1
|
Yao N, Wu J, Liu G, Hua Z. Bioinspired and biomimetic nucleobase-containing polymers: the effect of selective multiple hydrogen bonds. Chem Sci 2024; 15:18698-18714. [PMID: 39568625 PMCID: PMC11575573 DOI: 10.1039/d4sc06720g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
Bioinspired and biomimetic nucleobase-containing polymers are a series of polydisperse nucleic acid analogs, mainly obtaining through highly efficient and scalable step-growth or chain polymerizations. The combination of pendant nucleobase groups and various backbones endows the polymers/materials with selective multiple H-bonds under distinct conditions, demonstrating the broad applicability of this new family of polymeric materials. In this perspective, we critically summarize recent advances of bioinspired and biomimetic nucleobase-containing polymers and materials in both solution and the bulk. Then, we discuss the effect of multiple H-bonds between complementary nucleobases on the structures and properties of the nucleobase-containing polymers and materials. Selective multiple H-bonds between complementary nucleobases are feasible to modulate the polymer sequence and self-assembly behaviour, achieve templated polymerization, tune nanostructure morphologies and functions, and selectively bind with nucleic acids in various solutions. Meanwhile, bioinspired and biomimetic nucleobase-containing polymers are capable of forming robust polymeric materials such as hydrogels, bioplastics, elastomers, adhesives, and coatings by optimizing the inter- and intramolecular multiple H-bonding interactions. Further, the conclusions and outlook for future development and challenges of bioinspired and biomimetic nucleobase-containing polymers are also presented. This perspective presents useful guidelines for fabricating novel bioinspired and biomimetic polymers and materials through rational design of multiple H-bonds nucleobase interactions.
Collapse
Affiliation(s)
- Nan Yao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Department of Materials Chemistry, School of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 P. R. China
| | - Jiang Wu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China Hefei 230026 P. R. China
| | - Guangming Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China Hefei 230026 P. R. China
| | - Zan Hua
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Department of Materials Chemistry, School of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 P. R. China
| |
Collapse
|
2
|
Li P, Zheng S, Leung HM, Liu LS, Chang TJH, Maryam A, Wang F, Chin YR, Lo PK. TNA-Mediated Antisense Strategy to Knockdown Akt Genes for Triple-Negative Breast Cancer Therapy. SMALL METHODS 2024; 8:e2400291. [PMID: 38779741 PMCID: PMC11579567 DOI: 10.1002/smtd.202400291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Triple-negative breast cancer (TNBC) remains a significant challenge in terms of treatment, with limited efficacy of chemotherapy due to side effects and acquired drug resistance. In this study, a threose nucleic acid (TNA)-mediated antisense approach is employed to target therapeutic Akt genes for TNBC therapy. Specifically, two new TNA strands (anti-Akt2 and anti-Akt3) are designed and synthesized that specifically target Akt2 and Akt3 mRNAs. These TNAs exhibit exceptional enzymatic resistance, high specificity, enhance binding affinity with their target RNA molecules, and improve cellular uptake efficiency compared to natural nucleic acids. In both 2D and 3D TNBC cell models, the TNAs effectively inhibit the expression of their target mRNA and protein, surpassing the effects of scrambled TNAs. Moreover, when administered to TNBC-bearing animals in combination with lipid nanoparticles, the targeted anti-Akt TNAs lead to reduced tumor sizes and decreased target protein expression compared to control groups. Silencing the corresponding Akt genes also promotes apoptotic responses in TNBC and suppresses tumor cell proliferation in vivo. This study introduces a novel approach to TNBC therapy utilizing TNA polymers as antisense materials. Compared to conventional miRNA- and siRNA-based treatments, the TNA system holds promise as a cost-effective and scalable platform for TNBC treatment, owing to its remarkable enzymatic resistance, inexpensive synthetic reagents, and simple production procedures. It is anticipated that this TNA-based polymeric system, which targets anti-apoptotic proteins involved in breast tumor development and progression, can represent a significant advancement in the clinical development of effective antisense materials for TNBC, a cancer type that lacks effective targeted therapy.
Collapse
Affiliation(s)
- Pan Li
- Department of Chemistry and State Key Laboratory of Marine PollutionCity University of Hong KongTat Chee AvenueKowloonHong Kong SARP. R. China
| | - Shixue Zheng
- Tung Biomedical Sciences CentreDepartment of Biomedical SciencesCity University of Hong KongTat Chee AvenueKowloonHong Kong SARP. R. China
| | - Hoi Man Leung
- Department of Chemistry and State Key Laboratory of Marine PollutionCity University of Hong KongTat Chee AvenueKowloonHong Kong SARP. R. China
| | - Ling Sum Liu
- Department of ChemistryMolecular Sciences Research HubImperial College LondonWhite City CampusWood LaneLondonW12 0BZU.K.
