1
|
Yu C, Lv H, Macharia DK, Zhang L, Liu H, Lu C, Jiang W, Chen Z. Synthesis of palladium-decorated defective tungsten oxide heterostructures with enhanced photothermal catalytic activity for hydrodeoxygenation of vanillin. J Colloid Interface Sci 2024; 672:520-532. [PMID: 38839513 DOI: 10.1016/j.jcis.2024.05.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024]
Abstract
The selective hydrodeoxygenation (HDO) of sustainable lignocellulosic biomass plays a pivotal role in the conversion of biomass into high-value fuels and chemicals. Nevertheless, HDO for biomass upgrading always demands high temperatures and high hydrogen (H2) pressure. Photothermal catalysis has been recognized as an effective approach for boosting chemical reactions under mild conditions while maintaining superior selectivity. Herein, we report the design of palladium-decorated defective tungsten oxide (Pd/WO3-x) catalysts with enhanced photothermal catalytic performances for the efficient HDO of vanillin. Pd/WO3-x nanoflowers have been synthesized through a solvothermal/in-situ reduction two-step strategy, and they exhibit notable photoabsorption in a wide range (200-1100 nm), high photothermal conversion and efficient charge separation efficiency. Under simulated sunlight irradiation (0.3 W cm-2), Pd/WO3-x exhibits a maximum vanillin conversion up to 86.8 % with a 2-methoxy-4-methylphenol (MMP) selectivity of 100 %, which is obviously higher than that (vanillin conversion = 33.1 %, MMP selectivity = 100 %) in the oil bath at the same temperature. Such higher conversion efficiency and selectivity under sunlight should result from the synergistic integration of hot electrons and photothermal heating, both of which are derived from localized surface plasmon resonance (LSPR) in WO3-x. Importantly, Pd/WO3-x catalyst demonstrates good stability and high selectivity to MMP even after 5 cycles. This work may offer a novel viewpoint on the advancement of photothermal catalysts and the realization of photothermal catalytic biomass conversion under mild conditions.
Collapse
Affiliation(s)
- Chiyan Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hanhan Lv
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Daniel K Macharia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Lisha Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Huansheng Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chihao Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Weizhong Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhigang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
2
|
Mi S, Chen L, Zhang X, Zhang Q, Ma L, Liu J. Selective hydrogenation of vanillin over a graphene-encapsulated nitrogen-doped bimetallic magnetic Ni/Fe@NDC nano-catalyst. RSC Adv 2024; 14:16747-16757. [PMID: 38784407 PMCID: PMC11112673 DOI: 10.1039/d4ra02729a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024] Open
Abstract
One of the main obstacles to the development of sustainable biomass feedstocks today is the research of selective hydrogenation of biomass platform compounds for the synthesis of high-value chemicals. This work reports on the synthesis of a Ni/Fe bimetallic catalyst with nitrogen-doped carbon serving as the carrier, hydrogen serving as the primary donor, and isopropanol serving as the reaction medium and serving as a secondary donor. Vanillin was catalytically hydrogenated to produce 4-methylguaiacol, a complete hydrogenation product, under a reaction temperature of 200 °C for four hours. A single product with a good yield (95.26% conversion and selectivity up to 99%) was achieved by the moderate conditions, offering a potential route for the catalytic hydrogenation of biomass platform compounds.
Collapse
Affiliation(s)
- Siyi Mi
- Southeast University-Monash University Suzhou Joint Graduate School, Southeast University Suzhou 215000 China
| | - Lungang Chen
- School of Energy and Environment, Southeast University Nanjing 210096 China
| | - Xinghua Zhang
- School of Energy and Environment, Southeast University Nanjing 210096 China
| | - Qi Zhang
- School of Energy and Environment, Southeast University Nanjing 210096 China
| | - Longlong Ma
- School of Energy and Environment, Southeast University Nanjing 210096 China
| | - Jianguo Liu
- School of Energy and Environment, Southeast University Nanjing 210096 China
| |
Collapse
|
3
|
Zhang G, Ma L, Dong Y, Dou S, Kong X. In situ construction of 3D NiMo bimetallic catalysts anchored on dendritic mesoporous silica for the upgrading of biomass derivatives. J Colloid Interface Sci 2023; 647:188-200. [PMID: 37247482 DOI: 10.1016/j.jcis.2023.05.139] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/02/2023] [Accepted: 05/20/2023] [Indexed: 05/31/2023]
Abstract
Reasonable construction of bi-function catalysts with well dispersed hydrogenation active sites and acidic sites are crucial for the hydrodeoxygenation (HDO) of biomass-derived compounds but still a huge challenge. Herein, a 3D Mo functionalized Ni-based bimetallic embedded catalyst with fine metal nanoparticles size (<6 nm) was prepared for the first time using dendritic mesoporous silica as a sacrificial template by one-pot hydrothermal synthesis and adopted in the HDO process of vanillin (VAN) upgrade to 2-methoxy-4-methylphenol (MMP). The characterization results illustrated that Mo species regulated the acidity of the catalyst and promoted the formation of Ni-Mo alloy sites. Density functional theory (DFT) calculations further unveiled that Ni-Mo alloy sites promoted the activation and dissociation of CO bond in VAN, enhanced the ability of protonation hydrogenolysis. Benefitting from the synergistic effect of the highly uniformly dispersed hydrogenation metal sites and acidic sites, nearly 100% yield of MMP could obtained over the designed catalyst under mild conditions (130 °C, 1.5 MPa H2, 3 h, 10 wt% catalyst dosage). Additionally, the NiMo0.1@MSN catalyst displayed robust activity for no less than 8 recycles and excellent universality for the HDO of a variety of lignin derivatives and biomass platform molecules, which provide a feasible strategy for the construction of 3D confined catalysts for the high-efficiency HDO of biomass derivatives.
