon after their discovery, the challenge of their functionalization was set. Nevertheless, after more than two decades, a myriad of CB[n] derivatives has been described, many of them used in cells or in vivo for advanced applications. This perspective summarizes key advances of this burgeoning field and points to the next opportunities and remaining challenges to fully express the potential of these fascinating macrocycles in biology and biomedical sciences.
Collapse
Affiliation(s)
- Hang Yin
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University
of Macau, Taipa, Macau 999078, China
| | - Qian Cheng
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University
of Macau, Taipa, Macau 999078, China
| | | | - Ruibing Wang
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University
of Macau, Taipa, Macau 999078, China
| |
Collapse
|
4
|
Shukla S, Sagar B, Sood AK, Gaur A, Batra S, Gulati S. Supramolecular Chemotherapy with Cucurbit[ n]urils as Encapsulating Hosts. ACS APPLIED BIO MATERIALS 2023. [PMID: 37224296 DOI: 10.1021/acsabm.3c00244] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The cucurbit[n]urils (CB[n]) belong to the field of relatively young supramolecules which act as containers for a large variety of guests and are being explored extensively for their numerous biomedical applications. This includes drug formulation and delivery, controlled drug release, photodynamic therapy, sensing for bioanalytical purposes, etc. These supramolecular host-guest systems have distinctive recognition properties and have successfully been shown to enhance the in vitro and in vivo utility of various chemotherapeutic agents. The CB[n]s are tailored to optimize their application in payload delivery and diagnostics and in lowering the toxicity of existing drugs. This review has listed the recent studies on working mechanisms and host-guest complexation of the biologically vital molecules with CB[n] and highlighted their implementation in anticancer therapeutics. Various modifications in CB-drug inclusion compounds like CB supramolecular nanoarchitectures along with application in photodynamic therapy, which has shown potential as targeted drug delivery vehicles in cancer chemotherapy, have also been discussed.
Collapse
|
5
|
Hak A, Ali MS, Sankaranarayanan SA, Shinde VR, Rengan AK. Chlorin e6: A Promising Photosensitizer in Photo-Based Cancer Nanomedicine. ACS APPLIED BIO MATERIALS 2023; 6:349-364. [PMID: 36700563 DOI: 10.1021/acsabm.2c00891] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Conventional cancer treatment modalities are often associated with major therapeutic limitations and severe side effects. Photodynamic therapy is a localized noninvasive mode of treatment that has given a different direction to cancer research due to its effectivity against a wide range of cancers and minimal side effects. A photosensitizer is the key component of photodynamic therapy (PDT) that generates cytotoxic reactive oxygen species to eradicate cancer cells. As the therapeutic effectivity of PDT greatly depends upon the photosensitizer, great efforts have been made to search for an ideal photosensitizer. Chlorin e6 is a FDA approved second generation photosensitizer that meets the desired clinical properties for PDT. It is known for its high reactive oxygen species (ROS) generation ability and anticancer potency against many types of cancer. Hydrophobicity is a major drawback of Ce6 that leads to its poor biodistribution and rapid clearance from the circulatory system. To overcome this drawback, researchers have designed and fabricated several types of nanosystems, which can enhance Ce6 solubility and thereby enhance its bioavailability. These nanosystems also improve tumor accumulation of Ce6 by selectively targeting the cancer cells through passive and active targeting. In addition, Ce6 has been employed in many combination therapies like chemo-photodynamic therapy, photoimmunotherapy, and combined photodynamic-photothermal therapy. A combination therapy is more curative than a single therapy due to the synergistic effects of individual therapies. Ce6-based nanosystems for combination therapies have shown excellent results in various studies and provide a promising platform for cancer treatment.
Collapse
Affiliation(s)
- Arshadul Hak
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| | - Mohammad Sadik Ali
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| | | | - Vinod Ravasaheb Shinde
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| |
Collapse
|
6
|
Alavi N, Maghami P, Pakdel AF, Rezaei M, Avan A. Antibody-modified Gold Nanobiostructures: Advancing Targeted Photodynamic Therapy for Improved Cancer Treatment. Curr Pharm Des 2023; 29:3103-3122. [PMID: 37990429 DOI: 10.2174/0113816128265544231102065515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/03/2023] [Indexed: 11/23/2023]
Abstract
Photodynamic therapy (PDT) is an innovative, non-invasive method of treating cancer that uses light-activated photosensitizers to create reactive oxygen species (ROS). However, challenges associated with the limited penetration depth of light and the need for precise control over photosensitizer activation have hindered its clinical translation. Nanomedicine, particularly gold nanobiostructures, offers promising solutions to overcome these limitations. This paper reviews the advancements in PDT and nanomedicine, focusing on applying antibody-modified gold nanobiostructures as multifunctional platforms for enhanced PDT efficacy and improved cancer treatment outcomes. The size, shape, and composition of gold nanobiostructures can significantly influence their PDT efficacy, making synthetic procedures crucial. Functionalizing the surface of gold nanobiostructures with various molecules, such as antibodies or targeting agents, bonding agents, PDT agents, photothermal therapy (PTT) agents, chemo-agents, immunotherapy agents, and imaging agents, allows composition modification. Integrating gold nanobiostructures with PDT holds immense potential for targeted cancer therapy. Antibody-modified gold nanobiostructures, in particular, have gained significant attention due to their tunable plasmonic characteristics, biocompatibility, and surface functionalization capabilities. These multifunctional nanosystems possess unique properties that enhance the efficacy of PDT, including improved light absorption, targeted delivery, and enhanced ROS generation. Passive and active targeting of gold nanobiostructures can enhance their localization near cancer cells, leading to efficient eradication of tumor tissues upon light irradiation. Future research and clinical studies will continue to explore the potential of gold nanobiostructures in PDT for personalized and effective cancer therapy. The synthesis, functionalization, and characterization of gold nanobiostructures, their interaction with light, and their impact on photosensitizers' photophysical and photochemical properties, are important areas of investigation. Strategies to enhance targeting efficiency and the evaluation of gold nanobiostructures in vitro and in vivo studies will further advance their application in PDT. The integrating antibody-modified gold nanobiostructures in PDT represents a promising strategy for targeted cancer therapy. These multifunctional nanosystems possess unique properties that enhance PDT efficacy, including improved light absorption, targeted delivery, and enhanced ROS generation. Continued research and development in this field will contribute to the advancement of personalized and effective cancer treatment approaches.