| | - Tristan Juin Han Chang
- Department of Chemistry and State Key Laboratory of Marine PollutionCity University of Hong KongTat Chee AvenueKowloonHong Kong SARP. R. China
| | - Alishba Maryam
- Tung Biomedical Sciences CentreDepartment of Biomedical SciencesCity University of Hong KongTat Chee AvenueKowloonHong Kong SARP. R. China
| | - Fei Wang
- The Tenth Affiliated HospitalSouthern Medical University (Dongguan People's Hospital)Dongguan523059P. R. China
| | - Y. Rebecca Chin
- Tung Biomedical Sciences CentreDepartment of Biomedical SciencesCity University of Hong KongTat Chee AvenueKowloonHong Kong SARP. R. China
| | - Pik Kwan Lo
- Department of Chemistry and State Key Laboratory of Marine PollutionCity University of Hong KongTat Chee AvenueKowloonHong Kong SARP. R. China
- Key Laboratory of Biochip TechnologyBiotechand Health CareShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| |
Collapse
|
3
|
Tam DY, Li P, Liu LS, Wang F, Leung HM, Lo PK. Versatility of threose nucleic acids: synthesis, properties, and applications in chemical biology and biomedical advancements. Chem Commun (Camb) 2024; 60:11864-11889. [PMID: 39318271 DOI: 10.1039/d4cc04443f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
This feature article delves into the realm of α-L-threose nucleic acid (TNA), an artificial nucleic acid analog characterized by a backbone comprising an unconventional four-carbon sugar, α-L-threose, with phosphodiester linkages connecting at the 2' and 3' vicinal positions of the sugar ring. Within this article, we encapsulate the potential, progress, current state of the art, and persisting challenges within TNA research. Kicking off with a historical overview of xeno nucleic acids (XNAs), the discussion transitions to the compelling attributes and structure-property relationships of TNAs as advanced tools when contrasted with natural nucleic acids. Noteworthy aspects such as their advantageous spatial arrangements of functional groups around the sugar ring, stable Watson-Crick base pairing, high binding affinity, biostability, biocompatibility, and in vivo bio-safety are highlighted. Moreover, the narrative unfolds the latest advancements in chemical and biological methodologies for TNA synthesis, spanning from monomer and oligomer synthesis to polymerization, alongside cutting-edge developments in enzyme engineering aimed at bolstering large-scale TNA synthesis for in vitro selection initiatives. The article sheds light on the evolution of TNA aptamers over time, expounding on the tools and selection techniques engineered to unearth superior binding aptamers and TNA catalysts. Furthermore, the article accentuates the recent applications of TNAs across diverse domains such as molecular detection, immunotherapy, gene therapy, synthetic biology, and molecular computing. In conclusion, we summarize the key aspects of recent TNA research, address persisting gaps and challenges, and provide crucial insights and future perspectives in the dynamic domain of TNA research.
Collapse
Affiliation(s)
- Dick Yan Tam
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China.
- Key Laboratory of Biochip Technology, Biotech and Health Care, Shenzhen Research Institute of City University of Hong Kong, 518057, Shenzhen, P. R. China
| | - Pan Li
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China.
- Key Laboratory of Biochip Technology, Biotech and Health Care, Shenzhen Research Institute of City University of Hong Kong, 518057, Shenzhen, P. R. China
| | - Ling Sum Liu
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London, W12 0BZ, UK
| | - Fei Wang
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 523059 Dongguan, P. R. China
| | - Hoi Man Leung
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China.
- Key Laboratory of Biochip Technology, Biotech and Health Care, Shenzhen Research Institute of City University of Hong Kong, 518057, Shenzhen, P. R. China
| | - Pik Kwan Lo
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China.
- Key Laboratory of Biochip Technology, Biotech and Health Care, Shenzhen Research Institute of City University of Hong Kong, 518057, Shenzhen, P. R. China
| |
Collapse
|
4
|
Çakan E, Lara OD, Szymanowska A, Bayraktar E, Chavez-Reyes A, Lopez-Berestein G, Amero P, Rodriguez-Aguayo C. Therapeutic Antisense Oligonucleotides in Oncology: From Bench to Bedside. Cancers (Basel) 2024; 16:2940. [PMID: 39272802 PMCID: PMC11394571 DOI: 10.3390/cancers16172940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/15/2024] Open
Abstract
Advancements in our comprehension of tumor biology and chemoresistance have spurred the development of treatments that precisely target specific molecules within the body. Despite the expanding landscape of therapeutic options, there persists a demand for innovative approaches to address unmet clinical needs. RNA therapeutics have emerged as a promising frontier in this realm, offering novel avenues for intervention such as RNA interference and the utilization of antisense oligonucleotides (ASOs). ASOs represent a versatile class of therapeutics capable of selectively targeting messenger RNAs (mRNAs) and silencing disease-associated proteins, thereby disrupting pathogenic processes at the molecular level. Recent advancements in chemical modification and carrier molecule design have significantly enhanced the stability, biodistribution, and intracellular uptake of ASOs, thereby bolstering their therapeutic potential. While ASO therapy holds promise across various disease domains, including oncology, coronary angioplasty, neurological disorders, viral, and parasitic diseases, our review manuscript focuses specifically on the application of ASOs in targeted cancer therapies. Through a comprehensive examination of the latest research findings and clinical developments, we delve into the intricacies of ASO-based approaches to cancer treatment, shedding light on their mechanisms of action, therapeutic efficacy, and prospects.
