1
|
Wu M, Zhang W, Zhou X, Wang Z, Li S, Guo C, Yang Y, Zhang R, Zhang Z, Sun X, Gong T. An in situ forming gel co-loaded with pirarubicin and celecoxib inhibits postoperative recurrence and metastasis of breast cancer. Int J Pharm 2024; 653:123897. [PMID: 38360289 DOI: 10.1016/j.ijpharm.2024.123897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/16/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Surgical removal combined with postoperative chemotherapy is still the mainstay of treatment for most solid tumors. Although chemotherapy reduces the risk of recurrence and metastasis after surgery, it may produce serious adverse effects and impair patient compliance. In situ drug delivery systems are promising tools for postoperative cancer treatment, improving drug delivery efficiency and reducing side effects. Herein, an injectable phospholipid-based in situ forming gel (IPG) was prepared for the co-delivery of antitumor agent pirarubicin (THP) and cyclooxygenase-2 (COX-2) inhibitor celecoxib (CXB) in the surgical incision, and the latter are used extensively in adjuvant chemotherapy for cancer. After injection, the IPG co-loaded with THP and CXB (THP-CXB-IPG) underwent spontaneous phase transition and formed a drug reservoir that fitted the irregular surgical incisions perfectly. In vitro drug release studies and in vivo pharmacokinetic analysis had demonstrated the sustained release behaviors of THP-CXB-IPG. The in vivo therapeutic efficacy was evaluated in mice that had undergone surgical resection of breast cancer, and the THP-CXB-IPG showed considerable inhibition of residual tumor growth after surgery and reduced the incidence of pulmonary metastasis. Moreover, it reduced the systemic toxicity of chemotherapeutic agents. Therefore, THP-CXB-IPG can be a promising candidate for preventing postoperative recurrence and metastasis.
Collapse
Affiliation(s)
- Mengying Wu
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wei Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xueru Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zijun Wang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Sha Li
- NMPA Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, Bioanalytical Service Center of Sichuan Institute for Drug Control, Chengdu 611731, China
| | - Chenqi Guo
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuping Yang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rongping Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Ji Q, Zhu H, Qin Y, Zhang R, Wang L, Zhang E, Zhou X, Meng R. GP60 and SPARC as albumin receptors: key targeted sites for the delivery of antitumor drugs. Front Pharmacol 2024; 15:1329636. [PMID: 38323081 PMCID: PMC10844528 DOI: 10.3389/fphar.2024.1329636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Albumin is derived from human or animal blood, and its ability to bind to a large number of endogenous or exogenous biomolecules makes it an ideal drug carrier. As a result, albumin-based drug delivery systems are increasingly being studied. With these in mind, detailed studies of the transport mechanism of albumin-based drug carriers are particularly important. As albumin receptors, glycoprotein 60 (GP60) and secreted protein acidic and rich in cysteine (SPARC) play a crucial role in the delivery of albumin-based drug carriers. GP60 is expressed on vascular endothelial cells and enables albumin to cross the vascular endothelial cell layer, and SPARC is overexpressed in many types of tumor cells, while it is minimally expressed in normal tissue cells. Thus, this review supplements existing articles by detailing the research history and specific biological functions of GP60 or SPARC and research advances in the delivery of antitumor drugs using albumin as a carrier. Meanwhile, the deficiencies and future perspectives in the study of the interaction of albumin with GP60 and SPARC are also pointed out.