Collapse
Affiliation(s)
- Guanyi Zhang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory /Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252000, China
| | - Liguo Ma
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory /Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252000, China
| | - Yingying Dong
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory /Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252000, China
| | - Shuangxin Dou
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory /Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252000, China
| | - Xiangjin Kong
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory /Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| |
Collapse
|
4
|
Yang Y, Xu X, He H, Huo D, Li X, Dai L, Si C. The catalytic hydrodeoxygenation of bio-oil for upgradation from lignocellulosic biomass. Int J Biol Macromol 2023; 242:124773. [PMID: 37150369 DOI: 10.1016/j.ijbiomac.2023.124773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/14/2023] [Accepted: 05/03/2023] [Indexed: 05/09/2023]
Abstract
The increasing depletion of oil resources and the environmental problems caused by using much fossil energy in the rapid development of society. The bio-oil becomes a promising alternative energy source to fossil. However, bio-oil cannot be directly utilized, owing to its high proportion of oxygenated compounds with low calorific value and poor thermal stability. Catalytic hydrodeoxygenation (HDO) is one of the most effective methods for refining oxygenated compounds from bio-oil. HDO catalysts play a crucial role in the HDO reaction. This review emphasizes the description of the main processing of HDO and various catalytic systems for bio-oil, including noble/non-noble metal catalysts, porous organic polymer catalysts, and polar solvents. A discussion based on recent studies and evaluations of different catalytic materials and mechanisms is considered. Finally, the challenges and future opportunities for the development of catalytic hydrodeoxygenation for bio-oil upgradation are looked forward.
Collapse
Affiliation(s)
- Yanfan Yang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuan Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Haodong He
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Dan Huo
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xiaoyun Li
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; School of Agriculture, Sun Yat-sen University, Guangzhou 510275, China.
| | - Lin Dai
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; National Engineering Lab for Pulp and Paper, China National Pulp and Paper Research Institute Co., Ltd, Beijing 100102, China.
| | - Chuanling Si
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
5
|
Kar AK, Kaur SP, Dhilip Kumar TJ, Srivastava R. Improving the hydrodeoxygenation activity of vanillin and its homologous compounds by employing MoO 3-incorporated Co-BTC MOF-derived MoCoO x@C. Dalton Trans 2023; 52:3111-3126. [PMID: 36789722 DOI: 10.1039/d2dt03744k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lignin-derived aryl ethers and vanillin are essential platform chemicals that fulfil the demands for renewable aromatic compounds. Herein, an efficient heterogeneous catalyst is reported for reforming vanillin via a selective hydrodeoxygenation route to 2-methoxy-4-methyl phenol (MMP), a precursor to medicinal, food, and petrochemical industries. A series of MoCoOx@C catalysts were synthesized by decorating the Co-BTC MOF with different contents of MoO3 rods, followed by carbonization. Among these catalysts, MoCoOx@C-2 afforded ∼99% vanillin conversion and ∼99% MMP selectivity at 150 °C in 1.5 h in an aqueous medium. In contrast, CoOx@C afforded ∼75% vanillin conversion and ∼85% MMP selectivity. Detailed catalyst characterization revealed that CoOx and Co2Mo3O8 were the active species contributing to the higher activity of MoCoOx@C-2. The excellent H2-adsorption characteristics and acidity of MoCoOx@C-2 were beneficial to the hydrodeoxygenation of vanillin and other homologous compounds. The DFT adsorption energy calculations suggested the favourable interactions of vanillin and vanillyl alcohol with the Co2Mo3O8 sites in MoCoOx@C-2. The catalyst could be efficiently recycled 5 times, with a negligible loss in activity after the 5th cycle. These findings provide a systematic explication of the active sites of the mixed metal oxide-based MoCoOx@C-2 catalyst for the selective hydrodeoxygenation of vanillin to MMP, which is important for the academic and industrial catalysis community.