Collapse
Affiliation(s)
- Negin Alavi
- Department of Biology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Parvaneh Maghami
- Department of Biology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Azar Fani Pakdel
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezaei
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane 4059, Australia
| |
Collapse
|
7
|
Zheng RR, Zhao LP, Yang N, Chen ZX, Kong RJ, Huang CY, Rao XN, Chen X, Cheng H, Li SY. Cascade Immune Activation of Self-Delivery Biomedicine for Photodynamic Immunotherapy Against Metastatic Tumor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205694. [PMID: 36366925 DOI: 10.1002/smll.202205694] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Photodynamic therapy (PDT) can generate reactive oxygen species (ROS) to cause cell apoptosis and induce immunogenic cell death (ICD) to activate immune response, becoming a promising antitumor modality. However, the overexpressions of indoleamine 2,3-dioxygenase (IDO) and programmed cell death ligand 1 (PD-L1) on tumor cells would reduce cytotoxic T cells infiltration and inhibit the immune activation. In this paper, a simple but effective nanosystem is developed to solve these issues for enhanced photodynamic immunotherapy. Specifically, it has been constructed a self-delivery biomedicine (CeNB) based on photosensitizer chlorine e6 (Ce6), IDO inhibitor (NLG919), and PD1/PDL1 blocker (BMS-1) without the need for extra excipients. Of note, CeNB possesses fairly high drug content (nearly 100%), favorable stability, and uniform morphology. More importantly, CeNB-mediated IDO inhibition and PD1/PDL1 blockade greatly improve the immunosuppressive tumor microenvironments to promote immune activation. The PDT of CeNB not only inhibits tumor proliferation but also induces ICD response to activate immunological cascade. Ultimately, self-delivery CeNB tremendously suppresses the tumor growth and metastasis while leads to a minimized side effect. Such simple and effective antitumor strategy overcomes the therapeutic resistance against PDT-initiated immunotherapy, suggesting a potential for metastatic tumor treatment in clinic.
Collapse
Affiliation(s)
- Rong-Rong Zheng
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, P. R. China
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Lin-Ping Zhao
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Ni Yang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Zu-Xiao Chen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Ren-Jiang Kong
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Chu-Yu Huang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Xiao-Na Rao
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, P. R. China
| | - Hong Cheng
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Shi-Ying Li
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, P. R. China
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| |
Collapse
|
8
|
Wang Z, Sun C, Wang R. Macrocycle-Surfaced Polymer Nanocapsules: An Emerging Paradigm for Biomedical Applications. Bioconjug Chem 2022; 33:2254-2261. [PMID: 35436111 DOI: 10.1021/acs.bioconjchem.2c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the recent decade, macrocycle-surfaced polymer nanocapsules have been developed and studied as potential drug carriers. In particular, a unique group of these nanocapsules were constructed from a covalently self-assembled polymer network based on several classic macrocycles including cucurbituril, pillararene, and calixarene. The unique structure of these nanocapsules consists of a liquid or solid core and a shell laced with macrocycles in which the macrocycles not only act as the shell matrix of the nanocapsules but also allow further facile, modular functionalization via host-guest interactions with guest-tagged molecules. More interestingly, when a responsive cross-linker was introduced between the macrocycles, the payload inside the nanocapsules could be selectively released in the presence of typical hallmarks of certain diseases, which is of great interest for biomedical applications. In this Topical Review, macrocycle-surfaced polymer nanocapsules derived from covalently self-assembled polymer networks are introduced systemically with a focus on the molecular design and biomedical applications.
Collapse
Affiliation(s)
- Ziyi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Chen Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.,Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| |
Collapse
|
9
|
Wang Z, Sun C, Yang K, Chen X, Wang R. Cucurbituril‐Based Supramolecular Polymers for Biomedical Applications. Angew Chem Int Ed Engl 2022; 61:e202206763. [DOI: 10.1002/anie.202206763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Ziyi Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Macau 999078 China
| | - Chen Sun
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Macau 999078 China
| | - Kuikun Yang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Macau 999078 China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery Chemical and Biomolecular Engineering and Biomedical Engineering Yong Loo Lin School of Medicine and Faculty of Engineering National University of Singapore Singapore 119074 Singapore
- Clinical Imaging Research Centre Centre for Translational Medicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117599 Singapore
- Nanomedicine Translational Research Program NUS Center for Nanomedicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Macau 999078 China
| |
Collapse
|
10
|
Dong X, Dai X, Li G, Zhang Y, Xu X, Liu Y. Conformationally Confined Emissive Cationic Macrocycle with Photocontrolled Organelle-Specific Translocation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201962. [PMID: 35713271 PMCID: PMC9376817 DOI: 10.1002/advs.202201962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The optimization of molecular conformation and aggregation modes is of great significance in creation of new luminescent materials for biochemical research and medical diagnostics. Herein, a highly emissive macrocycle (1) is reported, which is constructed by the cyclization reaction of triphenylamine with benzyl bromide and exhibits very distinctive photophysical performance both in aqueous solution and the solid state. Structural analysis reveals that the 1 can form self-interpenetrated complex and emit bright yellow fluorescence in the crystal lattice. The distorted yet symmetrical structure can endow 1 with unique two-photon absorption property upon excitation by near-infrared light. Also, 1 can be utilized as an efficient photosensitizer to produce singlet oxygen (1 O2 ) both in inanimate milieu and under cellular environment. More intriguingly, due to the strong association of 1 with negatively charged biomacromolecules, organelle-specific migration is achieved from lysosome to nucleus during the 1 O2 -induced cell apoptosis process. To be envisaged, this conformationally confined cationic macrocycle with photocontrolled lysosome-to-nucleus translocation may provide a feasible approach for in situ identifying different biospecies and monitoring physiological events at subcellular level.