Collapse
Affiliation(s)
- Elif Çakan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Olivia D Lara
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Anna Szymanowska
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Emine Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Medical Biology, Faculty of Medicine, University of Gaziantep, Gaziantep 27310, Turkey
| | | | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
5
|
Liu Y, Wang J, Wu Y, Wang Y. Advancing the enzymatic toolkit for 2'-fluoro arabino nucleic acid (FANA) manipulation: phosphorylation, ligation, replication, and templating RNA transcription. Chem Sci 2024; 15:12534-12542. [PMID: 39118620 PMCID: PMC11304824 DOI: 10.1039/d4sc02904f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/17/2024] [Indexed: 08/10/2024] Open
Abstract
2'-Fluoro arabino nucleic acid (FANA), classified as a xeno nucleic acid (XNA), stands as a prominent subject of investigation in synthetic genetic polymers. Demonstrating efficacy as antisense oligonucleotides (ASOs) and exhibiting the ability to fold into functional structures akin to enzymes and aptamers, FANA holds substantial promise across diverse biological and therapeutic domains. Owing to structural similarities to DNA, the utilization of naturally occurring DNA polymerases for DNA-mediated FANA replication is well-documented. In this study, we explore alternative nucleic acid processing enzymes typically employed for DNA oligonucleotide (ON) phosphorylation, ligation, and amplification, and assess their compatibility with FANA substrates. Notably, T4 polynucleotide kinase (T4 PNK) efficiently phosphorylated the 5'-hydroxyl group of FANA using ATP as a phosphate donor. Subsequent ligation of the phosphorylated FANA with an upstream FANA ON was achieved with T4 DNA ligase, facilitated by a DNA splint ON that brings the two FANA ONs into proximity. This methodology enabled the reconstruction of RNA-cleaving FANA 12-7 by ligating two FANA fragments amenable to solid-phase synthesis. Furthermore, Tgo DNA polymerase, devoid of 3' to 5' exonuclease activity [Tgo (exo-)], demonstrated proficiency in performing polymerase chain reaction (PCR) with a mixture of dNTPs and FANA NTPs (fNTPs), yielding DNA-FANA chimeras with efficiency and fidelity comparable to traditional DNA PCR. Notably, T7 RNA polymerase (T7 RNAP) exhibited recognition of double-stranded fA-DNA chimeras containing T7 promoter sequences, enabling in vitro transcription of RNA molecules up to 649 nt in length, even in the presence of highly structured F30 motifs at the 3' end. Our findings significantly expand the enzymatic toolkit for FANA manipulation, encompassing phosphorylation, ligation, chimeric amplification, and templating T7 RNAP-catalyzed RNA transcription. These advancements are poised to expedite fundamental research, functional evolution, and translational applications of FANA-based XNA agents. They also have the potential to inspire explorations of a broader range of non-natural nucleic acids that can be routinely studied in laboratories, ultimately expanding the repertoire of nucleic acid-based biomedicine and biotechnology.
Collapse
Affiliation(s)
- Yingyu Liu
- College of Pharmaceutical Sciences, Soochow University Suzhou 215123 China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou Zhejiang 310000 China
| | - Jun Wang
- College of Pharmaceutical Sciences, Soochow University Suzhou 215123 China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou Zhejiang 310000 China
| | - Yashu Wu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou Zhejiang 310000 China
- The Cancer Hospital of the University of Chinese Academy of Science (Zhejiang Cancer Hospital) Hangzhou Zhejiang 310022 China
| | - Yajun Wang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou Zhejiang 310000 China
- The Cancer Hospital of the University of Chinese Academy of Science (Zhejiang Cancer Hospital) Hangzhou Zhejiang 310022 China
| |
Collapse
|
6
|
Alshehri AM, Wilson OC. Biomimetic Hydrogel Strategies for Cancer Therapy. Gels 2024; 10:437. [PMID: 39057460 PMCID: PMC11275631 DOI: 10.3390/gels10070437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Recent developments in biomimetic hydrogel research have expanded the scope of biomedical technologies that can be used to model, diagnose, and treat a wide range of medical conditions. Cancer presents one of the most intractable challenges in this arena due to the surreptitious mechanisms that it employs to evade detection and treatment. In order to address these challenges, biomimetic design principles can be adapted to beat cancer at its own game. Biomimetic design strategies are inspired by natural biological systems and offer promising opportunities for developing life-changing methods to model, detect, diagnose, treat, and cure various types of static and metastatic cancers. In particular, focusing on the cellular and subcellular phenomena that serve as fundamental drivers for the peculiar behavioral traits of cancer can provide rich insights into eradicating cancer in all of its manifestations. This review highlights promising developments in biomimetic nanocomposite hydrogels that contribute to cancer therapies via enhanced drug delivery strategies and modeling cancer mechanobiology phenomena in relation to metastasis and synergistic sensing systems. Creative efforts to amplify biomimetic design research to advance the development of more effective cancer therapies will be discussed in alignment with international collaborative goals to cure cancer.
Collapse
Affiliation(s)
- Awatef M. Alshehri
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC 20064, USA
- Department of Nanomedicine, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdelaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia;
| | - Otto C. Wilson
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC 20064, USA
| |
Collapse
|
7
|
Li P, Zhu C, Liu LS, Han CTJ, Chu HC, Li Z, Mao Z, Wang F, Lo PK. Ultra-stable threose nucleic acid-based biosensors for rapid and sensitive nucleic acid detection and in vivo imaging. Acta Biomater 2024; 177:472-485. [PMID: 38296012 DOI: 10.1016/j.actbio.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 02/13/2024]
Abstract
The human genome's nucleotide sequence variation, such as single nucleotide mutations, can cause numerous genetic diseases. However, detecting nucleic acids accurately and rapidly in complex biological samples remains a major challenge. While natural deoxyribonucleic acid (DNA) has been used as biorecognition probes, it has limitations like poor specificity, reproducibility, nuclease-induced enzymatic degradation, and reduced bioactivity on solid surfaces. To address these issues, we introduce a stable and reliable biosensor called graphene oxide (GO)- threose nucleic acid (TNA). It comprises chemically modified TNA capture probes on GO for detecting and imaging target nucleic acids in vitro and in vivo, distinguishing single nucleobase mismatches, and monitoring dynamic changes in target microRNA (miRNA). By loading TNA capture probes onto the GO substrate, the GO-TNA sensing platform for nucleic acid detection demonstrates a significant 88-fold improvement in the detection limit compared to TNA probes alone. This platform offers a straightforward preparation method without the need for costly and labor-intensive isolation procedures or complex chemical reactions, enabling real-time analysis. The stable TNA-based GO sensing nanoplatform holds promise for disease diagnosis, enabling rapid and accurate detection and imaging of various disease-related nucleic acid molecules at the in vivo level. STATEMENT OF SIGNIFICANCE: The study's significance lies in the development of the GO-TNA biosensor, which addresses limitations in nucleic acid detection. By utilizing chemically modified nucleic acid analogues, the biosensor offers improved reliability and specificity, distinguishing single nucleobase mismatches and avoiding false signals. Additionally, its ability to detect and image target nucleic acids in vivo facilitates studying disease mechanisms. The simplified preparation process enhances practicality and accessibility, enabling real-time analysis. The biosensor's potential applications extend beyond healthcare, contributing to environmental analysis and food safety. Overall, this study's findings have substantial implications for disease diagnosis, biomedical research, and diverse applications, advancing nucleic acid detection and its impact on various fields.
