1
|
Park S, Sharma H, Safdar M, Lee J, Kim W, Park S, Jeong HE, Kim J. Micro/nanoengineered agricultural by-products for biomedical and environmental applications. ENVIRONMENTAL RESEARCH 2024; 250:118490. [PMID: 38365052 DOI: 10.1016/j.envres.2024.118490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Agriculturally derived by-products generated during the growth cycles of living organisms as secondary products have attracted increasing interest due to their wide range of biomedical and environmental applications. These by-products are considered promising candidates because of their unique characteristics including chemical stability, profound biocompatibility and offering a green approach by producing the least impact on the environment. Recently, micro/nanoengineering based techniques play a significant role in upgrading their utility, by controlling their structural integrity and promoting their functions at a micro and nano scale. Specifically, they can be used for biomedical applications such as tissue regeneration, drug delivery, disease diagnosis, as well as environmental applications such as filtration, bioenergy production, and the detection of environmental pollutants. This review highlights the diverse role of micro/nano-engineering techniques when applied on agricultural by-products with intriguing properties and upscaling their wide range of applications across the biomedical and environmental fields. Finally, we outline the future prospects and remarkable potential that these agricultural by-products hold in establishing a new era in the realms of biomedical science and environmental research.
Collapse
Affiliation(s)
- Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang, 50463, Republic of Korea
| | - Harshita Sharma
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Mahpara Safdar
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jeongryun Lee
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sangbae Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Biosystems Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
2
|
Rosaiah P, Yue D, Dayanidhi K, Ramachandran K, Vadivel P, Eusuff NS, Reddy VRM, Kim WK. Eggshells & Eggshell Membranes- A Sustainable Resource for energy storage and energy conversion applications: A critical review. Adv Colloid Interface Sci 2024; 327:103144. [PMID: 38581720 DOI: 10.1016/j.cis.2024.103144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/30/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
As the world strives to achieve a sustainable future, the exploration of alternative and renewable raw materials for energy storage and energy conversion has gained significant attention. A growing trend on "Waste to Energy" approach has attained prominence. Accordingly, chicken eggshells, a residual from poultry industry, have emerged as a promising candidate due to their abundant availability, low cost, and unique physical and chemical properties. This review article presents an overview of recent advancements in utilizing eggshell waste for energy storage and energy conversion applications. It discusses the transformation of eggshells usage into functional materials, along with their performance in various energy-related applications. The potential of eggshell-based materials in improving energy efficiency and reducing environmental impact is highlighted, providing insights into the future prospects of this sustainable resource.
Collapse
Affiliation(s)
- P Rosaiah
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen 518172, PR China; Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India.
| | - Dewu Yue
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen 518172, PR China.
| | - Kalaivani Dayanidhi
- PG & Research Department of Chemistry, Guru Nanak College (Autonomous), Affiliated to University of Madras, Velachery, Chennai 600042, Tamil Nadu, India
| | - K Ramachandran
- Department of Physics, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Vadapalani Campus, Chennai, 600026, Tamilnadu, India.