Collapse
Affiliation(s)
- Ashish Kumar Kar
- Catalysis Research Laboratory, Indian Institute of Technology Ropar, Rupnagar-140001, India. .,Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140001, India
| | - Surinder Pal Kaur
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140001, India
| | - T J Dhilip Kumar
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140001, India
| | - Rajendra Srivastava
- Catalysis Research Laboratory, Indian Institute of Technology Ropar, Rupnagar-140001, India. .,Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140001, India
| |
Collapse
|
6
|
Zhen M, Wang C, Zhang Y, An H, Xiao J, Wang S, Liu Y. Ring-Opening Oligomerization Mechanism of a Vanillin-Furfurylamine-Based Benzoxazine and a Mono-Azomethine Derivative. Macromol Rapid Commun 2023; 44:e2200895. [PMID: 36594347 DOI: 10.1002/marc.202200895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Exploring the ring-opening polymerization (ROP) mechanism of benzoxazines is a fundamental issue in benzoxazine chemistry. Though some research papers on the topic have been reported, the ROP mechanism of mono-benzoxazines is still elusive. The key point for mechanistic studies is to determine and characterize the structure and formation pathways of the products generated in ROP. In this paper, the ROP of a vanillin-furfurylamine-based benzoxazine and a mono-azomethine derivative is studied with differential scanning calorimetry, fourier transform infrared spectroscopy, nuclear magnetic resonance, and electrospray ionization mass spectrometry, respectively. The results show that the products consist of a range of cationic species, zwitterions, fragments, and series of cyclic and linear oligomers of varying molecular sizes. It is proposed that both mono-benzoxazines undergo thermally activated cationic ring-opening oligomerization via zwitterion intermediates. Upon thermal induction, multi-bond-cleavage takes place to form various zwitterionic intermediates, which react with a monomer, a fragment, or a second zwitterion by several pathways to generate cyclic and linear oligomers.
Collapse
Affiliation(s)
- Menglei Zhen
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| | - Chang Wang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| | - Yizhe Zhang
- Hebei Provincial Key Lab of Green Chemical Technology and Efficient Energy Saving, National Local Joint Laboratory of Energy-Saving Process Integration and Resource Utilization in Chemical Industry, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Hualiang An
- Hebei Provincial Key Lab of Green Chemical Technology and Efficient Energy Saving, National Local Joint Laboratory of Energy-Saving Process Integration and Resource Utilization in Chemical Industry, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Jinchong Xiao
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| | - Shuxiang Wang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| | - Yanfang Liu
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| |
Collapse
|
7
|
Rational design of cobalt catalysts embedded in N-Doped carbon for the alcohol dehydrogenation to carboxylic acids. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Defect‐Decorated NiFe Bimetallic Nanocatalysts for the Enhanced Hydrodeoxygenation of Guaiacol. ChemCatChem 2022. [DOI: 10.1002/cctc.202200585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Sarkar C, Paul R, Dao DQ, Xu S, Chatterjee R, Shit SC, Bhaumik A, Mondal J. Unlocking Molecular Secrets in a Monomer-Assembly-Promoted Zn-Metalated Catalytic Porous Organic Polymer for Light-Responsive CO 2 Insertion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37620-37636. [PMID: 35944163 DOI: 10.1021/acsami.2c06982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anthropogenic carbon dioxide (CO2) emission is soaring day by day due to fossil fuel combustion to fulfill the daily energy requirements of our society. The CO2 concentration should be stabilized to evade the deadly consequences of it, as climate change is one of the major consequences of greenhouse gas emission. Chemical fixation of CO2 to other value-added chemicals requires high energy due to its stability at the highest oxidation state, creating a tremendous challenge to the scientific community to fix CO2 and prevent global warming caused by it. In this work, we have introduced a novel monomer-assembly-directed strategy to design va isible-light-responsive conjugated Zn-metalated porous organic polymer (Zn@MA-POP) with a dynamic covalent acyl hydrazone linkage, via a one-pot condensation between the self-assembled monomer 1,3,5-benzenetricarbohydrazide (TPH) and a Zn complex (Zn@COM). We have successfully explored as-synthesized Zn@MA-POP as a potential photocatalyst in visible-light-driven CO2 photofixation with styrene epoxide (SE) to styrene carbonate (SC). Nearly 90% desired product (SC) selectivity has been achieved with our Zn@MA-POP, which is significantly better than that for the conventional Zn@TiO2 (∼29%) and Zn@gC3N4 (∼26%) photocatalytic systems. The excellent light-harvesting nature with longer lifetime minimizes the radiative recombination rate of photoexcited electrons as a result of extended π-conjugation in Zn@MA-POP and increased CO2 uptake, eventually boosting the photocatalytic activity. Local structural results from a first-shell EXAFS analysis reveals the existence of a Zn(N2O4) core structure in Zn@MA-POP, which plays a pivotal role in activating the epoxide ring as well as capturing the CO2 molecules. An in-depth study of the POP-CO2 interaction via a density functional theory (DFT) analysis reveals two feasible interactions, Zn@MA-POP-CO2-A and Zn@MA-POP-CO2-B, of which the latter has a lower relative energy of 0.90 kcal/mol in comparison to the former. A density of states (DOS) calculation demonstrates the lowering of the LUMO energy (EL) of Zn@MA-POP by 0.35 and 0.42 eV, respectively, for the two feasible interactions, in comparison to Zn@COM. Moreover, the potential energy profile also unveils the spontaneous and exergonic photoconversion pathways for the SE to SC conversion. Our contribution is expected to spur further interest in the precise design of visible-light-active conjugated porous organic polymers for CO2 photofixation to value-added chemicals.