Collapse
Affiliation(s)
- Pan Li
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Chiying Zhu
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, 518116 Shenzhen, P. R. China
| | - Ling Sum Liu
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London W12 0BZ, United Kingdom
| | - Chang Tristan Juin Han
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Hoi Ching Chu
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Zhenhua Li
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), 523059 Dongguan, P. R. China
| | - Zhengwei Mao
- Department of Polymer Science and Engineering, Zhejiang University, 310027 Hangzhou, P. R. China.
| | - Fei Wang
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), 523059 Dongguan, P. R. China.
| | - Pik Kwan Lo
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China; Key Laboratory of Biochip Technology, Biotech and Health Care, Shenzhen Research Institute of City University of Hong Kong, 518057 Shenzhen, P. R. China.
| |
Collapse
|
8
|
Wang J, Yu H. Threose nucleic acid as a primitive genetic polymer and a contemporary molecular tool. Bioorg Chem 2024; 143:107049. [PMID: 38150936 DOI: 10.1016/j.bioorg.2023.107049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
Nucleic acids serve a dual role as both genetic materials in living organisms and versatile molecular tools for various applications. Threose nuclei acid (TNA) stands out as a synthetic genetic polymer, holding potential as a primitive genetic material and as a contemporary molecular tool. In this review, we aim to provide an extensive overview of TNA research progress in these two key aspects. We begin with a retrospect of the initial discovery of TNA, followed by an in-depth look at the structural features of TNA duplex and experimental assessment of TNA as a possible RNA progenitor during early evolution of life on Earth. In the subsequent section, we delve into the recent development of TNA molecular tools such as aptamers, catalysts and antisense oligonucleotides. We emphasize the practical application of functional TNA molecules in the realms of targeted protein degradation and selective gene silencing. Our review culminates with a discussion of future research directions and the technical challenges that remain to be addressed in the field of TNA research.
Collapse
Affiliation(s)
- Juan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hanyang Yu
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
9
|
Sharma R. Innovative Genoceuticals in Human Gene Therapy Solutions: Challenges and Safe Clinical Trials of Orphan Gene Therapy Products. Curr Gene Ther 2024; 24:46-72. [PMID: 37702177 DOI: 10.2174/1566523223666230911120922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 09/14/2023]
Abstract
The success of gene therapy attempts is controversial and inconclusive. Currently, it is popular among the public, the scientific community, and manufacturers of Gene Therapy Medical Products. In the absence of any remedy or treatment options available for untreatable inborn metabolic orphan or genetic diseases, cancer, or brain diseases, gene therapy treatment by genoceuticals and T-cells for gene editing and recovery remains the preferred choice as the last hope. A new concept of "Genoceutical Gene Therapy" by using orphan 'nucleic acid-based therapy' aims to introduce scientific principles of treating acquired tissue damage and rare diseases. These Orphan Genoceuticals provide new scope for the 'genodrug' development and evaluation of genoceuticals and gene products for ideal 'gene therapy' use in humans with marketing authorization application (MAA). This perspective study focuses on the quality control, safety, and efficacy requirements of using 'nucleic acid-based and human cell-based new gene therapy' genoceutical products to set scientific advice on genoceutical-based 'orphan genodrug' design for clinical trials as per Western and European guidelines. The ethical Western FDA and European EMA guidelines suggest stringent legal and technical requirements on genoceutical medical products or orphan genodrug use for other countries to frame their own guidelines. The introduction section proposes lessknown 'orphan drug-like' properties of modified RNA/DNA, human cell origin gene therapy medical products, and their transgene products. The clinical trial section explores the genoceutical sources, FDA/EMA approvals for genoceutical efficacy criteria with challenges, and ethical guidelines relating to gene therapy of specific rare metabolic, cancer and neurological diseases. The safety evaluation of approved genoceuticals or orphan drugs is highlighted with basic principles and 'genovigilance' requirements (to observe any adverse effects, side effects, developed signs/symptoms) to establish their therapeutic use. Current European Union and Food and Drug Administration guidelines continuously administer fast-track regulatory legal framework from time to time, and they monitor the success of gene therapy medical product efficacy and safety. Moreover, new ethical guidelines on 'orphan drug-like genoceuticals' are updated for biodistribution of the vector, genokinetics studies of the transgene product, requirements for efficacy studies in industries for market authorization, and clinical safety endpoints with their specific concerns in clinical trials or public use.