Collapse
Affiliation(s)
- Qingzhi Ji
- School of Pharmacy, Yancheng Teachers University, Yancheng, China
| | - Huimin Zhu
- Sheyang County Comprehensive Inspection and Testing Center, Yancheng, China
| | - Yuting Qin
- School of Pharmacy, Yancheng Teachers University, Yancheng, China
| | - Ruiya Zhang
- Department of Immunology, Medical School, Nantong University, Nantong, China
| | - Lei Wang
- Department of Immunology, Medical School, Nantong University, Nantong, China
| | - Erhao Zhang
- Department of Immunology, Medical School, Nantong University, Nantong, China
| | - Xiaorong Zhou
- Department of Immunology, Medical School, Nantong University, Nantong, China
| | - Run Meng
- Department of Immunology, Medical School, Nantong University, Nantong, China
| |
Collapse
|
3
|
Aljabbari A, Kihara S, Rades T, Boyd BJ. The biomolecular gastrointestinal corona in oral drug delivery. J Control Release 2023; 363:536-549. [PMID: 37776905 DOI: 10.1016/j.jconrel.2023.09.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
The formation of a biomolecular corona on exogenous particles in plasma is well studied and is known to dictate the biodistribution and cellular interactions of nanomedicine formulations. In contrast, while the oral route is the most favorable administration method for pharmaceuticals, little is known about the formation and composition of the corona formed by biomolecules on particles within the gastrointestinal tract. This work reviews the current literature understanding of (1) the formation of drug particles after oral administration, (2) the formation of a biomolecular corona within the gastrointestinal tract ("the gastrointestinal corona"), and (3) the possible implications of the formation of a gastrointestinal corona on the interactions of drug particles with their biological environment. In doing so, this work aims to establish the significance of the formation of a gastrointestinal corona in oral drug delivery to ultimately arrive at new avenues to control the behavior of orally administered pharmaceuticals.
Collapse
Affiliation(s)
- Anas Aljabbari
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø 2100, Denmark
| | - Shinji Kihara
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø 2100, Denmark
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø 2100, Denmark
| | - Ben J Boyd
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø 2100, Denmark; Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
4
|
Gama P, Juárez P, Rodríguez-Hernández AG, Vazquez-Duhalt R. Glucose oxidase virus-based nanoreactors for smart breast cancer therapy. Biotechnol J 2023; 18:e2300199. [PMID: 37417791 DOI: 10.1002/biot.202300199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/05/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Breast cancer is the most common malignant tumor disease and the leading cause of female mortality. The evolution of nanomaterials science opens the opportunity to improve traditional cancer therapies, enhancing therapy efficiency and reducing side effects. METHODS AND MAJOR RESULTS Herein, protein cages conceived as enzymatic nanoreactors were designed and produced by using virus-like nanoparticles (VLPs) from Brome mosaic virus (BMV) and containing the catalytic activity of glucose oxidase (GOx) enzyme. The GOx enzyme was encapsulated into the BMV capsid (VLP-GOx), and the resulting enzymatic nanoreactors were coated with human serum albumin (VLP-GOx@HSA) for breast tumor cell targeting. The effect of the synthesized GOx nanoreactors on breast tumor cell lines was studied in vitro. Both nanoreactor preparations VLP-GOx and VLP-GOx@HSA showed to be highly cytotoxic for breast tumor cell cultures. Cytotoxicity for human embryonic kidney cells was also found. The monitoring of nanoreactor treatment on triple-negative breast cancer cells showed an evident production of oxygen by the catalase antioxidant enzyme induced by the high production of hydrogen peroxide from GOx activity. CONCLUSIONS AND IMPLICATIONS The nanoreactors containing GOx activity are entirely suitable for cytotoxicity generation in tumor cells. The HSA functionalization of the VLP-GOx nanoreactors, a strategy designed for selective cancer targeting, showed no improvement in the cytotoxic effect. The GOx containing enzymatic nanoreactors seems to be an interesting alternative to improve the current cancer therapy. In vivo studies are ongoing to reinforce the effectiveness of this treatment strategy.