Collapse
Affiliation(s)
- Chitra Sarkar
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ratul Paul
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Shaojun Xu
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell OX11 0FA, U.K
| | - Rupak Chatterjee
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhash Chandra Shit
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Asim Bhaumik
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - John Mondal
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
10
|
|
11
|
Dong Z, Pan H, Yang L, Fan L, Xiao Y, Chen J, Wang W. Porous organic polymer immobilized copper nanoparticles as heterogeneous catalyst for efficient benzylic C–H bond oxidation. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2021.101397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Sarkar C, Shit SC, Das N, Mondal J. Presenting porous-organic-polymers as next-generation invigorating materials for nanoreactors. Chem Commun (Camb) 2021; 57:8550-8567. [PMID: 34369958 DOI: 10.1039/d1cc02616j] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Porous organic polymers (POPs) represent an emerging class of porous organic materials which mainly comprise organic building blocks that are interconnected via strong covalent bonds, thereby offering highly cross-linked frameworks with rigid structures and specific void spaces for accommodating guest molecules. In the past few years, POPs have garnered colossal research interest as nanoreactors for heterogeneous catalysis (thermal, photochemical, electrochemical, etc.) because of their intriguing characteristic features, such as high thermal and chemical stabilities, adjustable chemical functionalities, large surface areas, and tunable pore size distributions. This feature article provides an overview of existing research relating to diverse POP synthetic approaches (COFs, CTFs, and some amorphous POPs), the possible modification of the functionality of POPs, and their exciting application as next-generation nanoreactors. These POPs are extremely interesting, as they offer the potential for either metal-free or metalated polymer catalysts allowing photocatalytic CO2 reduction to solar-fuel, biofuel upgrades, the conversion of waste cooking oil to bio-oil, and clean H2 production from water, addressing many scientific and technological challenges and providing new opportunities for various specific topics in catalysis. Finally, we emphasize that the integration of various synthetic approaches and the application of POPs as nanoreactors will provide opportunities in the near future for the precision synthesis of functional materials with significant impact in both basic and applied research areas.
Collapse
Affiliation(s)
- Chitra Sarkar
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 50007, India.
| | | | | | | |
Collapse
|
13
|
Kumar P, Das A, Maji B. Phosphorus containing porous organic polymers: synthetic techniques and applications in organic synthesis and catalysis. Org Biomol Chem 2021; 19:4174-4192. [PMID: 33871521 DOI: 10.1039/d1ob00137j] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The phosphorus-containing porous organic polymer is a trending material for the synthesis of heterogeneous catalysts. Decades of investigations have established phosphines as versatile ligands in homogeneous catalysis. Recently, phosphine-based heterogeneous catalysts were synthesized to exploit the same electronic properties while leveraging extra stability and reusability. In the last few decades, the catalysts were applied in diverse organic transformations, including hydroformylation, hydrogenation, C-C, C-N and C-X coupling, hydrosilylation, oxidative-carbonylation reactions, and so on. However, even though these polymers possess a multifunctional character, they face multiple synthetic issues in controlling the pore size, increasing the surface area, and creating a single type of active site. This review summarizes the developments in this field over the last few decades, highlighting the current limitation and future scope.
Collapse
Affiliation(s)
- Pramod Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India.
| | | | | |
Collapse
|
14
|
Mao H, Wang H, Meng T, Wang C, Hu X, Xiao Z, Liu J. An efficient environmentally friendly CuFe 2O 4/SiO 2 catalyst for vanillyl mandelic acid oxidation in water under atmospheric pressure and a mechanism study. NEW J CHEM 2021. [DOI: 10.1039/d0nj04798h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aimed at the green production of vanillin, a highly efficient environmentally friendly oxidation system was introduced to oxidize VMA with a porous CuFe2O4/SiO2 component nano-catalyst in aqueous solution under atmospheric pressure.
Collapse
Affiliation(s)
- Haifang Mao
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai
- China
| | - Hongzhao Wang
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai
- China
| | - Tao Meng
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai
- China
| | - Chaoyang Wang
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai
- China
| | - Xiaojun Hu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai
- China
| | - Zuobing Xiao
- School of Perfume and Aroma Technology
- Shanghai Institute of Technology
- Shanghai
- China
| | - Jibo Liu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai
- China
| |
Collapse
|
15
|
Li SH, Qi MY, Tang ZR, Xu YJ. Nanostructured metal phosphides: from controllable synthesis to sustainable catalysis. Chem Soc Rev 2021; 50:7539-7586. [PMID: 34002737 DOI: 10.1039/d1cs00323b] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metal phosphides (MPs) with unique and desirable physicochemical properties provide promising potential in practical applications, such as the catalysis, gas/humidity sensor, environmental remediation, and energy storage fields, especially for transition metal phosphides (TMPs) and MPs consisting of group IIIA and IVA metal elements. Most studies, however, on the synthesis of MP nanomaterials still face intractable challenges, encompassing the need for a more thorough understanding of the growth mechanism, strategies for large-scale synthesis of targeted high-quality MPs, and practical achievement of functional applications. This review aims at providing a comprehensive update on the controllable synthetic strategies for MPs from various metal sources. Additionally, different passivation strategies for engineering the structural and electronic properties of MP nanostructures are scrutinized. Then, we showcase the implementable applications of MP-based materials in emerging sustainable catalytic fields including electrocatalysis, photocatalysis, mild thermocatalysis, and related hybrid systems. Finally, we offer a rational perspective on future opportunities and remaining challenges for the development of MPs in the materials science and sustainable catalysis fields.