Collapse
Affiliation(s)
- Xiaoyun Dong
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192P. R. China
| | - Xianyin Dai
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192P. R. China
| | - Guorong Li
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192P. R. China
| | - Ying‐Ming Zhang
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192P. R. China
| | - Xiufang Xu
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192P. R. China
| | - Yu Liu
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192P. R. China
| |
Collapse
|
11
|
Assaf KI. Host-guest complexation between cucurbit[7]uril and doxepin induced supramolecular assembly. Org Biomol Chem 2022; 20:5796-5802. [PMID: 35833381 DOI: 10.1039/d2ob01065h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The supramolecular complexation of doxepin (DOX) with cucurbit[7]uril (CB7) was investigated in aqueous solution. The results indicated the formation of a host-guest complex, as verified by complexation-induced chemical shifts in the NMR experiments and supported by quantum-chemical calculations, in which the alkylammonium tail of DOX was found to be encapsulated inside the CB7 cavity, while the tricyclic moiety remained exposed to bulk water. Isothermal titration calorimetry and dye-displacement experiments provided a moderate binding affinity (104 M-1). Interestingly, the partial encapsulation of DOX by the CB7 macrocycle led to the development of a supramolecular assembly at a low millimolar concentration, as verified by NMR and dynamic light scattering (DLS) measurements, which showed homogeneous size distributions with an average diameter of 1700 nm.
Collapse
Affiliation(s)
- Khaleel I Assaf
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, Al-Salt 19117, Jordan.
| |
Collapse
|
12
|
Wang Z, Sun C, Yang K, Chen X, Wang R. Cucurbituril‐based Supramolecular Polymers for Biomedical Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ziyi Wang
- University of Macau School of Pharmacy MACAU
| | - Chen Sun
- University of Macau School of Pharmacy MACAU
| | - Kuikun Yang
- University of Macau School of Pharmacy MACAU
| | - Xiaoyuan Chen
- National University of Singapore School of Medicine and Faculty of Engineering 10 Medical Dr 117597 Singapore SINGAPORE
| | | |
Collapse
|
13
|
Yu XT, Sui SY, He YX, Yu CH, Peng Q. Nanomaterials-based photosensitizers and delivery systems for photodynamic cancer therapy. BIOMATERIALS ADVANCES 2022; 135:212725. [PMID: 35929205 DOI: 10.1016/j.bioadv.2022.212725] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022]
Abstract
The increasing cancer morbidity and mortality requires the development of high-efficiency and low-toxicity anticancer approaches. In recent years, photodynamic therapy (PDT) has attracted much attention in cancer therapy due to its non-invasive features and low side effects. Photosensitizer (PS) is one of the key factors of PDT, and its successful delivery largely determines the outcome of PDT. Although a few PS molecules have been approved for clinical use, PDT is still limited by the low stability and poor tumor targeting capacity of PSs. Various nanomaterial systems have shown great potentials in improving PDT, such as metal nanoparticles, graphene-based nanomaterials, liposomes, ROS-sensitive nanocarriers and supramolecular nanomaterials. The small molecular PSs can be loaded in functional nanomaterials to enhance the PS stability and tumor targeted delivery, and some functionalized nanomaterials themselves can be directly used as PSs. Herein, we aim to provide a comprehensive understanding of PDT, and summarize the recent progress of nanomaterials-based PSs and delivery systems in anticancer PDT. In addition, the concerns of nanomaterials-based PDT including low tumor targeting capacity, limited light penetration, hypoxia and nonspecific protein corona formation are discussed. The possible solutions to these concerns are also discussed.
Collapse
Affiliation(s)
- Xiao-Tong Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shang-Yan Sui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu-Xuan He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chen-Hao Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
14
|
Chen J, Gao T, Chang Y, Wei Y, Wang Y. Supramolecular complexation between cucurbit[7]uril and folate and analytical applications. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/17475198211066489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Folate (FA) plays a key role in the biosynthesis of amino acids, purines, and pyrimidines in the human body, and intracellular folate metabolism has become an attractive target of tumor chemotherapy. In this work, an inclusion interaction was found between FA and cucurbit[7]uril (CB[7]), and the formation of a CB[7]-FA 2:1 supramolecular inclusion complex was confirmed by fluorescence spectra, UV-Vis absorption spectroscopy, 1H NMR, and molecular modeling calculations. In addition, FA is generally determined through the indirect fluorescent method because it shows weak fluorescence in aqueous solution. Therefore, a simple, direct fluorescence probe method for rapidly measuring FA was investigated, and the linear equation of FA was ΔF = 14.691C + 37.366 within the concentration ranges of 0.82 ~ 18.31 µg mL–1. The proposed direct fluorescence method was applied to the determination of spiked plasma. We demonstrated that this method could provide an experimental basis for the targeted administration of the CB[7]-FA complex, and it could be extended as a promising fluorescence detection method for drugs in vivo.
Collapse
Affiliation(s)
- Jue Chen
- Shanxi University of Chinese Medicine, Taiyuan, P.R. China
| | - Tengmei Gao
- Shanxi University of Chinese Medicine, Taiyuan, P.R. China
| | - Yinxia Chang
- Shanxi University of Chinese Medicine, Taiyuan, P.R. China
| | - Yanming Wei
- Shanxi University of Chinese Medicine, Taiyuan, P.R. China
| | - Yonghui Wang
- Shanxi University of Chinese Medicine, Taiyuan, P.R. China
| |
Collapse
|
15
|
Qu Y, Wang X, Pei Z, Pei Y. Cancer-Mitochondria Dual-Targeting Glycol/Ferrocenium-Based Polydopamine Nanoparticles for Synergistic Photothermal and Photodynamic Therapy. ChemMedChem 2021; 17:e202100548. [PMID: 34719875 DOI: 10.1002/cmdc.202100548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/28/2021] [Indexed: 12/17/2022]
Abstract
A cancer-mitochondria dual-targeting nanoparticle based on lactose and ferrocenium derivatives conjugated polydopamine (PDA@Lac/Fc/Hyp) was constructed, which exhibited cancer-targeting and mitochondria-targeting ability deriving from lactose and ferrocenium derivatives due to the specific carbohydrate-protein interaction and cationic species properties, respectively. Moreover, PDA@Lac/Fc/Hyp showed great biocompatibility and phototherapeutic efficiency. This work displays a good example of constructing cancer-mitochondria dual-targeting nanoparticle for synergistic phototherapy.
