1
|
Ahmed A, Kottke PA, Fedorov AG. Electrochemical Lensing for High Resolution Nanostructure Synthesis in Liquids. ACS APPLIED NANO MATERIALS 2024; 7:15438-15445. [PMID: 39022451 PMCID: PMC11249771 DOI: 10.1021/acsanm.4c02295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
The advancement of liquid phase electron/ion beam induced deposition has enabled an effective direct-write approach for functional nanostructure synthesis with the possibility of three-dimensional control of morphology. For formation of a metallic solid phase, the process employs ambient temperature, beam-guided, electrochemical reduction of precursor cations, resulting in rapid formation of structures, but with challenges for retention of resolution achievable via slower electron beam approaches. The possibility of spatial control of redox pathways via the use of water-ammonia solvents has opened avenues for improved nanostructure resolution without sacrificing the growth rate. In particular, ammonia enables "electrochemical lensing" in which a tightly confined and highly reducing environment is created locally to enable high resolution, rapid beam-directed nanostructure growth. We demonstrate this unique approach to high resolution synthesis through a combination of analysis and experiment.
Collapse
Affiliation(s)
- Auwais Ahmed
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Peter A. Kottke
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Andrei G. Fedorov
- George
W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute
for Bioengineering and Biosciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Jurczyk J, Höflich K, Madajska K, Berger L, Brockhuis L, Edwards TEJ, Kapusta C, Szymańska IB, Utke I. Ligand Size and Carbon-Chain Length Study of Silver Carboxylates in Focused Electron-Beam-Induced Deposition. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091516. [PMID: 37177061 PMCID: PMC10180361 DOI: 10.3390/nano13091516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Gas-assisted focused electron-beam-induced deposition is a versatile tool for the direct writing of complex-shaped nanostructures with unprecedented shape fidelity and resolution. While the technique is well-established for various materials, the direct electron beam writing of silver is still in its infancy. Here, we examine and compare five different silver carboxylates, three perfluorinated: [Ag2(µ-O2CCF3)2], [Ag2(µ-O2CC2F5)2], and [Ag2(µ-O2CC3F7)2], and two containing branched substituents: [Ag2(µ-O2CCMe2Et)2] and [Ag2(µ-O2CtBu)2], as potential precursors for focused electron-beam-induced deposition. All of the compounds show high sensitivity to electron dissociation and efficient dissociation of Ag-O bonds. The as-deposited materials have silver contents from 42 at.% to above 70 at.% and are composed of silver nano-crystals with impurities of carbon and fluorine between them. Precursors with the shortest carbon-fluorine chain ligands yield the highest silver contents. In addition, the deposited silver content depends on the balance of electron-induced ligand co-deposition and ligand desorption. For all of the tested compounds, low electron flux was related to high silver content. Our findings demonstrate that silver carboxylates constitute a promising group of precursors for gas-assisted focused electron beam writing of high silver content materials.
Collapse
Affiliation(s)
- Jakub Jurczyk
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland
- Faculty of Physics and Applied Computer Science, AGH University of Krakow Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Katja Höflich
- Helmholtz-Zentrum Berlin Für Materialien und Energie, Nanoscale Structures and Microscopic Analysis, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Ferdinand-Braun Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin, Germany
| | - Katarzyna Madajska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Luisa Berger
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland
| | - Leo Brockhuis
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland
- Faculty of Physics and Applied Computer Science, AGH University of Krakow Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Thomas Edward James Edwards
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland
| | - Czesław Kapusta
- Faculty of Physics and Applied Computer Science, AGH University of Krakow Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Iwona B Szymańska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Ivo Utke
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland
| |
Collapse
|
3
|
Jurczyk J, Pillatsch L, Berger L, Priebe A, Madajska K, Kapusta C, Szymańska IB, Michler J, Utke I. In Situ Time-of-Flight Mass Spectrometry of Ionic Fragments Induced by Focused Electron Beam Irradiation: Investigation of Electron Driven Surface Chemistry inside an SEM under High Vacuum. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2710. [PMID: 35957140 PMCID: PMC9370286 DOI: 10.3390/nano12152710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Recent developments in nanoprinting using focused electron beams have created a need to develop analysis methods for the products of electron-induced fragmentation of different metalorganic compounds. The original approach used here is termed focused-electron-beam-induced mass spectrometry (FEBiMS). FEBiMS enables the investigation of the fragmentation of electron-sensitive materials during irradiation within the typical primary electron beam energy range of a scanning electron microscope (0.5 to 30 keV) and high vacuum range. The method combines a typical scanning electron microscope with an ion-extractor-coupled mass spectrometer setup collecting the charged fragments generated by the focused electron beam when impinging on the substrate material. The FEBiMS of fragments obtained during 10 keV electron irradiation of grains of silver and copper carboxylates and shows that the carboxylate ligand dissociates into many smaller volatile fragments. Furthermore, in situ FEBiMS was performed on carbonyls of ruthenium (solid) and during electron-beam-induced deposition, using tungsten carbonyl (inserted via a gas injection system). Loss of carbonyl ligands was identified as the main channel of dissociation for electron irradiation of these carbonyl compounds. The presented results clearly indicate that FEBiMS analysis can be expanded to organic, inorganic, and metal organic materials used in resist lithography, ice (cryo-)lithography, and focused-electron-beam-induced deposition and becomes, thus, a valuable versatile analysis tool to study both fundamental and process parameters in these nanotechnology fields.