Collapse
Affiliation(s)
- Shao-Hai Li
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Ming-Yu Qi
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Zi-Rong Tang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Yi-Jun Xu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| |
Collapse
|
16
|
Paul R, Shit SC, Fovanna T, Ferri D, Srinivasa Rao B, Gunasooriya GTKK, Dao DQ, Le QV, Shown I, Sherburne MP, Trinh QT, Mondal J. Realizing Catalytic Acetophenone Hydrodeoxygenation with Palladium-Equipped Porous Organic Polymers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50550-50565. [PMID: 33111522 DOI: 10.1021/acsami.0c16680] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Porous organic polymers (POPs) constructed through covalent bonds have raised tremendous research interest because of their suitability to develop robust catalysts and their successful production with improved efficiency. In this work, we have designed and explored the properties and catalytic activity of a template-free-constructed, hydroxy (-OH) group-enriched porous organic polymer (Ph-POP) bearing functional Pd nanoparticles (Pd-NPs) by one-pot condensation of phloroglucinol (1,3,5-trihydroxybenzene) and terephthalaldehyde followed by solid-phase reduction with H2. The encapsulated Pd-NPs rested within well-defined POP nanocages and remained undisturbed from aggregation and leaching. This polymer hybrid nanocage Pd@Ph-POP is found to enable efficient liquid-phase hydrodeoxygenation (HDO) of acetophenone (AP) with high selectivity (99%) of ethylbenzene (EB) and better activity than its Pd@Al2O3 counterpart. Our investigation demonstrates a facile, scalable, catalyst-template-free methodology for developing novel porous organic polymer catalysts and next-generation efficient greener chemical processes from platform molecules to produce value-added chemicals. With the aid of comprehensive in situ ATR-IR spectroscopy experiments, it is suggested that EB can be more easily desorbed in a solution, reflecting from the much weaker but better-resolved signal at 1494 cm-1 in Pd@Ph-POP compared to that in Pd@Al2O3, which is the key determining factor in favoring an efficient catalytic mechanism. Density functional theory (DFT) calculations were performed to illustrate the detailed reaction network and explain the high catalytic activity observed for the fabricated Pd@Ph-POP catalyst in the HDO conversion of AP to EB. All of the hydrogenation routes, including direct hydrogenation by surface hydrogen, hydrogen transfer, and the keto-enol pathway, are evaluated, providing insights into the experimental observations. The presence of phenolic hydroxyl groups in the Ph-POP frame structure facilitates the hydrogen-shuttling mechanism for dehydration from the intermediate phenylethanol, which was identified as a crucial step for the formation of the final product ethylbenzene. Besides, weaker binding of the desired product ethylbenzene and lower coverage of surface hydrogen atoms on Pd@Ph-POP both contributed to inhibiting the overhydrogenation reaction and explained well the high yield of EB produced during the HDO conversion of AP on Pd@Ph-POP in this study.
Collapse
Affiliation(s)
- Ratul Paul
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subhash Chandra Shit
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Davide Ferri
- Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Bolla Srinivasa Rao
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Danang 550000, Viet Nam
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Indrajit Shown
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Matthew P Sherburne
- Materials Science and Engineering Department, University of California Berkeley, Berkeley, California 94720, United States
- A Singapore Berkeley Research Initiative for Sustainable Energy, Berkeley Educational Alliance for Research in Singapore, 1 Create Way, 138602, Singapore
| | - Quang Thang Trinh
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Danang 550000, Viet Nam
- Cambridge Centre for Advanced Research and Education in Singapore (CARES), Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, 138602, Singapore
| | - John Mondal
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
17
|
Li T, Ji N, Jia Z, Diao X, Wang Z, Liu Q, Song C, Lu X. Effects of metal promoters in bimetallic catalysts in hydrogenolysis of lignin derivatives into value‐added chemicals. ChemCatChem 2020. [DOI: 10.1002/cctc.202001124] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tingting Li
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Na Ji
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Zhichao Jia
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Xinyong Diao
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Zhenjiao Wang
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Qingling Liu
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Chunfeng Song
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Xuebin Lu
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
- Department of Chemistry & Environmental Science Tibet University Lhasa 850000 P. R. China
| |
Collapse
|
18
|
Nagai D, Morita M, Yamanobe T. Synthesis of Nanosheets Containing Uniformly Dispersed Pd II Ions at an Aqueous/Aqueous Interface: Development of a Highly Active Nanosheet Catalyst for Mizoroki-Heck Reaction. ACS OMEGA 2020; 5:18484-18489. [PMID: 32743226 PMCID: PMC7391948 DOI: 10.1021/acsomega.0c02403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
A method was developed to synthesize a nanosheet at the interface of an aqueous layer of PdII ions and an aqueous layer of hydrophilic polymer bearing a metal coordination unit (HPMC). The nanosheet was synthesized through generation of an interface by the addition of an aqueous solution of PdII ions with a low specific gravity (1.03 g/cm3) to a dispersed aqueous solution of HPMC with a high specific gravity (1.50 g/cm3), resulting in rapid cross-linking at the interface. An electron probe microanalysis mapping image showed that the PdII ions were uniformly dispersed in the nanosheet. The nanosheet showed a high catalyst activity for the Mizoroki-Heck cross-coupling reaction with a turnover number (TON) and turnover frequency (TOF) greater than 3,333,333 and 138,889 h-1, respectively. These are the greatest TON and TOF values reported for heterogeneous polymeric catalysts for the Mizoroki-Heck reaction.