Collapse
Affiliation(s)
- Yun Qu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Xinxin Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
16
|
Sun J, Li W, Hou Y, Zhang X, Gao Z, Wang B, Zhao J. a-PET and Weakened Triplet-Triplet Annihilation Self-Quenching Effects in Benzo-21-Crown-7-Functionalized Diiodo-BODIPY. ACS OMEGA 2021; 6:28356-28365. [PMID: 34723032 PMCID: PMC8552471 DOI: 10.1021/acsomega.1c04540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Weakening the triplet-triplet annihilation (TTA) self-quenching effect induced by sensitizers remains a tremendous challenge due to the very few investigations carried out on them. Herein, benzo-21-crown-7 (B21C7)-functionalized 2,6-diiodo-1,3,5,7-tetramethyl-8-phenyl-4,4-difluoroboradiazaindacene (DIBDP) was synthesized to investigate the influences of huge bulks and electron-rich cavities of B21C7 moieties on the fluorescence emission and triplet-state lifetimes of DIBDP moieties. Density functional theory (DFT)/time-dependent DFT (TDDFT) computable results preliminarily predicted that B21C7 moieties had influences on the fluorescence emissions of DIBDP moieties but not on their localization of triplet states of B21C7-functionalized DIBDP (B21C7-DIBDP). The UV-vis absorption spectra, fluorescence emission spectra, and cyclic voltammograms verified that there was an electron-transfer process from the B21C7 moiety to the DIBDP moiety in B21C7-DIBDP. However, the calculated results of ΔG CS and E CS values and nanosecond time-resolved transient absorption spectra demonstrated that the electron-transfer process from the B21C7 moiety to the DIBDP moiety in B21C7-DIBDP had direct influences on the fluorescence emission of DIBDP moieties but not on the triplet states of DIBDP moieties. The experimental values of triplet-state lifetimes of B21C7-DIBDP were obviously longer than those of DIBDP at a high concentration (1.0 × 10-5 M); however, the fitted values of intrinsic triplet-state lifetimes of B21C7-DIBDP were slightly greater than those of DIBDP in the same solvent. These results demonstrated that the steric hindrance of B21C7 moieties could weaken the TTA self-quenching effect of DIBDP moieties at a high concentration and the a-PET effect induced a proportion of the produced singlet states of DIBDP moieties and could not emit fluorescence in the form of radiation transition but they could be transformed into triplet states through intersystem crossing (ISC) processes due to the iodine atoms in the DIBDP moiety. The stronger a-PET effects in polar solvents induced smaller fluorescence quantum yields so that more singlet states of DIBDP moieties were transformed into triplet states to weaken the TTA self-quenching effects.
Collapse
Affiliation(s)
- Jifu Sun
- College
of Chemical and Biological Engineering, Shandong University of Science and Technology, J2-424, 579 Qianwangang Road, Qingdao 266590, P. R. China
| | - Weixu Li
- College
of Chemical and Biological Engineering, Shandong University of Science and Technology, J2-424, 579 Qianwangang Road, Qingdao 266590, P. R. China
| | - Yuqi Hou
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Ling-Gong Road, Dalian 116024, P. R. China
| | - Xue Zhang
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Ling-Gong Road, Dalian 116024, P. R. China
| | - Zhongzheng Gao
- College
of Chemical and Biological Engineering, Shandong University of Science and Technology, J2-424, 579 Qianwangang Road, Qingdao 266590, P. R. China
| | - Bo Wang
- College
of Chemical and Biological Engineering, Shandong University of Science and Technology, J2-424, 579 Qianwangang Road, Qingdao 266590, P. R. China
| | - Jianzhang Zhao
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Ling-Gong Road, Dalian 116024, P. R. China
| |
Collapse
|
17
|
Robinson-Duggon J, McTiernan CD, Muñoz M, Guerra D, Escobar Álvarez E, Andrade-Villalobos F, Fierro A, Edwards AM, Alarcon EI, Fuentealba D. Biosupramolecular complexes of amphiphilic photosensitizers with human serum albumin and cucurbit[7]uril as carriers for photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 223:112284. [PMID: 34450362 DOI: 10.1016/j.jphotobiol.2021.112284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/21/2021] [Accepted: 08/09/2021] [Indexed: 01/17/2023]
Abstract
In the present work, we evaluated the supramolecular interactions between three photosensitizers, namely toluidine blue O (TBO, positively charged) and two fatty acid conjugates of 6 and 14 carbon atoms chain lengths (TBOC6 and TBOC14), with human serum albumin (HSA) and the macrocycle cucurbit[7]uril (CB[7]), alone or in combination within a biosupramolecular system as potential carriers of photosensitizers for Photodynamic therapy (PDT). Binding studies were carried out using photophysical and calorimetric techniques and accompanied with molecular docking simulations. Amphiphilic photosensitizers, particularly TBOC14, showed stronger binding to HSA and (CB[7]). Comparing the different delivery systems, (CB[7]) had a marginal effect on cell uptake and phototoxicity in HeLa cells, while HSA showed enhanced cell uptake with phototoxicities that depended on the photosensitizer. Despite low cell uptake, the combination of both (CB[7]) and HSA was the most phototoxic, which illustrates the potential of combining these systems for PDT applications.
Collapse
Affiliation(s)
- José Robinson-Duggon
- Laboratorio de Química Biosupramolecular, Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile; Departamento de Bioquímica, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá 0824, Panamá.
| | - Christopher D McTiernan
- BEaTS Research Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON K1Y4W7, Canada
| | - Marcelo Muñoz
- BEaTS Research Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON K1Y4W7, Canada
| | - Daniel Guerra
- Laboratorio de Química Biosupramolecular, Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Elizabeth Escobar Álvarez
- Laboratorio de Química Biosupramolecular, Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Felipe Andrade-Villalobos
- Laboratorio de Química Biosupramolecular, Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile; Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Angélica Fierro
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Ana María Edwards
- Laboratorio de Química Biosupramolecular, Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Emilio I Alarcon
- BEaTS Research Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON K1Y4W7, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Denis Fuentealba
- Laboratorio de Química Biosupramolecular, Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile.
| |
Collapse
|
18
|
Liu C, Xiang J, Xiang C, Li H. Enhancing the tumor cell selectivity of a rhodamine-decorated iridium(III) complex by conjugating with indomethacin for COX-2 targeted photodynamic therapy. Bioorg Chem 2021; 114:105142. [PMID: 34243072 DOI: 10.1016/j.bioorg.2021.105142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 11/20/2022]
Abstract
A rhodamine-iridium (III) complex bearing indomethacin moiety, named IM-rho-Ir, was synthesized and evaluated for COX-2 targetable photodynamic therapy. By integrating COX-2 directing group, IM-rho-Ir exhibited enhanced cellular uptake in cancer cells than in normal cells compared to rhodamine-iridium (III) complex without indomethacin moiety.