| | - Porchezhiyan Vadivel
- PG & Research Department of Chemistry, Guru Nanak College (Autonomous), Affiliated to University of Madras, Velachery, Chennai 600042, Tamil Nadu, India
| | - Noorjahan Sheik Eusuff
- PG & Research Department of Chemistry, Guru Nanak College (Autonomous), Affiliated to University of Madras, Velachery, Chennai 600042, Tamil Nadu, India
| | | | - Woo Kyoung Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
3
|
Vignesh V, Shanmugam G. Removal and recovery of hazardous congo red from aqueous environment by selective natural amino acids in simple processes. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
4
|
Rasheed Q, Ajab H, Farooq M, Shahzad SA, Yaqub A. Fabrication of colorimetric sensor using Fe3O4 @ Musa paradisiaca L. nanoparticles for detecting hydrogen peroxide: an application in environmental and biological samples. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02571-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
5
|
Natural and Engineered Nanomaterials for the Identification of Heavy Metal Ions—A Review. NANOMATERIALS 2022; 12:nano12152665. [PMID: 35957095 PMCID: PMC9370674 DOI: 10.3390/nano12152665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Abstract
In recent years, there has been much interest in developing advanced and innovative approaches for sensing applications in various fields, including agriculture and environmental remediation. The development of novel sensors for detecting heavy metals using nanomaterials has emerged as a rapidly developing research area due to its high availability and sustainability. This review emphasized the naturally derived and engineered nanomaterials that have the potential to be applied as sensing reagents to interact with metal ions or as reducing and stabilizing agents to synthesize metallic nanoparticles for the detection of heavy metal ions. This review also focused on the recent advancement of nanotechnology-based detection methods using naturally derived and engineered materials, with a summary of their sensitivity and selectivity towards heavy metals. This review paper covers the pros and cons of sensing applications with recent research published from 2015 to 2022.
Collapse
|
6
|
Adsorption of Heavy Metals Ions from Mining Metallurgical Tailings Leachate Using a Shell-Based Adsorbent: Characterization, Kinetics and Isotherm Studies. MATERIALS 2022; 15:ma15155315. [PMID: 35955251 PMCID: PMC9370030 DOI: 10.3390/ma15155315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Abstract
This study defines the optimal parameters that allow the use of waste mollusk shells (WS) to remove heavy metals from three mining and metallurgical leachates. First, the influence of parameters such as pH, contact time, initial metal concentration, adsorbent dose and the presence of co-ions in Cu2+, Cd2+, Zn2+ and Ni2+ adsorption was investigated in synthetic solutions. Metal uptake was found to be dependent on the initial pH of the solution, the removal rate increasing with the increase in pH, showing the highest affinity at pH 5–6. The removal efficiency at lower concentrations was greater than at higher values. The competitive adsorption results on bimetallic solutions showed that the adsorption capacity of the sorbent was restricted by the presence of other ions and suppressed the uptake of heavy metals compared to the single adsorption. Cu2+ was the metal that most inhibited the removal of Cd2+, Zn2+ and Ni2+. The Langmuir isotherm provided the best fit to the experimental data for Cu2+, Cd2+ and Zn2+ and the Freundlich isotherm, for Ni2+. The data showed that the maximum adsorption capacity amax for Zn2+, Cd2+ and Cu2+, was 526.32 mg g−1, 555.56 mg g−1 and 769.23 mg g−1, respectively. Sorption kinetics data best fit the pseudo-second-order kinetic model. The results obtained in the tests with three mining and metallurgical leachates showed that WS were effective in simultaneously removing several heavy metals ions such as Cu, Ni, Zn, Cd, Ni, As and Se.
Collapse
|
7
|
Xi H, Li N, Shi Z, Wu P, Pan N, Wang D, You T, Zhang X, Xu G, Gao Y, Liang X, Yin P. A three-dimensional “turn-on” sensor array for simultaneous discrimination of multiple heavy metal ions based on bovine serum albumin hybridized fluorescent gold nanoclusters. Anal Chim Acta 2022; 1220:340023. [DOI: 10.1016/j.aca.2022.340023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/10/2022] [Accepted: 05/28/2022] [Indexed: 11/26/2022]
|
8
|
Fluorescent Azamonardine Probe for “Turn-off” Detection of Chromium (VI) and “Turn-on” Detection of Ascorbic Acid Based on Inner Filter Effect. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
You J, Park C, Jang K, Park J, Na S. Novel Detection Method for Circulating EGFR Tumor DNA Using Gravitationally Condensed Gold Nanoparticles and Catalytic Walker DNA. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3301. [PMID: 35591635 PMCID: PMC9101948 DOI: 10.3390/ma15093301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023]
Abstract
The detection of circulating tumor DNA is a major challenge in liquid biopsies for cancer. Conventionally, quantitative polymerase chain reactions or next-generation sequencing are used to detect circulating tumor DNA; however, these techniques require significant expertise, and are expensive. Owing to the increasing demand for a simple diagnostic method and constant monitoring of cancer, a cost-effective detection technique that can be conducted by non-experts is required. The aim of this study was to detect the circulating tumor DNA containing the epidermal growth factor receptor (EGFR) exon 19 deletion, which frequently occurs in lung cancer. By applying walker DNA to a catalytic hairpin assembly and using the differential dispersibility of gold nanoparticles, we detected EGFR exon 19 deletion mutant #2 DNA associated with lung cancer. Our sensing platform exhibited a limit of detection of 38.5 aM and a selectivity of 0.1% for EGFR exon 19 wild-type DNA. Moreover, we tested and compared EGFR exon 19 deletion mutants #1 and #3 to evaluate the effect of base pair mismatches on the performance of the said technique.