Collapse
Affiliation(s)
- Jakub Jurczyk
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Lex Pillatsch
- TOFWERK AG, Schorenstrasse 39, CH-3645 Thun, Switzerland
| | - Luisa Berger
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | - Agnieszka Priebe
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | - Katarzyna Madajska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Czesław Kapusta
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Iwona B. Szymańska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Johann Michler
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | - Ivo Utke
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| |
Collapse
|
4
|
Salvador-Porroche A, Herrer L, Sangiao S, de Teresa JM, Cea P. Low-resistivity Pd nanopatterns created by a direct electron beam irradiation process free of post-treatment steps. NANOTECHNOLOGY 2022; 33:405302. [PMID: 34983030 DOI: 10.1088/1361-6528/ac47cf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/04/2022] [Indexed: 05/28/2023]
Abstract
The ability to create metallic patterned nanostructures with excellent control of size, shape and spatial orientation is of utmost importance in the construction of next-generation electronic and optical devices as well as in other applications such as (bio)sensors, reactive surfaces for catalysis, etc. Moreover, development of simple, rapid and low-cost fabrication processes of metallic patterned nanostructures is a challenging issue for the incorporation of such devices in real market applications. In this contribution, a direct-write method that results in highly conducting palladium-based nanopatterned structures without the need of applying subsequent curing processes is presented. Spin-coated films of palladium acetate were irradiated with an electron beam to produce palladium nanodeposits (PdNDs) with controlled size, shape and height. The use of different electron doses was investigated and its influence on the PdNDs features determined, namely: (1) thickness of the deposits, (2) atomic percentage of palladium content, (3) oxidation state of palladium in the deposit, (4) morphology of the sample and grain size of the Pd nanocrystals and (5) resistivity. It has been probed that the use of high electron doses, 30000μC cm-2results in the lowest resistivity reported to date for PdNDs, namely 145μΩ cm, which is only one order of magnitude higher than bulk palladium. This result paves the way for development of simplified lithography processes of nanostructured deposits avoiding subsequent post-treatment steps.
Collapse
Affiliation(s)
- Alba Salvador-Porroche
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Laboratorio de Microscopías avanzadas (LMA), Universidad de Zaragoza, E-50018 Zaragoza, Spain
| | - Lucía Herrer
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Laboratorio de Microscopías avanzadas (LMA), Universidad de Zaragoza, E-50018 Zaragoza, Spain
| | - Soraya Sangiao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Laboratorio de Microscopías avanzadas (LMA), Universidad de Zaragoza, E-50018 Zaragoza, Spain
| | - José María de Teresa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Laboratorio de Microscopías avanzadas (LMA), Universidad de Zaragoza, E-50018 Zaragoza, Spain
| | - Pilar Cea
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Laboratorio de Microscopías avanzadas (LMA), Universidad de Zaragoza, E-50018 Zaragoza, Spain
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, E-50009 Zaragoza, Spain
| |
Collapse
|
5
|
Yu JC, Abdel-Rahman MK, Fairbrother DH, McElwee-White L. Charged Particle-Induced Surface Reactions of Organometallic Complexes as a Guide to Precursor Design for Electron- and Ion-Induced Deposition of Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48333-48348. [PMID: 34633789 DOI: 10.1021/acsami.1c12327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Focused electron beam-induced deposition (FEBID) and focused ion beam-induced deposition (FIBID) are direct-write fabrication techniques that use focused beams of charged particles (electrons or ions) to create 3D metal-containing nanostructures by decomposing organometallic precursors onto substrates in a low-pressure environment. For many applications, it is important to minimize contamination of these nanostructures by impurities from incomplete ligand dissociation and desorption. This spotlight on applications describes the use of ultra high vacuum surface science studies to obtain mechanistic information on electron- and ion-induced processes in organometallic precursor candidates. The results are used for the mechanism-based design of custom precursors for FEBID and FIBID.