Collapse
Affiliation(s)
- Daisuke Nagai
- Division
of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma Prefecture 376-8515, Japan
| | - Moeko Morita
- Division
of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma Prefecture 376-8515, Japan
| | - Takeshi Yamanobe
- Division
of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma Prefecture 376-8515, Japan
| |
Collapse
|
19
|
Paul R, Sarkar C, Yan Y, Trinh QT, Rao BS, Pao C, Lee J, Liu W, Mondal J. Porous‐Organic‐Polymer‐Triggered Advancement of Sustainable Magnetic Efficient Catalyst for Chemoselective Hydrogenation of Cinnamaldehyde. ChemCatChem 2020. [DOI: 10.1002/cctc.202000072] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ratul Paul
- Catalysis & Fine Chemicals DivisionCSIR-Indian Institute of Chemical Technology Uppal Road Hyderabad 500007 India
| | - Chitra Sarkar
- Catalysis & Fine Chemicals DivisionCSIR-Indian Institute of Chemical Technology Uppal Road Hyderabad 500007 India
| | - Yong Yan
- School of Chemical and Biomedical EngineeringNanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
- Cambridge Centre for Advanced Research and Education in Singapore (CARES)Campus for Research Excellence and Technological Enterprise (CREATE) 1 Create Way 138602 Singapore Singapore
| | - Quang Thang Trinh
- Cambridge Centre for Advanced Research and Education in Singapore (CARES)Campus for Research Excellence and Technological Enterprise (CREATE) 1 Create Way 138602 Singapore Singapore
| | - Bolla Srinivasa Rao
- Catalysis & Fine Chemicals DivisionCSIR-Indian Institute of Chemical Technology Uppal Road Hyderabad 500007 India
| | - Chih‐Wen Pao
- National Synchrotron Radiation Research Center 101 Hsin-Ann Road Hsinchu 30076 Taiwan
| | - Jyh‐Fu Lee
- National Synchrotron Radiation Research Center 101 Hsin-Ann Road Hsinchu 30076 Taiwan
| | - Wen Liu
- School of Chemical and Biomedical EngineeringNanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
- Cambridge Centre for Advanced Research and Education in Singapore (CARES)Campus for Research Excellence and Technological Enterprise (CREATE) 1 Create Way 138602 Singapore Singapore
| | - John Mondal
- Catalysis & Fine Chemicals DivisionCSIR-Indian Institute of Chemical Technology Uppal Road Hyderabad 500007 India
| |
Collapse
|
20
|
Koley P, Chandra Shit S, Joseph B, Pollastri S, Sabri YM, Mayes ELH, Nakka L, Tardio J, Mondal J. Leveraging Cu/CuFe 2O 4-Catalyzed Biomass-Derived Furfural Hydrodeoxygenation: A Nanoscale Metal-Organic-Framework Template Is the Prime Key. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21682-21700. [PMID: 32314915 DOI: 10.1021/acsami.0c03683] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Enormous efforts have been initiated in the production of biobased fuels and value-added chemicals via biorefinery owing to the scarcity of fossil resources and huge environmental synchronization. Herein, non-noble metal-based metal/mixed metal oxide supported on carbon employing a metal-organic framework as a sacrificial template is demonstrated for the first time in the selective hydrodeoxygenation (HDO) of biomass-derived furfural (FFR) to 2-methyl furan (MF). The aforementioned catalyst (referred to as Cu/CuFe2O4@C-A) exhibited extraordinary catalytic proficiency (100% selectivity toward MF) compared with the conventional Cu/CuFe2O4@C-B catalyst which was prepared by the wet impregnation method. High-resolution transmission electron microscopy and synchrotron X-ray diffraction studies evidenced the existence of both metal (Cu) and mixed metal oxide (CuFe2O4) phases, in which the metal could help in hydrogenation to alcohol and metal oxide could assist in the hydroxyl group removal step during HDO reaction. The stabilization of encapsulated metal/metal oxide nanoparticles in the carbon matrix, modulation of the electronic structure, and regulation of geometric effects in the Cu/CuFe2O4@C-A are thought to play an important role in its excellent catalytic performance, confirmed by X-ray photoelectron spectroscopy and X-ray absorption spectroscopy investigations. Furthermore, the structure and activity interconnection was confirmed by in situ attenuated total reflection-IR studies, which manifested the strong interfacial interaction between FFR and the Cu/CuFe2O4@C-A catalyst. This finding was further supported by NH3 temperature-programmed desorption analysis, which suggested that the presence of more Lewis/weak acidic sites in this catalyst was beneficial for the hydrogenolysis step in HDO reaction. Additionally, H2 temperature-programmed reduction studies revealed that the adsorption of H2 was stronger on the Cu/CuFe2O4@C-A than that over the conventional Cu/CuFe2O4@C-B catalyst; thus, the former catalyst promoted activation of H2. A detailed kinetic analysis which demonstrated the lower activation energy barrier along with dual active sites attributed for the activation of the two separate reactions in the HDO process on the Cu/CuFe2O4@C-A catalyst. This work has great implication in developing a highly stable catalyst for the selective upgradation of biomass without deactivation of metal sites in extended catalytic cycles and opens the door of opportunity for developing a sustainably viable catalyst in biomass refinery industries.