Collapse
Affiliation(s)
- Chuangjun Liu
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Jingjing Xiang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chunbai Xiang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hongfeng Li
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
19
|
Pappalardo A, Gangemi CM, Testa C, Sfrazzetto GT. Supramolecular Assemblies for Photodynamic Therapy. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210122094010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In recent years, supramolecular systems for nano-medicine, and in particular for
photodynamic therapy, have gained great attention for their uses as smart and engineered
therapeutic agents. We proposed a collection of very recent articles on supramolecular complexes
for photodynamic therapy based on different photosensitizers assembled with cyclodextrins,
cucurbiturils, calixarenes, pillararenes, or involved in nanobox and tweezer structures,
nanoparticles, aggregates and micelles, that are dynamic assemblies inspired to biological
systems. Despite the advantages of traditional Photodynamic therapy (PDT), which is a
non-invasive, reliable and highly selective clinical treatment for several pathological conditions,
different drawbacks are still smothering the applicability of this clinical treatment. In
this contest, a new supramolecular approach is emerging, in fact, the reversible formation of
these supramolecular assemblies, combined with the possibility to modify their dimensions and shapes in the presence
of a guest make them similar to biological macromolecules, such as proteins and enzymes. Furthermore, due to
the relatively weak and dynamic nature of supramolecular assemblies, they can undergo assembly and disassembly
very fast as well as responses to external stimuli, such as biological (e.g. enzyme activation), chemical (e.g. redox
potential or pH), and physical (e.g. temperature, light or magnetic fields). Therefore, the responsiveness of these supramolecular
assemblies represents a highly promising approach to obtain potentially personalized PDT.
Collapse
Affiliation(s)
- Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania,Italy
| | - Chiara M.A. Gangemi
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania,Italy
| | - Caterina Testa
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania,Italy
| | | |
Collapse
|
20
|
Yang D, Liu M, Xiao X, Tao Z, Redshaw C. Polymeric self-assembled cucurbit[n]urils: Synthesis, structures and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213733] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Li Y, Yang Y, Pei X, Li Y, Yuan Y, Huang X. Synthesis of cucurbit
[6]
uril pendent
upper critical solution temperature
type copolymers: self‐assembly and multi‐stimuli‐responsive behavior. POLYM INT 2021. [DOI: 10.1002/pi.6211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yanli Li
- School of Chemistry and Chemical Engineering Inner Mongolia University Hohhot China
| | - YeFang Yang
- School of Chemistry and Chemical Engineering Inner Mongolia University Hohhot China
| | - Xinqi Pei
- School of Chemistry and Chemical Engineering Inner Mongolia University Hohhot China
| | - Yu Li
- School of Chemistry and Chemical Engineering Inner Mongolia University Hohhot China
| | - Yuhui Yuan
- School of Chemistry and Chemical Engineering Inner Mongolia University Hohhot China
| | - Xiaoling Huang
- School of Chemistry and Chemical Engineering Inner Mongolia University Hohhot China
| |
Collapse
|
22
|
Sun J, Dai Y, Hou Y, Wu Q, Ma L, Zhao J, Wang B. Weakened Triplet-Triplet Annihilation of Diiodo-BODIPY Moieties without Influence on Their Intrinsic Triplet Lifetimes in Diiodo-BODIPY-Functionalized Pillar[5]arenes. J Phys Chem A 2021; 125:2344-2355. [PMID: 33719445 DOI: 10.1021/acs.jpca.1c01088] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The triplet-triplet annihilation (TTA) effect of sensitizers themselves can lead to the additional quenching of lifetimes of triplet states; therefore, how to weaken the TTA effect of sensitizers is an urgent issue to be resolved for their further applications. Besides, it remains a tremendous challenge for constructing supramolecular systems of photosensitizers based on photosensitizer-functionalized pillararenes because there have been very few investigations on them. Thus, 2,6-diiodo-1,3,5,7-tetramethyl-8-phenyl-4,4-difluoroboradiazaindacene (DIBDP) and ethoxy pillar[5]arene (EtP5) were utilized to synthesize a DIBDP-functionalized pillar[5]arene (EtP5-DIBDP), a cyano-containing DIBDP (G) used as a guest molecule was also prepared, and they were used to investigate the electron-transfer mechanism between EtP5 and DIBDP moieties and weaken the TTA effect of DIBDP moieties. The theoretical computational results of frontier molecular orbitals and isosurfaces of spin density preliminarily predicted that the cavities of the EtP5 moiety had influence on the fluorescence emission of DIBDP units but not on their triplet states in EtP5-DIBDP. The fluorescence emission intensities in a variety of solvents with different polarities and electrochemical studies revealed that there was electron transfer from EtP5 to the DIBDP units, and the electron-transfer process had influence on the fluorescence emission but not on the triplet states of DIBDP moieties in EtP5-DIBDP, which verified the results of density functional theory calculations. The triplet state lifetimes of EtP5-DIBDP were longer than those of DIBDP and G and the photooxidation abilities of EtP5-DIBDP were better than those of DIBDP and G at a high concentration (1.0 × 10-5 M) in various solvents; in contrast, the intrinsic triplet state lifetimes and singlet oxygen quantum yields (ΦΔ) of DIBDP, G, and EtP5-DIBDP were very similar. This was because the steric hindrance of EtP5 moieties could weaken the TTA effect of DIBDP moieties without influencing their intrinsic triplet state lifetimes in EtP5-DIBDP.