Collapse
Affiliation(s)
- Rakesh Sharma
- Surgery NMR Lab, Plastic Surgery Research, Massachusetts General Hospital, Boston, MA 02114, USA
- CCSU, Government Medical College, Saharanpur, 247232 India
| |
Collapse
|
10
|
Matsuda S, Bala S, Liao JY, Datta D, Mikami A, Woods L, Harp JM, Gilbert JA, Bisbe A, Manoharan RM, Kim M, Theile CS, Guenther DC, Jiang Y, Agarwal S, Maganti R, Schlegel MK, Zlatev I, Charisse K, Rajeev KG, Castoreno A, Maier M, Janas MM, Egli M, Chaput JC, Manoharan M. Shorter Is Better: The α-(l)-Threofuranosyl Nucleic Acid Modification Improves Stability, Potency, Safety, and Ago2 Binding and Mitigates Off-Target Effects of Small Interfering RNAs. J Am Chem Soc 2023; 145:19691-19706. [PMID: 37638886 DOI: 10.1021/jacs.3c04744] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Chemical modifications are necessary to ensure the metabolic stability and efficacy of oligonucleotide-based therapeutics. Here, we describe analyses of the α-(l)-threofuranosyl nucleic acid (TNA) modification, which has a shorter 3'-2' internucleotide linkage than the natural DNA and RNA, in the context of small interfering RNAs (siRNAs). The TNA modification enhanced nuclease resistance more than 2'-O-methyl or 2'-fluoro ribose modifications. TNA-containing siRNAs were prepared as triantennary N-acetylgalactosamine conjugates and were tested in cultured cells and mice. With the exceptions of position 2 of the antisense strand and position 11 of the sense strand, the TNA modification did not inhibit the activity of the RNA interference machinery. In a rat toxicology study, TNA placed at position 7 of the antisense strand of the siRNA mitigated off-target effects, likely due to the decrease in the thermodynamic binding affinity relative to the 2'-O-methyl residue. Analysis of the crystal structure of an RNA octamer with a single TNA on each strand showed that the tetrose sugar adopts a C4'-exo pucker. Computational models of siRNA antisense strands containing TNA bound to Argonaute 2 suggest that TNA is well accommodated in the region kinked by the enzyme. The combined data indicate that the TNA nucleotides are promising modifications expected to increase the potency, duration of action, and safety of siRNAs.
Collapse
Affiliation(s)
- Shigeo Matsuda
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Saikat Bala
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
| | - Jen-Yu Liao
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
| | - Dhrubajyoti Datta
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Atsushi Mikami
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Lauren Woods
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Joel M Harp
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232-0146, United States
| | - Jason A Gilbert
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Anna Bisbe
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Rajar M Manoharan
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - MaryBeth Kim
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Christopher S Theile
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Dale C Guenther
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Yongfeng Jiang
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Saket Agarwal
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Rajanikanth Maganti
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Mark K Schlegel
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Ivan Zlatev
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Klaus Charisse
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | | | - Adam Castoreno
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Martin Maier
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Maja M Janas
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232-0146, United States
| | - John C Chaput
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
11
|
Min J, Tu J, Xu C, Lukas H, Shin S, Yang Y, Solomon SA, Mukasa D, Gao W. Skin-Interfaced Wearable Sweat Sensors for Precision Medicine. Chem Rev 2023; 123:5049-5138. [PMID: 36971504 PMCID: PMC10406569 DOI: 10.1021/acs.chemrev.2c00823] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Wearable sensors hold great potential in empowering personalized health monitoring, predictive analytics, and timely intervention toward personalized healthcare. Advances in flexible electronics, materials science, and electrochemistry have spurred the development of wearable sweat sensors that enable the continuous and noninvasive screening of analytes indicative of health status. Existing major challenges in wearable sensors include: improving the sweat extraction and sweat sensing capabilities, improving the form factor of the wearable device for minimal discomfort and reliable measurements when worn, and understanding the clinical value of sweat analytes toward biomarker discovery. This review provides a comprehensive review of wearable sweat sensors and outlines state-of-the-art technologies and research that strive to bridge these gaps. The physiology of sweat, materials, biosensing mechanisms and advances, and approaches for sweat induction and sampling are introduced. Additionally, design considerations for the system-level development of wearable sweat sensing devices, spanning from strategies for prolonged sweat extraction to efficient powering of wearables, are discussed. Furthermore, the applications, data analytics, commercialization efforts, challenges, and prospects of wearable sweat sensors for precision medicine are discussed.