Collapse
Affiliation(s)
- Pedro Gama
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico
- Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Mexico
| | - Patricia Juárez
- Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Mexico
| | - Ana G Rodríguez-Hernández
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico
| | - Rafael Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico
| |
Collapse
|
5
|
Shi S, Ren H, Xie Y, Yu M, Chen Y, Yang L. Engineering advanced nanomedicines against central nervous system diseases. MATERIALS TODAY 2023; 69:355-392. [DOI: 10.1016/j.mattod.2023.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Zhu P, Cai L, Liu Q, Feng S, Ruan H, Zhang L, Zhou L, Jiang H, Wang H, Wang J, Chen J. One-pot synthesis of α-Linolenic acid nanoemulsion-templated drug-loaded silica mesocomposites as efficient bactericide against drug-resistant Mycobacterium tuberculosis. Eur J Pharm Sci 2022; 176:106261. [PMID: 35840102 DOI: 10.1016/j.ejps.2022.106261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 12/15/2022]
Abstract
Nowadays, pathogenic infection has posed a severe threat to the public health and environmental sanitation, urging a continuous search of efficacious and safe bactericidal agents of various formulated forms. Here, a facile one-pot hydrothermal preparation of mesoporous silica nanoparticles using ultrasonication-assisted nanoemulsion of α-Linolenic acid (α-LA) as template was developed. The formed silica mesocomposite at water/fatty-acid surface provides an easy yet green synthesis route, which can be generalized for the further encapsulation of hydrophobic drugs such as antimycobacterial Rifampicin (RIF). The obtained α-LA nanoemulsion-templated silica nanoparticles (LNS NPs), with a weight content of ∼17% α-LA in the composite, showed apparent antibacterial effect against Staphylococcus aureus (S. aureus). By comparison, the removal of α-LA from the silica nanoparticles (LNS-1 NPs) resulted in the composite of enlarged pore size with negligible bactericidal activities. Notably, the Isoniazide (INH) and Rifampicin (RIF)-encapsulated LNS NPs exhibited outstanding antimycobacterial activity against both drug-sensitive and drug-resistant Mycobacterium tuberculosis (M. tuberculosis). The obtained highly biocompatible, biosafe and low-energy consumptive α-LA-contained mesostructured silica-based bactericide holds promising therapeutic potentials to tackle the emerging drug-resistant infectious microbes.
Collapse
Affiliation(s)
- Ping Zhu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ling Cai
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qiao Liu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, China
| | - Shanwu Feng
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Lane, Nanjing 210004, China
| | - Hongjie Ruan
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Lane, Nanjing 210004, China
| | - Li Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Liuzhu Zhou
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Huijun Jiang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hongsheng Wang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, St. 12 Jiangwangmiao, Nanjing 210042, China.
| | - Jianming Wang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jin Chen
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar 843300, China.
| |
Collapse
|
7
|
Feng J, Xiang L, Fang C, Tan Y, Li Y, Gong T, Wu Q, Gong T, Zhang Z. Dual-Targeting of Tumor Cells and Tumor-Associated Macrophages by Palmitic Acid Modified Albumin Nanoparticles for Antitumor and Antimetastasis Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14887-14902. [PMID: 35344323 DOI: 10.1021/acsami.1c23274] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tumor-associated macrophages (TAMs), the most abundant immune cells in the tumor microenvironment (TME), profoundly affect the occurrence and development of tumors. To overcome the common limitations of TAMs-targeted delivery systems, such as off-target toxicity, high cost, and transformation probability, we fabricated pirarubicin (THP)-loaded palmitic acid modified human serum albumin nanoparticles (THP-PSA NPs) for dual-targeting of tumor cells and TAMs via acidic secretory proteins rich in cysteine (SPARC) and scavenger receptor-A (SR-A), respectively. In vitro, the THP-PSA NPs exhibit stronger cytotoxicity against 4T1 and M2 macrophages compared with THP-loaded human serum albumin nanoparticles (THP-HSA NPs). In vivo, the infiltration of myeloid-derived suppressor cells (MDSCs) and the secretion of immunosuppressive cytokines significantly decrease after effective elimination of the TAMs through the THP-PSA NPs treatment; this is accompanied by an increase in the immunostimulatory cytokine expression level. Moreover, the antitumor and antimetastasis experimental results indicate that the tumor volumes in mice treated with the THP-PSA NPs are effectively controlled, resulting in an inhibition rate of 81.0% and almost no metastases in the lung tissues. Finally, in terms of biological safety, the THP-PSA NPs perform similar to THP-HSA NPs, causing no damage to the liver or kidney.