Collapse
Affiliation(s)
- Jifu Sun
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, J2-424, 579 Qianwangang Road, Qingdao 266590, P. R. China
| | - Ying Dai
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, J2-424, 579 Qianwangang Road, Qingdao 266590, P. R. China
| | - Yuqi Hou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Qianwen Wu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, J2-424, 579 Qianwangang Road, Qingdao 266590, P. R. China
| | - Linzheng Ma
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, J2-424, 579 Qianwangang Road, Qingdao 266590, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Bo Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, J2-424, 579 Qianwangang Road, Qingdao 266590, P. R. China
| |
Collapse
|
23
|
Wang H, Yang Y, Yuan B, Ni XL, Xu JF, Zhang X. Cucurbit[10]uril-Encapsulated Cationic Porphyrins with Enhanced Fluorescence Emission and Photostability for Cell Imaging. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2269-2276. [PMID: 33411497 DOI: 10.1021/acsami.0c18725] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Porphyrins are widely applied for imaging, diagnosis, and treatment of diseases because of their excellent photophysical properties. However, porphyrins easily tend to aggregate driven by hydrophobic interaction and π-π stacking in an aqueous medium, which causes fluorescence quenching of the porphyrins as well as limitation of cell uptake and intracellular accumulation. Herein, cucurbit[10]uril (CB[10]) was used to fully encapsulate cationic porphyrin (CPor) in the large cavity with strong binding affinity in aqueous solutions, and the CPor aggregates were efficient disassembled, companying remarkable enhancing its fluorescence intensity. The CB[10]-based host-guest complex provided excellent protection to CPor, resulting in less susceptibility to oxidation and imparting higher photostability to CPor for cell imaging. In addition, by complexation with CB[10], it was found that the fluorescence signals and photostability of CPor were also effectively improved in cells with different reactive oxygen species levels. It is highly anticipated that the large macrocyclic host cavity-triggered large-guest encapsulation strategy in this work will provide a convenient and efficient method for designing supramolecular porphyrin dyes, thus broadening the diagnosis and imaging application in cells and microorganisms.
Collapse
Affiliation(s)
- Hua Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuchong Yang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bin Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xin-Long Ni
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Department of Chemistry, Guizhou University, Guiyang 550025, China
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Supramolecular nano drug delivery systems mediated via host-guest chemistry of cucurbit[n]uril (n = 6 and 7). CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.04.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Li F, Zang M, Hou J, Luo Q, Yu S, Sun H, Xu J, Liu J. Cascade catalytic nanoplatform constructed by laterally-functionalized pillar[5]arenes for antibacterial chemodynamic therapy. J Mater Chem B 2021; 9:5069-5075. [PMID: 34137418 DOI: 10.1039/d1tb00868d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemodynamic therapy (CDT) is an emerging approach to overcome bacterial infections that can efficiently convert hydrogen peroxide (H2O2) to generate highly toxic hydroxyl radicals (˙OH). How to develop safe and effective CDT-based strategies is in high demand but challenging. Herein, a cascade catalytic nanoplatform (GOx-NCs/Fe3O4) was designed by absorbing glucose oxidase (GOx) onto the surface of covalent-assembled polymer capsules (NCs) encapsulating Fe3O4 nanoparticles. With the presence of glucose, GOx could effectively catalyze it to produce H2O2 and result in a decrease in pH value, both of which would assist the subsequent Fenton reaction. Encapsulated Fe3O4 nanoparticles would subsequently trigger H2O2 to produce ˙OH, which could make antibacterial CDT come true. More importantly, the polymer capsules exhibited little to no cytotoxicity towards mammalian cells, which might provide more opportunities and potential to apply in other fields.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.
| | - Mingsong Zang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.
| | - Jinxing Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.
| | - Shuangjiang Yu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, and Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou, China
| | - Hongcheng Sun
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, and Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou, China
| | - Jiayun Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China. and College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, and Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou, China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China. and College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, and Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou, China
| |
Collapse
|
26
|
Cheng G, Luo J, Liu Y, Chen X, Wu Z, Chen T. Cucurbituril-Oriented Nanoplatforms in Biomedical Applications. ACS APPLIED BIO MATERIALS 2020; 3:8211-8240. [PMID: 35019600 DOI: 10.1021/acsabm.0c01061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cucucrbituril (CB) belongs to a family of macrocycles that are easily accessible. Their structural specificity provides excellent molecular recognition capabilities, with the ability to be readily chemically modified. Because of these properties, researchers have found CB to be a useful molecular carrier for delivering drug molecules and therapeutic biomolecules. Their significance lies in the fact that CB not only increases the solubility and stability of an encapsulated guest but also provides the possibility to achieve targeted delivery of the guest molecule. Therefore, the emergence of CB undoubtedly provides opportunities for the development of targeted drug delivery in an era where intelligent drugs have attracted considerable attention. It has also been found that CB can enhance fluorescent dyes, allowing the preparation of biosensors with enhanced sensitivity for use in clinical settings. In the present review, the acquisition, properties, and structural modifications of CB are first comprehensively described, and then the value of this macrocycle in applications within the medical field is discussed. In addition, we have also summarized patent applications of CB in this field over recent years, aiming to illustrate the current status of developments of this molecule. Finally, we discuss the challenges faced by CB in the medical field and future trends in its development.
Collapse
Affiliation(s)
- Guowang Cheng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Jingshan Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yao Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
27
|
Sun C, Wang Z, Yue L, Huang Q, Lu S, Wang R. ROS-initiated chemiluminescence-driven payload release from macrocycle-based Azo-containing polymer nanocapsules. J Mater Chem B 2020; 8:8878-8883. [PMID: 33026388 DOI: 10.1039/d0tb01475c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactive oxygen species (ROS) overproduction is involved in many pathological processes, particularly in inflammatory diseases. Therefore, ROS-responsive nanocarriers for specific drug release have been highly sought after. Herein we developed a ROS-responsive drug delivery system based on covalently self-assembled polymer nanocapsules (Azo-NCs) formed via crosslinking macrocyclic cucurbit[6]urils by a photo-sensitive azobenzene derivative (Azo). Luminol, a chemiluminescent molecule activatable by ROS, was co-loaded into Azo-NCs together with a therapeutic payload. When exposed to high ROS concentration that is typically encountered in inflammatory cells or tissues, the ROS-initiated blue chemiluminescence of luminol drives photoisomerization of the Azo groups within Azo-NCs, leading to Azo-NCs' surface transformation and distortion of the nanostructure, and subsequent payload release. As a proof-of-concept, ROS-responsive payload release from luminol-loaded Azo-NCs in inflammatory cells and zebrafish was demonstrated, showing promising anti-inflammatory effects in vitro and in vivo.
Collapse
Affiliation(s)
- Chen Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | | | | | | | | | | |
Collapse
|
28
|
Tian J, Xia L, Wu J, Huang B, Cao H, Zhang W. Linear Alternating Supramolecular Photosensitizer for Enhanced Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32352-32359. [PMID: 32584539 DOI: 10.1021/acsami.0c07333] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Supramolecular polymers with facile and versatile architectures via noncovalent connection present great potential in biological fields. Herein, a linear alternating supramolecular polymer is constructed via host-guest inclusion interaction between cyclodextrin dimer (CD2) and bifunctional adamantane-conjugated porphyrin (TPP-Ad2). The supramolecular alternating structure of CD/TPP could not only suppress the aggregation of PSs to improve the photophysical properties because of the steric hindrance but also enhance the water solubility of PSs induced from cyclodextrin moieties. The nanoplatform obtained by this linear alternating supramolecular polymer (TPP-Ad2/CD2) presents significantly enhanced photodynamic therapy (PDT) efficacy, providing a promising path for PDT.