Collapse
Affiliation(s)
- Paramita Koley
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne 3001, Australia
| | - Subhash Chandra Shit
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India
| | - Boby Joseph
- GdR IISc-ICTP, Elettra-Sincrotrone Trieste, S.S. 14, Km 163.5 in Area Science Park, Basovizza 34149, Italy
| | - Simone Pollastri
- CERIC-ERIC, S.S. 14, Km 163.5 in Area Science Park, Basovizza 34149, Italy
| | - Ylias M Sabri
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne 3001, Australia
| | - Edwin L H Mayes
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne 3001, Australia
| | - Lingaiah Nakka
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India
| | - James Tardio
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne 3001, Australia
| | - John Mondal
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India
| |
Collapse
|
21
|
Yuan D, Zhang S, Tan J, Dai Y, Wang Y, He Y, Liu Y, Zhao X, Zhang M, Zhang Q. Highly efficacious entrapment of Th (IV) and U (VI) from rare earth elements in concentrated nitric acid solution using a phosphonic acid functionalized porous organic polymer adsorbent. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116379] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
22
|
Gao W, Tian J, Fang Y, Liu T, Zhang X, Xu X, Zhang X. Visible-light-driven photo-Fenton degradation of organic pollutants by a novel porphyrin-based porous organic polymer at neutral pH. CHEMOSPHERE 2020; 243:125334. [PMID: 31995864 DOI: 10.1016/j.chemosphere.2019.125334] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/27/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Developing novel heterogeneous photo-Fenton catalysts with high efficiency and stability, driven by visible-light rather ultraviolet light at neutral pH has been a major challenge for degradation of organic pollutants. In this work, we successfully synthesized a metalloporphyrin-based porous organic polymer (FePPOP-1) by the Sonogashira cross-coupling reaction. UV-vis absorption spectra showed FePPOP-1 exhibits a significant coverage of the natural solar irradiance spectrum. As a result, the prepared FePPOP-1 has a significantly enhanced photocatalytic activity for the visible-light-driven degradation of methylene blue. By using only 4 mg of FePPOP-1 as a catalyst, it was found that 50 mL of organic wastewater containing 70 ppm MB could be totally degraded in 80 min even at neutral pH. The effects of the initial MB, H2O2 concentrations, pH value and common ions on MB degradation were studied in detail. Both the catalytic mechanism of FePPOP-1 and the degradation route of MB were also proposed.
Collapse
Affiliation(s)
- Wenqiang Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Jing Tian
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China; Shandong Product Quality Inspection Research Institute, Jinan, Shandong, 250100, China
| | - Yishan Fang
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Tingting Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Xiumei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Xiaohong Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Xiaomei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.
| |
Collapse
|
23
|
Wang S, Wu C, Yu H, Li T, Yan X, Yan B, Yin H. Fabrication of Ir-CoO x@mesoporous SiO 2 Nanoreactors for Selective Hydrogenation of Substituted Nitroaromatics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9966-9976. [PMID: 31990170 DOI: 10.1021/acsami.9b21077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanosized Ir catalysts suffer from serious side reactions and poor stability during hydrogenation of substituted nitroaromatics to produce aromatic amines. In this work, core-shell nanostructures with sub-4 nm Ir-CoOx hybrid cores and mesoporous SiO2 shells were designed and prepared to overcome these problems. The Ir-CoOx hybrid cores were converted from IrCo alloy nanoparticles (NPs) inside SiO2 through in situ calcination and reduction pretreatments. The SiO2 mesoporous shells in Ir-CoOx@SiO2 nanoreactors prevented the agglomeration/sintering of IrCo NPs, while allowing the free reactants and products (big molecules). The synergy between Ir and CoOx species improved H2 adsorption, thus affecting the reaction rate as well as the selectivity to aromatic amines. As a result, the obtained Ir-CoOx@SiO2 nanocatalyst showed tremendous improvement in catalytic activity, selectivity, and stability.