Collapse
Affiliation(s)
- Jo-Chi Yu
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Mohammed K Abdel-Rahman
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218-2685, United States
| | - D Howard Fairbrother
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218-2685, United States
| | - Lisa McElwee-White
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
6
|
Jungwirth F, Porrati F, Schuck AG, Huth M, Barth S. Direct Writing of Cobalt Silicide Nanostructures Using Single-Source Precursors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48252-48259. [PMID: 34592822 DOI: 10.1021/acsami.1c14117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two new precursors for focused electron beam-induced deposition (FEBID) of cobalt silicides have been synthesized and evaluated. The H3SiCo(CO)4 and H2Si(Co(CO)4)2 single-source precursors retain the initial metal ratios and show low sensitivity to changes in the FEBID parameters such as acceleration voltage, beam current, and precursor pressure. The precursors allow the direct writing of material containing ∼55 to 60 at % total metal/metalloid content combined with high growth rates. During the deposition process an average of ∼80% of the carbonyl ligands are cleaved off in these planar deposits. Postgrowth electron curing does not change the deposits' composition, but resistivities decrease after the curing procedure. Temperature-dependent electrical properties indicate the presence of a granular metal for both cured samples and the as-grown Co2Si deposit, while the as-grown CoSi material is on the insulating side of the metal-insulator transition. The observed magnetoresistance behavior is indicative of tunneling magnetoresistance and is substantially reduced upon postgrowth irradiation treatment.
Collapse
Affiliation(s)
- Felix Jungwirth
- Physikalisches Institut, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Fabrizio Porrati
- Physikalisches Institut, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Alfons G Schuck
- Physikalisches Institut, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Michael Huth
- Physikalisches Institut, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Sven Barth
- Physikalisches Institut, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
7
|
Le HT, Haque RI, Ouyang Z, Lee SW, Fried SI, Zhao D, Qiu M, Han A. MEMS inductor fabrication and emerging applications in power electronics and neurotechnologies. MICROSYSTEMS & NANOENGINEERING 2021; 7:59. [PMID: 34567771 PMCID: PMC8433479 DOI: 10.1038/s41378-021-00275-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 05/08/2023]
Abstract
MEMS inductors are used in a wide range of applications in micro- and nanotechnology, including RF MEMS, sensors, power electronics, and Bio-MEMS. Fabrication technologies set the boundary conditions for inductor design and their electrical and mechanical performance. This review provides a comprehensive overview of state-of-the-art MEMS technologies for inductor fabrication, presents recent advances in 3D additive fabrication technologies, and discusses the challenges and opportunities of MEMS inductors for two emerging applications, namely, integrated power electronics and neurotechnologies. Among the four top-down MEMS fabrication approaches, 3D surface micromachining and through-substrate-via (TSV) fabrication technology have been intensively studied to fabricate 3D inductors such as solenoid and toroid in-substrate TSV inductors. While 3D inductors are preferred for their high-quality factor, high power density, and low parasitic capacitance, in-substrate TSV inductors offer an additional unique advantage for 3D system integration and efficient thermal dissipation. These features make in-substrate TSV inductors promising to achieve the ultimate goal of monolithically integrated power converters. From another perspective, 3D bottom-up additive techniques such as ice lithography have great potential for fabricating inductors with geometries and specifications that are very challenging to achieve with established MEMS technologies. Finally, we discuss inspiring and emerging research opportunities for MEMS inductors.