Collapse
Affiliation(s)
- Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lei Xia
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian Wu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hongliang Cao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
29
|
Fu HG, Chen Y, Yu Q, Liu Y. Polysaccharide-Based Nanoparticles for Two-Step Responsive Release of Antitumor Drug. ACS Med Chem Lett 2020; 11:1191-1195. [PMID: 32551000 DOI: 10.1021/acsmedchemlett.0c00040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
A novel two-step in situ method for targeted antitumor drug release by supramolecular assembly (Fc-CPT@HACD) was constructed using camptothecin prodrug (Fc-CPT) and β-cyclodextrin (β-CD)-modified hyaluronic acid (HACD). Benefiting from the overexpressed H2O2 and glutathione (GSH) in tumor cells, Fc-CPT@HACD can be disassembled by oxidation of ferrocene (Fc) to Fc+, leading to an efficient release of the anticancer drug camptothecin (CPT) to induce tumor cell apoptosis without affecting normal cells. The in vivo experiment results also demonstrated that Fc-CPT@HACD possessed higher anticancer efficiency than free CPT, accompanied by negligible side effects.
Collapse
Affiliation(s)
- Hong-Guang Fu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yong Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qilin Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
30
|
Jayapaul J, Schröder L. Probing Reversible Guest Binding with Hyperpolarized 129Xe-NMR: Characteristics and Applications for Cucurbit[ n]urils. Molecules 2020; 25:E957. [PMID: 32093412 PMCID: PMC7070628 DOI: 10.3390/molecules25040957] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 01/01/2023] Open
Abstract
Cucurbit[n]urils (CB[n]s) are a family of macrocyclic host molecules that find various applications in drug delivery, molecular switching, and dye displacement assays. The CB[n]s with n = 5-7 have also been studied with 129Xe-NMR. They bind the noble gas with a large range of exchange rates. Starting with insights from conventional direct detection of bound Xe, this review summarizes recent achievements with chemical exchange saturation transfer (CEST) detection of efficiently exchanging Xe in various CB[n]-based supramolecular systems. Unprecedented sensitivity has been reached by combining the CEST method with hyperpolarized Xe, the production of which is also briefly described. Applications such as displacement assays for enzyme activity detection and rotaxanes as emerging types of Xe biosensors are likewise discussed in the context of biomedical applications and pinpoint future directions for translating this field to preclinical studies.
Collapse
Affiliation(s)
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany;
| |
Collapse
|
31
|
Wu H, Chen H, Tang B, Kang Y, Xu JF, Zhang X. Host-Guest Interactions between Oxaliplatin and Cucurbit[7]uril/Cucurbit[7]uril Derivatives under Pseudo-Physiological Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1235-1240. [PMID: 31941282 DOI: 10.1021/acs.langmuir.9b03325] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Compared with conventional drug delivery systems (DDSs), DDSs based on host-guest interactions possess unique advantages, such as high selectivity, tunable binding ability, and controllable release of drugs. It is important to study the host-guest interactions between the carrier and drug under physiological conditions for constructing DDSs. In this work, we have studied the host-guest interaction between cucurbit[7]uril (CB[7]) and oxaliplatin (OxPt), a clinical antitumor drug, in the cell culture medium. The results show that amino acids such as phenylalanine in the 1640 culture medium can partially occupy the cavity of CB[7], which leads to the decrease of enthalpy changes of the host-guest interaction between OxPt and CB[7]. In addition, inorganic salts such as NaCl in the medium reduce the enthalpy change and increase the entropy change of the binding because of the preorganization of the portal of CB[7] and sodium cation. As a result, the binding constant of CB[7] with OxPt in the 1640 culture medium is 1/20 of that in pure water. When CB[7] is modified at the terminal of star-type PEG to construct the star-PEGylated CB[7], it is shown that the molecular weight and topological structure of the PEG polymer backbone exhibit little effect on the host-guest interactions between CB[7] and OxPt. This study enriches the host-guest chemistry of cucurbiturils and may provide guidance for constructing novel DDSs based on host-guest interactions with high loading and releasing efficiency.
Collapse
Affiliation(s)
- Han Wu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Hao Chen
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Bohan Tang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Yuetong Kang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
32
|
Tian R, Fan X, Liu S, Li F, Yang F, Li Y, Luo Q, Hou C, Xu J, Liu J. Morphological Transformation between Orthogonal Dynamic Covalent Self-Assembly of Imine-Boroxine Hybrid Polymer Nanocapsules and Thin Films via Linker Exchange. Macromol Rapid Commun 2020; 41:e1900586. [PMID: 32022359 DOI: 10.1002/marc.201900586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/06/2020] [Indexed: 01/10/2023]
Abstract
Orthogonal dynamic covalent self-assembly is used as a facile method for constructing polymer hollow nanocapsules (NCs) and thin films. The bifunctional precursor 4-formylphenylboronic acid is symmetrically installed with a boronic acid group for the boroxine linkage, and an aldehyde group for the Schiff base reaction which can react with twofold symmetry linkers ethylenediamine and para phenylenediamine to attain polymer NCs and nanosheets. Owing to the reversibility of the imine linkages, the mutual morphological transformation between polymer NCs and thin films via an amine-imine-exchange strategy is successfully achieved. Multiple reversible covalent bonds allow the control the release of the load in polymer NCs using different techniques. This may be useful for designing stimulus-responsive smart materials.
Collapse
Affiliation(s)
- Ruizhen Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - XiaoTong Fan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Shengda Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Fei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Feihu Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yijia Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Chunxi Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Jiayun Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| |
Collapse
|
33
|
Xiong W, Wang L, Chen X, Tang H, Cao D, Zhang G, Chen W. Pyridinium-substituted tetraphenylethylene salt-based photosensitizers by varying counter anions: a highly efficient photodynamic therapy for cancer cell ablation and bacterial inactivation. J Mater Chem B 2020; 8:5234-5244. [DOI: 10.1039/d0tb00888e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A highly efficient photodynamic therapy of cancer cell ablation and bacterial inactivation by two AIEgens was reported.