Collapse
Affiliation(s)
- Juneseok You
- Department of Mechanical Engineering, Korea University, Seoul 02841, Korea;
| | - Chanho Park
- Division of Foundry, Samsung Electronics, Hwaseong-si 18448, Korea;
| | - Kuewhan Jang
- School of Mechanical Engineering, Hoseo University, Asan 31499, Korea;
| | - Jinsung Park
- Department of Biomechatronics Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Suwon 16419, Korea
| | - Sungsoo Na
- Department of Mechanical Engineering, Korea University, Seoul 02841, Korea;
| |
Collapse
|
10
|
Sharma A, Mangla D, Chaudhry SA. Recent advances in magnetic composites as adsorbents for wastewater remediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114483. [PMID: 35066323 DOI: 10.1016/j.jenvman.2022.114483] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/15/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
The scarcity of clean drinking water combined with other environmental and anthropogenic effects necessitates the demand for development of advanced technology for cleaning polluted water. Adsorption is one such technique that does not produce toxic byproducts and solves the problem of cleaning contaminated water at a lower cost. In recent years, magnetic composites, as adsorbent, have gained lot of attention due to their reusability which makes them sustainable and economical. This review article describes the challenges related to water quality, scarcity and then summarizes the current treatment technologies and advancement in the field of adsorption to resolve the prevailing concerns. The review includes an insight into the recent research being carried out in the field of magnetic composites and nanocomposites, as adsorbent, covering, probably, all aspects of what is going around the globe. Different materials, like polymers, biomaterials, clays and metal organic framework (MOF)-based magnetic composites and their applications in wastewater treatment processes have been included. The article is a comprehensive review on the application of different materials to detoxify various diverse pollutants with prime focus on magnetic composites. The thorough study of this review will surely bring upcoming researchers closer to the future possibilities of research in wastewater treatment.
Collapse
Affiliation(s)
- Atul Sharma
- Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Divyanshi Mangla
- Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Saif Ali Chaudhry
- Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
11
|
Ashrafi G, Nasrollahzadeh M, Jaleh B, Sajjadi M, Ghafuri H. Biowaste- and nature-derived (nano)materials: Biosynthesis, stability and environmental applications. Adv Colloid Interface Sci 2022; 301:102599. [PMID: 35066374 DOI: 10.1016/j.cis.2022.102599] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/22/2022]
Abstract
Due to the environmental pollution issues and the supply of drinking/clean water, removal of both inorganic and organic (particularly dyes, nitroarenes, and heavy metals) to non-dangerous products and useful compounds are very important transformations. The deployment of sustainable and eco-friendly nanomaterials with exceptional structural and unique features such as high efficiency and stability/recyclability, high surface/volume ratio, low-cost production routes has become a priority; nonetheless, numerous significant challenges/restrictions still remained unresolved. The immobilization of green synthesized metal nanoparticles (NPs) on the natural materials and biowaste generated templates have been analyzed widely as a greener approach due to their environmentally friendly preparation methods, earth-abundance, cost-effectiveness with low energy consumption, biocompatibility, as well as adjustability in various cases of biomolecules as bioreducing agents. Natural and biowaste materials are widely considered as important sources to fabricate greener and biosynthesized types of metal, metal oxide, and metal sulfide nanomaterials using plant extracts. Integrating green synthesized nanoparticles with various biotemplates offers new practical composites for mitigating environmental challenges. In this review, degradation of dyes, reduction of toxic nitrophenols, absorption of heavy metals, and other hazardous/toxic environmental pollutants from contaminated water bodies using biowaste- and nature-derived nanomaterials are highlighted.