Collapse
Affiliation(s)
- Hoa Thanh Le
- The Rowland Institute at Harvard, Harvard University, Cambridge, MA USA
| | - Rubaiyet I. Haque
- Department of Mechanical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Ziwei Ouyang
- Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Seung Woo Lee
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Shelley I. Fried
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
- Boston VA Healthcare System, Boston, MA USA
| | - Ding Zhao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Min Qiu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Anpan Han
- Department of Mechanical Engineering, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
8
|
Rohdenburg M, Boeckers H, Brewer CR, McElwee-White L, Swiderek P. Efficient NH 3-based process to remove chlorine from electron beam deposited ruthenium produced from (η 3-C 3H 5)Ru(CO) 3Cl. Sci Rep 2020; 10:10901. [PMID: 32616780 PMCID: PMC7331610 DOI: 10.1038/s41598-020-67803-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 06/12/2020] [Indexed: 11/09/2022] Open
Abstract
The fabrication of Ru nanostructures by focused electron beam induced deposition (FEBID) requires suitable precursor molecules and processes to obtain the pure metal. So far this is problematic because established organometallic Ru precursors contain large organic ligands, such as cyclopentadienyl anions, that tend to become embedded in the deposit during the FEBID process. Recently, (η3-C3H5)Ru(CO)3X (X = Cl, Br) has been proposed as an alternative precursor because CO can easily desorb under electron exposure. However, allyl and Cl ligands remain behind after electron irradiation and the removal of the halide requires extensive electron exposures. Auger electron spectroscopy is applied to demonstrate a postdeposition purification process in which NH3 is used as a reactant that enhances the removal of Cl from deposits formed by electron irradiation of thin condensed layers of (η3-C3H5)Ru(CO)3Cl. The loss of CO from the precursor during electron-induced decomposition enables a reaction between NH3 and the Cl ligands that produces HCl. The combined use of electron-stimulated desorption experiments and thermal desorption spectrometry further reveals that thermal reactions contribute to the loss of CO in the FEBID process but remove only minor amounts of the allyl and Cl ligands.
Collapse
Affiliation(s)
- Markus Rohdenburg
- Institute for Applied and Physical Chemistry (IAPC), Fachbereich 2 (Chemie/Biologie), University of Bremen, Leobener Str. 5 (NW2), 28359, Bremen, Germany.
| | - Hannah Boeckers
- Institute for Applied and Physical Chemistry (IAPC), Fachbereich 2 (Chemie/Biologie), University of Bremen, Leobener Str. 5 (NW2), 28359, Bremen, Germany
| | - Christopher R Brewer
- Department of Chemistry, University of Florida, Gainesville, FL, 32611-7200, USA
| | - Lisa McElwee-White
- Department of Chemistry, University of Florida, Gainesville, FL, 32611-7200, USA
| | - Petra Swiderek
- Institute for Applied and Physical Chemistry (IAPC), Fachbereich 2 (Chemie/Biologie), University of Bremen, Leobener Str. 5 (NW2), 28359, Bremen, Germany.
| |
Collapse
|
9
|
Utke I, Michler J, Winkler R, Plank H. Mechanical Properties of 3D Nanostructures Obtained by Focused Electron/Ion Beam-Induced Deposition: A Review. MICROMACHINES 2020; 11:E397. [PMID: 32290292 PMCID: PMC7231341 DOI: 10.3390/mi11040397] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 11/17/2022]
Abstract
This article reviews the state-of-the -art of mechanical material properties and measurement methods of nanostructures obtained by two nanoscale additive manufacturing methods: gas-assisted focused electron and focused ion beam-induced deposition using volatile organic and organometallic precursors. Gas-assisted focused electron and ion beam-induced deposition-based additive manufacturing technologies enable the direct-write fabrication of complex 3D nanostructures with feature dimensions below 50 nm, pore-free and nanometer-smooth high-fidelity surfaces, and an increasing flexibility in choice of materials via novel precursors. We discuss the principles, possibilities, and literature proven examples related to the mechanical properties of such 3D nanoobjects. Most materials fabricated via these approaches reveal a metal matrix composition with metallic nanograins embedded in a carbonaceous matrix. By that, specific material functionalities, such as magnetic, electrical, or optical can be largely independently tuned with respect to mechanical properties governed mostly by the matrix. The carbonaceous matrix can be precisely tuned via electron and/or ion beam irradiation with respect to the carbon network, carbon hybridization, and volatile element content and thus take mechanical properties ranging from polymeric-like over amorphous-like toward diamond-like behavior. Such metal matrix nanostructures open up entirely new applications, which exploit their full potential in combination with the unique 3D additive manufacturing capabilities at the nanoscale.
Collapse
Affiliation(s)
- Ivo Utke
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, CH-3602 Thun, Switzerland
| | - Johann Michler
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, CH-3602 Thun, Switzerland
| | - Robert Winkler
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes (DEFINE), Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
| | - Harald Plank
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes (DEFINE), Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
- Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
| |
Collapse
|