Collapse
Affiliation(s)
- Shujian Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , 1219 Zhongguan West Road , Ningbo , Zhejiang 315201 , P. R. China
| | - Chunzheng Wu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , 1219 Zhongguan West Road , Ningbo , Zhejiang 315201 , P. R. China
| | - Hongbo Yu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , 1219 Zhongguan West Road , Ningbo , Zhejiang 315201 , P. R. China
| | - Tong Li
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , 1219 Zhongguan West Road , Ningbo , Zhejiang 315201 , P. R. China
| | - Xuedong Yan
- Ningbo Polytechnic , 388 East Lushan Road , Ningbo , Zhejiang 315800 , P. R. China
| | - Bo Yan
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , 1219 Zhongguan West Road , Ningbo , Zhejiang 315201 , P. R. China
| | - Hongfeng Yin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , 1219 Zhongguan West Road , Ningbo , Zhejiang 315201 , P. R. China
| |
Collapse
|
24
|
Zhang H, Li H, Xu CC, Yang S. Heterogeneously Chemo/Enzyme-Functionalized Porous Polymeric Catalysts of High-Performance for Efficient Biodiesel Production. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02748] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Heng Zhang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
- Institute for Chemicals and Fuels from Alternative Resources (ICFAR), Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Chunbao Charles Xu
- Institute for Chemicals and Fuels from Alternative Resources (ICFAR), Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450066, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| |
Collapse
|
25
|
Yoshii T, Umemoto D, Kuwahara Y, Mori K, Yamashita H. Engineering of Surface Environment of Pd Nanoparticle Catalysts on Carbon Support with Pyrene-Thiol Ligands for Semihydrogenation of Alkynes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37708-37719. [PMID: 31538475 DOI: 10.1021/acsami.9b12470] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A new type of pyrene-thiol derivative-modified Pd nanoparticle (NP) catalyst on a carbon black support for the efficient semihydrogenation of alkynes to alkenes is reported herein. Colloidal Pd NPs surrounded by pyrene-thiol modifiers were prepared using the two-phase Brust method followed by impregnation of carbon black materials. Based on the structural characterization of the prepared catalyst (PyC12S-Pd/VC) by NMR, UV-vis, FT-IR, TEM, HAADF-STEM, Pd K-edge XAFS, XRD, N2 adsorption, and XPS, we show that highly dispersed Pd NPs are immobilized on the catalysts via π-π interaction between pyrene groups bound to the Pd NPs and carbon black supports. PyC12S-Pd/VC efficiently catalyzes the alkyne semihydrogenation reaction while maintaining high alkene selectivity; an alkene selectivity of 94% is attained at 98% conversion after 5 h of reaction, and the selectivity was retained around 80% in 10 h of reaction. This performance is superior to that of a catalyst without pyrene groups and that of a commercial Lindlar catalyst. The steric hindrance of pyrene groups restricts access of the substrates to Pd NP surfaces, suppressing the unfavorable overhydrogenation of alkenes to alkanes, which is revealed by the solvent and substrate dependency on the catalytic performance and a DFT calculation study. Furthermore, the high selectivity and stability of PyC12S-Pd/VC are caused by the strong interaction between pyrene groups and carbon supports, which prevents the separation of pyrene modifiers and the leaching or sintering of Pd NPs during the catalytic reaction. It is demonstrated that the combination of Pd NPs, pyrene-thiol modifiers, and carbon supports offers high activity, alkene selectivity, and stability in the semihydrogenation reaction.
Collapse
Affiliation(s)
- Takeharu Yoshii
- Division of Materials and Manufacturing Science, Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita, Osaka 565-0871 , Japan
| | - Daiki Umemoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita, Osaka 565-0871 , Japan
| | - Yasutaka Kuwahara
- Division of Materials and Manufacturing Science, Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita, Osaka 565-0871 , Japan
- Elements Strategy Initiative for Catalysts & Batteries Kyoto University (ESICB) , Kyoto University , Katsura, Kyoto 615-8520 , Japan
| | - Kohsuke Mori
- Division of Materials and Manufacturing Science, Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita, Osaka 565-0871 , Japan
- Elements Strategy Initiative for Catalysts & Batteries Kyoto University (ESICB) , Kyoto University , Katsura, Kyoto 615-8520 , Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita, Osaka 565-0871 , Japan
- Elements Strategy Initiative for Catalysts & Batteries Kyoto University (ESICB) , Kyoto University , Katsura, Kyoto 615-8520 , Japan
| |
Collapse
|
26
|
Delley MF, Wu Z, Mundy ME, Ung D, Cossairt BM, Wang H, Mayer JM. Hydrogen on Cobalt Phosphide. J Am Chem Soc 2019; 141:15390-15402. [DOI: 10.1021/jacs.9b07986] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Murielle F. Delley
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Zishan Wu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - M. Elizabeth Mundy
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David Ung
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Brandi M. Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Hailiang Wang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - James M. Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|