Collapse
Affiliation(s)
- Wei Xiong
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Lingyun Wang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Xiaoli Chen
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Hao Tang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Derong Cao
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Guozhen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials
- CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Wei Chen
- Department of Physics
- The University of Texas at Arlington
- Arlington
- USA
| |
Collapse
|
34
|
Liu S, Tian R, Xu J, Wang L, Sun J, Jiang X, Wang T, Li X, Luo Q, Liu J. Cucurbit[8]uril-based supramolecular nanocapsules with a multienzyme-cascade antioxidative effect. Chem Commun (Camb) 2019; 55:13820-13823. [PMID: 31664274 DOI: 10.1039/c9cc07085k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A supramolecular nanocapsule was constructed by the ternary host-guest complexation of azobenzene (Azo) and methylviologen (MV) to cucurbit[8]uril (CB[8]) and the subsequent self-assembly. The supramolecular nanocapsule with both glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities can mimic the intracellular enzymatic reactive oxygen species (ROS) defense system.
Collapse
Affiliation(s)
- Shengda Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhang R, Guan Y, Zhu Z, Lv H, Li F, Sun S, Li J. Multifunctional Tetracene/Pentacene Host/Guest Nanorods for Enhanced Upconversion Photodynamic Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37479-37490. [PMID: 31532613 DOI: 10.1021/acsami.9b12967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The tissue penetration depth of light and the singlet oxygen (1O2) generation efficiency of photosensitizers (PSs) are the two main factors that determine the effectiveness of photodynamic therapy for tumors. Herein, we report a novel strategy to prepare a multifunctional upconversion photosensitizer (UCPS) based on the host/guest nanoarchitecture. By a simple reprecipitation method, host/guest tetracene/pentacene nanorods (Tc/Pc NRs) were synthesized for enhancing triplet-triplet annihilation-upconversion (TTA-UC) or two-photon excited emission and 1O2 generation efficiency upon 650 or 808 nm excitation. Tc/Pc NRs had higher 1O2 quantum yield (74%) than Tc NRs (28%) upon 650 nm laser irradiation. The proposed mechanism is that doping Pc molecules into Tc NRs induces intermediate states between S0 and S1, shortening the energy gap for 1O2 generation and resulting in TTA-UC emission. Equally important, with 808 nm fs laser excitation, Tc/Pc NRs showed an enhanced 1O2 generation efficiency and two-photon absorption cross section (σ) compared with Tc NRs. In addition, when the tumors in mice were exposed to Tc/Pc NRs with 650 or 808 nm wavelength irradiation, the tumor inhibition rates achieved 99 and 95%, respectively. This work opens new perspectives for exploring novel nano-UCPSs for biomedical applications.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Chemistry , Tianjin University , Tianjin 300072 , P. R. China
- Department of Chemistry , City University of Hong Kong , Hong Kong 999077 , P. R. China
| | - Yan Guan
- College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China
| | - Zhiyan Zhu
- Tianjin Research Center of Basic Medical Science , Tianjin Medical University , Tianjin 300070 , P. R. China
| | - Hongying Lv
- Institute of Radiation Medicine , Chinese Academy of Medical Sciences , Tianjin 300192 , P. R. China
| | - Futian Li
- Institute of Radiation Medicine , Chinese Academy of Medical Sciences , Tianjin 300192 , P. R. China
| | - Shuqing Sun
- Department of Chemistry , Tianjin University , Tianjin 300072 , P. R. China
| | - Juan Li
- Department of Hygienic Inspection, School of Public Health , Jilin University , Changchun 130021 , Jilin , P. R. China
| |
Collapse
|
36
|
Das D, Assaf KI, Nau WM. Applications of Cucurbiturils in Medicinal Chemistry and Chemical Biology. Front Chem 2019; 7:619. [PMID: 31572710 PMCID: PMC6753627 DOI: 10.3389/fchem.2019.00619] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/28/2019] [Indexed: 02/02/2023] Open
Abstract
The supramolecular chemistry of cucurbit[n]urils (CBn) has been rapidly developing to encompass diverse medicinal applications, including drug formulation and delivery, controlled drug release, and sensing for bioanalytical purposes. This is made possible by their unique recognition properties and very low cytotoxicity. In this review, we summarize the host-guest complexation of biologically important molecules with CBn, and highlight their implementation in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| | - Khaleel I. Assaf
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Werner M. Nau
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
37
|
Fu S, Li F, Zang M, Zhang Z, Ji Y, Yu X, Luo Q, Guan S, Xu J, Liu J. Diselenium-containing ultrathin polymer nanocapsules for highly efficient targeted drug delivery and combined anticancer effect. J Mater Chem B 2019; 7:4927-4932. [PMID: 31359022 DOI: 10.1039/c9tb01200a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The combination of selenium and pillararenes to prepare selenium-containing pillararene-based biomaterials is of great significance for the development of biomedicine. Herein, using a covalent self-assembly strategy, we successfully developed new diselenium-containing ultrathin polymer nanocapsules based on lateral cross-linked pillararenes. The new system exhibited a very potent anticancer effect; additionally, the incorporation of the cleavable redox diselenium bond into the polymer nanocapsules provided a smart nanocarrier for drug delivery. Moreover, the polymer nanocapsules were developed for anticancer drug targeting delivery by loading an anticancer drug and introducing the tumor-penetrating peptide RGD through the host-guest interaction strategy. The targeting DOX-loaded diselenium-containing polymer nanocapsules exhibited enhanced stability, self-anticancer effect, targeted delivery and controlled drug release, resulting in effective combined inhibition of tumor progression.
Collapse
Affiliation(s)
- Shuang Fu
- State Key Laboratory of Supramolecular Structure and Materials, Collage of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Fei Li
- State Key Laboratory of Supramolecular Structure and Materials, Collage of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Mingsong Zang
- State Key Laboratory of Supramolecular Structure and Materials, Collage of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Zherui Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Collage of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Yuancheng Ji
- State Key Laboratory of Supramolecular Structure and Materials, Collage of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Xiaoxuan Yu
- College of life science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials, Collage of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Shuwen Guan
- College of life science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jiayun Xu
- State Key Laboratory of Supramolecular Structure and Materials, Collage of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, Collage of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| |
Collapse
|