Collapse
Affiliation(s)
- Jihong Min
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Jiaobing Tu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Changhao Xu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Heather Lukas
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Soyoung Shin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Yiran Yang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Samuel A. Solomon
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Daniel Mukasa
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| |
Collapse
|
12
|
Wang F, Liu LS, Li P, Lau CH, Leung HM, Chin YR, Tin C, Lo PK. Cellular uptake, tissue penetration, biodistribution, and biosafety of threose nucleic acids: Assessing in vitro and in vivo delivery. Mater Today Bio 2022; 15:100299. [PMID: 35637854 PMCID: PMC9142632 DOI: 10.1016/j.mtbio.2022.100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022]
|
13
|
Wang F, Liu LS, Li P, Leung HM, Tam DY, Lo PK. Biologically stable threose nucleic acid-based probes for real-time microRNA detection and imaging in living cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:787-796. [PMID: 35116190 PMCID: PMC8789592 DOI: 10.1016/j.omtn.2021.12.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/31/2021] [Indexed: 12/26/2022]
Abstract
We successfully fabricated threose nucleic acid (TNA)-based probes for real-time monitoring of target miRNA levels in cells. Our TNA probe is comprised of a fluorophore-labeled TNA reporter strand by partially hybridizing to a quencher-labeled TNA that is designed to be antisense to a target RNA transcript; this results in effective quenching of its fluorescence. In the presence of RNA targets, the antisense capture sequence of the TNA binds to targeted transcripts to form longer, thermodynamic stable duplexes. This binding event displaces the reporter strand from the quencher resulting in a discrete “turning-on” of the fluorescence. Our TNA probe is highly specific and selective toward target miRNA and is able to distinguish one to two base mismatches in the target RNA. Compared with DNA probes, our TNA probes exhibited favorable nuclease stability, thermal stability, and exceptional storage ability for long-term cellular studies. Our TNA probes are efficiently taken up by cells with negligible cytotoxicity for dynamic detection of target miRNAs and can also differentiate the distinct target miRNA expression levels in different cell lines. This work illuminates for using TNA as a building component to construct a biocompatible probe for miRNA detection that offers alternative molecular reagents for miRNA-related diagnostics.
Collapse
Affiliation(s)
- Fei Wang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China
| | - Ling Sum Liu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China
| | - Pan Li
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China
| | - Hoi Man Leung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China
| | - Dick Yan Tam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China
| | - Pik Kwan Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China.,Key Laboratory of Biochip Technology, Biotech and Health Care, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
14
|
An RNA-cleaving threose nucleic acid enzyme capable of single point mutation discrimination. Nat Chem 2022; 14:350-359. [PMID: 34916596 DOI: 10.1038/s41557-021-00847-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 10/25/2021] [Indexed: 01/19/2023]
Abstract
Threose nucleic acid has been considered a potential evolutionary progenitor of RNA because of its chemical simplicity, base pairing properties and capacity for higher-order functions such as folding and specific ligand binding. Here we report the in vitro selection of RNA-cleaving threose nucleic acid enzymes. One such enzyme, Tz1, catalyses a site-specific RNA-cleavage reaction with an observed pseudo first-order rate constant (kobs) of 0.016 min-1. The catalytic activity of Tz1 is maximal at 8 mM Mg2+ and remains relatively constant from pH 5.3 to 9.0. Tz1 preferentially cleaves a mutant epidermal growth factor receptor RNA substrate with a single point substitution, while leaving the wild-type intact. We demonstrate that Tz1 mediates selective gene silencing of the mutant epidermal growth factor receptor in eukaryotic cells. The identification of catalytic threose nucleic acids provides further experimental support for threose nucleic acid as an ancestral genetic and functional material. The demonstration of Tz1 mediating selective knockdown of intracellular RNA suggests that functional threose nucleic acids could be developed for future biomedical applications.
Collapse
|
15
|
Wang F, Li P, Chu HC, Lo PK. Nucleic Acids and Their Analogues for Biomedical Applications. BIOSENSORS 2022; 12:93. [PMID: 35200353 PMCID: PMC8869748 DOI: 10.3390/bios12020093] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 05/07/2023]
Abstract
Nucleic acids are emerging as powerful and functional biomaterials due to their molecular recognition ability, programmability, and ease of synthesis and chemical modification. Various types of nucleic acids have been used as gene regulation tools or therapeutic agents for the treatment of human diseases with genetic disorders. Nucleic acids can also be used to develop sensing platforms for detecting ions, small molecules, proteins, and cells. Their performance can be improved through integration with other organic or inorganic nanomaterials. To further enhance their biological properties, various chemically modified nucleic acid analogues can be generated by modifying their phosphodiester backbone, sugar moiety, nucleobase, or combined sites. Alternatively, using nucleic acids as building blocks for self-assembly of highly ordered nanostructures would enhance their biological stability and cellular uptake efficiency. In this review, we will focus on the development and biomedical applications of structural and functional natural nucleic acids, as well as the chemically modified nucleic acid analogues over the past ten years. The recent progress in the development of functional nanomaterials based on self-assembled DNA-based platforms for gene regulation, biosensing, drug delivery, and therapy will also be presented. We will then summarize with a discussion on the advanced development of nucleic acid research, highlight some of the challenges faced and propose suggestions for further improvement.
Collapse
Affiliation(s)
- Fei Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China; (F.W.); (P.L.); (H.C.C.)
| | - Pan Li
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China; (F.W.); (P.L.); (H.C.C.)
| | - Hoi Ching Chu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China; (F.W.); (P.L.); (H.C.C.)
| | - Pik Kwan Lo
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China; (F.W.); (P.L.); (H.C.C.)
- Key Laboratory of Biochip Technology, Biotech and Health Care, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
16
|
Álvarez E, González B, Lozano D, Doadrio AL, Colilla M, Izquierdo-Barba I. Nanoantibiotics Based in Mesoporous Silica Nanoparticles: New Formulations for Bacterial Infection Treatment. Pharmaceutics 2021; 13:2033. [PMID: 34959315 PMCID: PMC8703556 DOI: 10.3390/pharmaceutics13122033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/16/2022] Open
Abstract
This review focuses on the design of mesoporous silica nanoparticles for infection treatment. Written within a general context of contributions in the field, this manuscript highlights the major scientific achievements accomplished by professor Vallet-Regí's research group in the field of silica-based mesoporous materials for drug delivery. The aim is to bring out her pivotal role on the envisage of a new era of nanoantibiotics by using a deep knowledge on mesoporous materials as drug delivery systems and by applying cutting-edge technologies to design and engineer advanced nanoweapons to fight infection. This review has been divided in two main sections: the first part overviews the influence of the textural and chemical properties of silica-based mesoporous materials on the loading and release of antibiotic molecules, depending on the host-guest interactions. Furthermore, this section also remarks on the potential of molecular modelling in the design and comprehension of the performance of these release systems. The second part describes the more recent advances in the use of mesoporous silica nanoparticles as versatile nanoplatforms for the development of novel targeted and stimuli-responsive antimicrobial nanoformulations for future application in personalized infection therapies.