Collapse
Affiliation(s)
- Jiaxing Feng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ling Xiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Changlong Fang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yulu Tan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yan Li
- Sichuan Institute for Drug Control NMPA Key Laboratory for Quality Control and Evaluation of Vaccines and Biological Products, Chengdu 611731, China
| | - Ting Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qingsi Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Kim T, Suh J, Kim J, Kim WJ. Lymph-Directed Self-Immolative Nitric Oxide Prodrug for Inhibition of Intractable Metastatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:2101935. [PMID: 35317221 PMCID: PMC8922110 DOI: 10.1002/advs.202101935] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 11/30/2021] [Indexed: 05/05/2023]
Abstract
There has been a significant clinical demand for lymph-directed anti-metastatic therapy as tumor-draining lymph nodes play pivotal roles in cancer metastasis which accounts for more than 90% of tumor-related deaths. Despite the high potential of nitric oxide (NO) in anti-cancer therapy owing to its biocompatibility and tumor cell-specific cytotoxicity, the poor stability and lack of target specificity of present NO donors and delivery systems have limited its clinical applications. Herein, a redox-triggered self-immolative NO prodrug that can be readily conjugated to various materials containing free thiol groups such as albumin, is reported. The prodrug and its conjugates demonstrate smart release of NO donor via intramolecular cyclization under reductive conditions, followed by spontaneously generating NO in physiological conditions. The albumin-prodrug conjugate inhibits tumor metastasis by inducing cytotoxicity preferentially on tumor cells after efficiently draining into lymph nodes. This novel prodrug can contribute to the development of on-demand NO delivery systems for anti-metastatic therapy and other treatments.
Collapse
Affiliation(s)
- Taejeong Kim
- Department of ChemistryPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohang37673Republic of Korea
| | - Jeeyeon Suh
- Department of ChemistryPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohang37673Republic of Korea
| | - Jihoon Kim
- Parker H. Petit Institute for Bioengineering and BioscienceGeorgia Institute of Technology315 Ferst Dr NWAtlantaGA30332USA
| | - Won Jong Kim
- Department of ChemistryPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohang37673Republic of Korea
- OmniaMed Co. LtdPohang37666Republic of Korea
| |
Collapse
|
9
|
Zhang M, Qin X, Zhao Z, Du Q, Li Q, Jiang Y, Luan Y. A self-amplifying nanodrug to manipulate the Janus-faced nature of ferroptosis for tumor therapy. NANOSCALE HORIZONS 2022; 7:198-210. [PMID: 35023537 DOI: 10.1039/d1nh00506e] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ferroptosis, an unusual non-apoptotic cell death caused by the iron-dependent accumulation of lipid peroxide, enables the flexible design of an antitumor platform. Specifically, as a positive role, ferroptosis can induce an immune response accompanied with the interferon-γ (IFN-γ)-triggered disruption of the glutathione peroxidase 4 pathway for cascade enhancement of ferroptotic cell death and ferroptosis-induced immunotherapeutic efficacy. However, as a negative role, ferroptosis also triggers inflammation-associated immunosuppression by up-regulation of the cyclooxygenase-2/prostaglandin E2 pathway and IFN-γ-associated adaptive immune resistance by up-regulation of programmed death ligand-1 (PD-L1), impeding the antitumor efficacy of multiple immune cells by immune escape. Negative and positive roles endow ferroptosis with a Janus-faced nature. It is urgent to manipulate the Janus-faced nature of ferroptosis for eliciting the maximized ferroptotic therapeutic efficacy. Herein, a self-amplifying nanodrug (RCH NPs) was designed by co-assembling hemin (ferric porphyrin), celecoxib (anti-inflammatory drug) and roscovitine (cyclin-dependent kinase 5 inhibitor) with the assistance of human serum albumin for reprograming the Janus-faced nature of ferroptosis. During hemin-triggered ferroptosis, celecoxib disrupted the inflammation-related immunosuppression while roscovitine destroyed the IFN-γ-induced up-regulation of PD-L1 via the genetic blockade effect. The RCH NPs thus demonstrated superior therapeutic effects on tumors, thanks to self-amplifying ferroptotic immunotherapy. Our work offers a conceptually innovative strategy for harnessing ferroptosis against tumors.
Collapse
Affiliation(s)
- Mengzhu Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Xiaohan Qin
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Zhipeng Zhao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Qian Du
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Qian Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Yue Jiang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Yuxia Luan
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
10
|
Li J, Wang H, Xu J, Wu S, Han M, Li J, Wang Q, Ge Z. Mimic Lipoproteins Responsive to Intratumoral pH and Allosteric Enzyme for Efficient Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:404-416. [PMID: 34962752 DOI: 10.1021/acsami.1c21810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Discoid-reconstituted high-density lipoprotein (d-rHDL) is advantageous for tumor-targeted drug delivery due to its small size, long circulation, and efficient internalization into cancer cells. Nevertheless, an allosteric reaction catalyzed by serum lecithin-cholesterol acyltransferase (LCAT) may cause drug leakage from d-rHDL and reduce its targeting efficiency. Conversely, similar "structural weakening" catalyzed by acyl-coenzyme A-cholesterol acyltransferase (ACAT) inside tumor cells can stimulate precise intracellular drug release. Therefore, we synthesized and characterized a pH-sensitive n-butyraldehyde bi-cholesterol (BCC) to substitute for cholesterol in the d-rHDL particle, and bovine serum albumin (BSA) was used as the targeting agent. This dual pH- and ACAT-sensitive d-rHDL (d-d-rHDL) was small with a disk-like appearance. Morphological transformation observation, in vitro release assays, and differences in internalization upon LCAT treatment confirmed that BCC effectively inhibited the remodeling behavior and enhanced the tumor-targeting efficiency. The accumulation of d-d-rHDL in HepG2 cells was significantly higher than that in LO2 cells, and accumulation was inhibited by free BSA. The pH sensitivity was verified, and d-d-rHDL achieved efficient drug release in vitro and inside tumor cells after exposure to acidic conditions and ACAT. Confocal laser scanning microscopy demonstrated that d-d-rHDL escaped from lysosomes and became distributed evenly throughout cells. Moreover, in vivo imaging assays in a tumor-bearing mouse model demonstrated tumor-targeting properties of d-d-rHDL, and paclitaxel-loaded d-d-rHDL showed strong anticancer activity in these mice. This dual-sensitive d-d-rHDL thus combines structural stability in plasma and an intracellular pH/ACAT-triggered drug release to facilitate inhibition of tumor growth.
Collapse
Affiliation(s)
- Jin Li
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Hui Wang
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Jingbo Xu
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Shengyue Wu
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Mengmeng Han
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Jianfei Li
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Qianqian Wang
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Zhiming Ge
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| |
Collapse
|
11
|
Fu Y, Yang S, Liu Y, Liu J, Wang Q, Li F, Shang X, Teng Y, Guo N, Yu P. Peptide Modified Albumin-Paclitaxel Nanoparticles for Improving Chemotherapy and Preventing Metastasis. Macromol Biosci 2021; 22:e2100404. [PMID: 34964544 DOI: 10.1002/mabi.202100404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/09/2021] [Indexed: 11/08/2022]
Abstract
Metastasis and recurrence are the main causes of death in cancer patients, however, there are few medicines which could inhibit tumor growth and metastasis at the same time. In this work, we reported a novel nano-drug delivery system (NDDS) based on targeting ligand modified albumin. The hydrophobic drug (paclitaxel) induced albumin self-assembly after treatment of albumin with L-cysteine, forming drug-loaded nanoparticles with a size of 100-200 nm. Importantly, the albumin nanoparticles displayed enhanced antitumor efficacy against tumor growth/lung metastasis in 4T1 bearing nude mice and prevention of lung metastasis in a B16-F10 model. This study provides a facile method for hydrophobic chemo-drugs loaded albumin nanoparticles preparation and a promising chemotherapy with effective tumor growth inhibition and metastasis prevention. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ying Fu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Avenue, TEDA, Tianjin, 300457, China
| | - Shuyan Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Avenue, TEDA, Tianjin, 300457, China
| | - Yuning Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Avenue, TEDA, Tianjin, 300457, China