Collapse
Affiliation(s)
- Elena Álvarez
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.Á.); (B.G.); (D.L.); (A.L.D.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| | - Blanca González
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.Á.); (B.G.); (D.L.); (A.L.D.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| | - Daniel Lozano
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.Á.); (B.G.); (D.L.); (A.L.D.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| | - Antonio L. Doadrio
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.Á.); (B.G.); (D.L.); (A.L.D.)
| | - Montserrat Colilla
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.Á.); (B.G.); (D.L.); (A.L.D.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| | - Isabel Izquierdo-Barba
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.Á.); (B.G.); (D.L.); (A.L.D.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| |
Collapse
|
17
|
Balakrishnan B, Liang Q, Fenix K, Tamang B, Hauben E, Ma L, Zhang W. Combining the Anticancer and Immunomodulatory Effects of Astragalus and Shiitake as an Integrated Therapeutic Approach. Nutrients 2021; 13:nu13082564. [PMID: 34444724 PMCID: PMC8401741 DOI: 10.3390/nu13082564] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022] Open
Abstract
Astragalus root (Huang Qi) and Shiitake mushrooms (Lentinus edodes) are both considered medicinal foods and are frequently used in traditional Chinese medicine due to their anticancer and immunomodulating properties. Here, the scientific literatures describing evidence for the anticancer and immunogenic properties of Shiitake and Astragalus were reviewed. Based on our experimental data, the potential to develop medicinal food with combined bioactivities was assessed using Shiitake mushrooms grown over Astragalus beds in a proprietary manufacturing process, as a novel cancer prevention approach. Notably, our data suggest that this new manufacturing process can result in transfer and increased bioavailability of Astragalus polysaccharides with therapeutic potential into edible Shiitake. Further research efforts are required to validate the therapeutic potential of this new Hengshan Astragalus Shiitake medicinal food.
Collapse
Affiliation(s)
- Biju Balakrishnan
- Centre for Marine Bioproducts Development, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (B.B.); (Q.L.); (B.T.)
- The Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia;
| | - Qi Liang
- Centre for Marine Bioproducts Development, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (B.B.); (Q.L.); (B.T.)
- Shanxi University of Traditional Chinese Medicine, Taiyuan 030600, China
| | - Kevin Fenix
- The Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia;
- Discipline of Surgery, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Bunu Tamang
- Centre for Marine Bioproducts Development, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (B.B.); (Q.L.); (B.T.)
| | - Ehud Hauben
- The Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia;
- Discipline of Surgery, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
- AusHealth Corporate Pty Ltd., Adelaide, SA 5032, Australia
- Correspondence: (E.H.); (L.M.); (W.Z.); Tel.: +61-88132-7450 (E.H.); +61-7-3735-4175 (L.M.); +61-8-7221-8557 (W.Z.)
| | - Linlin Ma
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
- Correspondence: (E.H.); (L.M.); (W.Z.); Tel.: +61-88132-7450 (E.H.); +61-7-3735-4175 (L.M.); +61-8-7221-8557 (W.Z.)
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (B.B.); (Q.L.); (B.T.)
- Correspondence: (E.H.); (L.M.); (W.Z.); Tel.: +61-88132-7450 (E.H.); +61-7-3735-4175 (L.M.); +61-8-7221-8557 (W.Z.)
| |
Collapse
|
18
|
Iwaoka M, Hiyoshi Y, Arai S, Ito T. Synthesis of 4-Selenothreofuranose Derivatives via Pummerer-Type Reactions of trans-3,4-Dioxygenated Tetrahydroselenophenes Mediated by a Selenonium Intermediate. ACS OMEGA 2021; 6:17621-17634. [PMID: 34278147 PMCID: PMC8280693 DOI: 10.1021/acsomega.1c02160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/15/2021] [Indexed: 05/14/2023]
Abstract
Selenosugars are interesting targets of organic synthesis as they would possess potential biological activities. However, 4-selenotherofuranose derivatives, which have trans configuration for the two dihydroxy substituents at the 2,3-positions and a glycoside bond at the anomeric position, are not available in the current selenosugar library. In this study, racemic 4-selenothreofuranose derivatives were synthesized from trans-3,4-dioxygenated tetrahydroselenophenes in 77-99% yields with the α/β selectivity about 7:3 via oxidation and subsequent seleno-Pummerer rearrangement. The acetoxy group introduced at the anomeric position was then substituted with various nucleophiles, including activated 6-chloropurine, which afforded 4'-selenothreonucleoside derivatives, in the presence of BF3·OEt2 or TMSOTf. The stereochemistry of the selenosugar products was established by 1H NMR spectroscopy as well as X-ray analysis. The similar α/β selectivity observed in the latter glycosylation reaction to that in the former seleno-Pummerer rearrangement suggested the mediation of a common selenonium intermediate (-Se+=C<). It was also suggested that an unexpected interaction between the ester protecting group at the 3-position of the selenofuranose ring and the anomeric carbon atom decreases the α/β selectivity.
Collapse
|
19
|
Wang Y, Wang Y, Song D, Sun X, Zhang Z, Li X, Li Z, Yu H. A Threose Nucleic Acid Enzyme with RNA Ligase Activity. J Am Chem Soc 2021; 143:8154-8163. [PMID: 34028252 DOI: 10.1021/jacs.1c02895] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Threose nucleic acid (TNA) has been considered a potential RNA progenitor in evolution due to its chemical simplicity and base pairing property. Catalytic TNA sequences with RNA ligase activities might have facilitated the transition to the RNA world. Here we report the isolation of RNA ligase TNA enzymes by in vitro selection. The identified TNA enzyme T8-6 catalyzes the formation of a 2'-5' phosphoester bond between a 2',3'-diol and a 5'-triphosphate group, with a kobs of 1.1 × 10-2 min-1 (40 mM Mg2+, pH 9.0). For efficient reaction, T8-6 requires UA|GA at the ligation junction and tolerates variations at other substrate positions. Functional RNAs such as hammerhead ribozyme can be prepared by T8-6-catalyzed ligation, with site-specific introduction of a 2'-5' linkage. Together, this work provides experimental support for TNA as a plausible pre-RNA genetic polymer and also offers an alternative molecular tool for biotechnology.
Collapse
Affiliation(s)
- Yao Wang
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yueyao Wang
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China.,Applied Adaptome Immunology Institute, Jiangsu Industrial Technology Research Institute, Nanjing, Jiangsu 210023, China
| | - Dongfan Song
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xin Sun
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ze Zhang
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xintong Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zhe Li
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hanyang Yu
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
20
|
Khorkova O, Hsiao J, Wahlestedt C. Nucleic Acid-Based Therapeutics in Orphan Neurological Disorders: Recent Developments. Front Mol Biosci 2021; 8:643681. [PMID: 33996898 PMCID: PMC8115123 DOI: 10.3389/fmolb.2021.643681] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/17/2021] [Indexed: 12/18/2022] Open
Abstract
The possibility of rational design and the resulting faster and more cost-efficient development cycles of nucleic acid–based therapeutics (NBTs), such as antisense oligonucleotides, siRNAs, and gene therapy vectors, have fueled increased activity in developing therapies for orphan diseases. Despite the difficulty of delivering NBTs beyond the blood–brain barrier, neurological diseases are significantly represented among the first targets for NBTs. As orphan disease NBTs are now entering the clinical stage, substantial efforts are required to develop the scientific background and infrastructure for NBT design and mechanistic studies, genetic testing, understanding natural history of orphan disorders, data sharing, NBT manufacturing, and regulatory support. The outcomes of these efforts will also benefit patients with “common” diseases by improving diagnostics, developing the widely applicable NBT technology platforms, and promoting deeper understanding of biological mechanisms that underlie disease pathogenesis. Furthermore, with successes in genetic research, a growing proportion of “common” disease cases can now be attributed to mutations in particular genes, essentially extending the orphan disease field. Together, the developments occurring in orphan diseases are building the foundation for the future of personalized medicine. In this review, we will focus on recent achievements in developing therapies for orphan neurological disorders.
Collapse
Affiliation(s)
| | | | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States
| |
Collapse
|
21
|
Lu X, Wu X, Wu T, Han L, Liu J, Ding B. Efficient construction of a stable linear gene based on a TNA loop modified primer pair for gene delivery. Chem Commun (Camb) 2021; 56:9894-9897. [PMID: 32720666 DOI: 10.1039/d0cc04356g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A terminal-closed linear gene with strong exonuclease resistance and serum stability was successfully constructed by polymerase chain reaction (PCR) with an α-l-threose nucleic acid (TNA) loop modified primer pair, which can be used as an efficient gene expression system in eukaryotic cells for gene delivery.
Collapse
Affiliation(s)
- Xuehe Lu
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China and CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Xiaohui Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tiantian Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Han
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China and CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoquan Ding
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China and CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
22
|
Liu LS, Wang F, Ge Y, Lo PK. Recent Developments in Aptasensors for Diagnostic Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9329-9358. [PMID: 33155468 DOI: 10.1021/acsami.0c14788] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Aptamers are exciting smart molecular probes for specific recognition of disease biomarkers. A number of strategies have been developed to convert target-aptamer binding into physically detectable signals. Since the aptamer sequence was first discovered, a large variety of aptamer-based biosensors have been developed, with considerable attention paid to their potential applications in clinical diagnostics. So far, a variety of techniques in combination with a wide range of functional nanomaterials have been used for the design of aptasensors to further improve the sensitivity and detection limit of target determination. In this paper, the advantages of aptamers over traditional antibodies as the molecular recognition components in biosensors for high-throughput screening target molecules are highlighted. Aptamer-target pairing configurations are predominantly single- or dual-site binding; the design of recognition modes of each aptamer-target pairing configuration is described. Furthermore, signal transduction strategies including optical, electrical, mechanical, and mass-sensitive modes are clearly explained together with examples. Finally, we summarize the recent progress in the development of aptamer-based biosensors for clinical diagnosis, including detection of cancer and disease biomarkers and in vivo molecular imaging. We then conclude with a discussion on the advanced development and challenges of aptasensors.
Collapse
Affiliation(s)
- Ling Sum Liu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Fei Wang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yonghe Ge
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Pik Kwan Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|