| | - Jian Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Avenue, TEDA, Tianjin, 300457, China.,CanSino Biologics Inc., 401-420, 4th Floor, Biomedical Park, 185 South Avenue, TEDA West District, Tianjin, 301800, China
| | - Qizhi Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Avenue, TEDA, Tianjin, 300457, China
| | - Fengyan Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Avenue, TEDA, Tianjin, 300457, China
| | - Xiuzhuan Shang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Avenue, TEDA, Tianjin, 300457, China
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Avenue, TEDA, Tianjin, 300457, China
| | - Na Guo
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Avenue, TEDA, Tianjin, 300457, China
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Avenue, TEDA, Tianjin, 300457, China
| |
Collapse
|
12
|
Wang H, Zheng Y, Sun Q, Zhang Z, Zhao M, Peng C, Shi S. Ginsenosides emerging as both bifunctional drugs and nanocarriers for enhanced antitumor therapies. J Nanobiotechnology 2021; 19:322. [PMID: 34654430 PMCID: PMC8518152 DOI: 10.1186/s12951-021-01062-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Ginsenosides, the main components isolated from Panax ginseng, can play a therapeutic role by inducing tumor cell apoptosis and reducing proliferation, invasion, metastasis; by enhancing immune regulation; and by reversing tumor cell multidrug resistance. However, clinical applications have been limited because of ginsenosides' physical and chemical properties such as low solubility and poor stability, as well as their short half-life, easy elimination, degradation, and other pharmacokinetic properties in vivo. In recent years, developing a ginsenoside delivery system for bifunctional drugs or carriers has attracted much attention from researchers. To create a precise treatment strategy for cancer, a variety of nano delivery systems and preparation technologies based on ginsenosides have been conducted (e.g., polymer nanoparticles [NPs], liposomes, micelles, microemulsions, protein NPs, metals and inorganic NPs, biomimetic NPs). It is desirable to design a targeted delivery system to achieve antitumor efficacy that can not only cross various barriers but also can enhance immune regulation, eventually converting to a clinical application. Therefore, this review focused on the latest research about delivery systems encapsulated or modified with ginsenosides, and unification of medicines and excipients based on ginsenosides for improving drug bioavailability and targeting ability. In addition, challenges and new treatment methods were discussed to support the development of these new tumor therapeutic agents for use in clinical treatment.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
13
|
Spada A, Emami J, Tuszynski JA, Lavasanifar A. The Uniqueness of Albumin as a Carrier in Nanodrug Delivery. Mol Pharm 2021; 18:1862-1894. [PMID: 33787270 DOI: 10.1021/acs.molpharmaceut.1c00046] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Albumin is an appealing carrier in nanomedicine because of its unique features. First, it is the most abundant protein in plasma, endowing high biocompatibility, biodegradability, nonimmunogenicity, and safety for its clinical application. Second, albumin chemical structure and conformation allows interaction with many different drugs, potentially protecting them from elimination and metabolism in vivo, thus improving their pharmacokinetic properties. Finally, albumin can interact with receptors overexpressed in many diseased tissues and cells, providing a unique feature for active targeting of the disease site without the addition of specific ligands to the nanocarrier. For this reason, albumin, characterized by an extended serum half-life of around 19 days, has the potential of promoting half-life extension and targeted delivery of drugs. Therefore, this article focuses on the importance of albumin as a nanodrug delivery carrier for hydrophobic drugs, taking advantage of the passive as well as active targeting potential of this nanocarrier. Particular attention is paid to the breakthrough NAB-Technology, with emphasis on the advantages of Nab-Paclitaxel (Abraxane), compared to the solvent-based formulations of Paclitaxel, i.e., CrEL-paclitaxel (Taxol) in a clinical setting. Finally, the role of albumin in carrying anticancer compounds is depicted, with a particular focus on the albumin-based formulations that are currently undergoing clinical trials. The article sheds light on the power of an endogenous substance, such as albumin, as a drug delivery system, signifies the importance of the drug vehicle in drug performance in the biological systems, and highlights the possible future trends in the use of this drug delivery system.
Collapse
Affiliation(s)
- Alessandra Spada
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada.,DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Jaber Emami
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.,Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jack A Tuszynski
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada.,DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
14
|
Zhou Y, Ren X, Hou Z, Wang N, Jiang Y, Luan Y. Engineering a photosensitizer nanoplatform for amplified photodynamic immunotherapy via tumor microenvironment modulation. NANOSCALE HORIZONS 2021; 6:120-131. [PMID: 33206735 DOI: 10.1039/d0nh00480d] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photosensitizer-based photodynamic therapy (PDT) can not only kill tumor cells by the generated cytotoxic reactive oxygen species (ROS), but also trigger immunogenic cell death (ICD) and activate an immune response for immunotherapy. However, such photodynamic immunotherapy suffers from major obstacles in the tumor microenvironment. The hypoxic microenvironment greatly weakens PDT, while the immunosuppressive tumor microenvironment caused by aberrant tumor blood vessels and indoleamine 2,3-dioxygenase (IDO) leads to a significant reduction in immunotherapy. To overcome these obstacles, herein, an engineered photosensitizer nanoplatform is designed for amplified photodynamic immunotherapy by integrating chlorin e6 (Ce6, a photosensitizer), axitinib (AXT, a tyrosine kinase inhibitor) and dextro-1-methyl tryptophan (1MT, an IDO inhibitor). In our nanoplatform, AXT improves the tumor microenvironment by normalizing tumor blood vessels, which not only promotes PDT by reducing the level of hypoxia of the tumor microenvironment, but also promotes immunotherapy through facilitating infiltration of immune effector cells into the tumor and reversing the immunosuppressive effect of vascular endothelial growth factor (VEGF). Moreover, 1MT effectively inhibits the activity of IDO, further reducing the immunosuppressive nature of the tumor microenvironment. Therefore, this nanoplatform demonstrates an amplified photodynamic immunotherapy via tumor microenvironment modulation, exhibiting outstanding therapeutic efficacy against tumor growth and metastasis with negligible side toxicity. The current concept of engineering photosensitizer nanoplatforms for overcoming photodynamic immunotherapy obstacles provides a promising strategy against tumors.
Collapse
Affiliation(s)
- Yaxin Zhou
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | | | | | | | | | | |
Collapse
|
15
|
Zhou LN, Pan H, Kan JL, Guan Q, Zhou Y, Dong YB. Single-molecular phosphorus phthalocyanine-based near-infrared-II nanoagent for photothermal antitumor therapy. RSC Adv 2020; 10:22656-22662. [PMID: 35514554 PMCID: PMC9054689 DOI: 10.1039/d0ra03530k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/05/2020] [Indexed: 11/29/2022] Open
Abstract
As one of the noninvasive cancer treatments, photothermal therapy (PTT) has drawn intense attention recently. In this context, an important task is to explore novel and versatile nanoscale photothermal agents (PTAs), especially those with strong NIR-II light absorption, high photothermal conversion efficiency, good photostability and biocompatibility. Phthalocyanines (Pcs), as the second-generation photosensitizers, are a promising class of candidates for PTT due to their strong NIR absorption and high photothermal conversion efficiency. However, the poor water solubility severely limited their application as PTAs in tumor treatment. Herein, we report a molecular phosphorus phthalocyanine (P-Pc)-based nanoagent via incorporation of human serum albumin (HSA) under mild conditions. The obtained nanoscale P-Pc-HSA possesses excellent photothermal conversion efficiency (64.7%) upon 1064 nm light irradiation, furthermore, it can be a highly efficient NIR-II antitumor nanoagent via photothermal treatment (PTT), which is fully evidenced by the in vitro and in vivo experiments. A molecular phosphorus phthalocyanine (P-Pc)-based nanoagent P-Pc-HSA, which can be a highly efficient NIR-II antitumor agent, is reported.![]()
Collapse
Affiliation(s)
- Li-Na Zhou
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Houhe Pan
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Jing-Lan Kan
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Qun Guan
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Yang Zhou
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Yu-Bin Dong
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|