Collapse
Affiliation(s)
- Ghazaleh Ashrafi
- Department of Physics, Bu-Ali Sina University, 65174 Hamedan, Iran
| | | | - Babak Jaleh
- Department of Physics, Bu-Ali Sina University, 65174 Hamedan, Iran.
| | - Mohaddeseh Sajjadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
12
|
Duan H, Yin L, Chen T, Qi D, Zhang D. A “metal ions-induced poisoning behavior of biomolecules” inspired polymeric probe for Cu2+ selective detection on basis of coil to helix conformation transition. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Asadpour Chounechenan S, Mohammadi A, Ghafouri H. A new and efficient diaminopyrimidine-based colorimetric and fluorescence chemosensor for the highly selective and sensitive detection of Cu 2+ in aqueous media and living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120507. [PMID: 34695712 DOI: 10.1016/j.saa.2021.120507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/20/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
In this paper, a new and effective diaminopyrimidine-based chemosensor (DAPCS) was developed for the highly selective and ultra-sensitive detection of Cu2+ ion in aqueous media and living cell. Characterization and structure determining of DAPCS was determined by UV-Vis, FTIR and NMR analyses. It is observed that DAPCS and Cu (II) forms a ligand to metal charge transfer (LMCT) complex which produces distinguishable red color. The results also indicate that the DAPCS easily interacts with Cu2+ ion to form a 1:1 stoichiometry complex (DAPCS -Cu2+), resulting in a bathochromic shift in absorption maximum (429 nm to 449 nm) and remarkable quenching fluorescence intensity at the wavelength of 501 nm in DMSO-H2O solution. Furthermore, the detection limit of DAPCS towards Cu2+ was calculated to be 3.19 µM. Meanwhile, DAPCS was applied as fluorescent probe for detection of Cu2+ ions with the detection limit of 0.014 µM. The optimal pH range of probe DAPCS for quantitative analysis of Cu2+ ions was 9-11, which renders it suitable for detection of Cu2+ under physiological conditions. Additionally, the DAPCS could be applied to detect Cu2+ in real water samples and in HeLa cells, indicating the practical uses of DAPCS in real analyses.
Collapse
Affiliation(s)
| | - Asadollah Mohammadi
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Hossein Ghafouri
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran; Department of Marine Sciences, Caspian Sea basin Research Center, University of Guilan, Rasht, Iran
| |
Collapse
|
14
|
Das N, Khan T, Das A, Jain VK, Acharya J, Faizi MSH, Daniel J, Sen P. A Novel Quinoline Derivative for Selective and Sensitive Visual Detection
of PPB Level Cu2+ in an Aqueous Solution. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999201123162027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aim:
Selective and sensitive visual detection of Cu2+in aqueous solution at PPB level using easily synthesized
compound.
Background:
The search for a chemosensor that can detect Cu2+ is very long owing to the fact that an optimum level of
Cu2+ is required for human health and the recommended amount of Cu2+ in drinking water is set to be 1-2 mgL-1
. Thus, it
is very important to detect Cu2+ even at a very low concentration to assess the associated health risks.
Objective:
We are still seeking for the easiest, cheapest, fastest and greenest sensor that can selectively, sensitively and
accurately detect Cu2+ with lowest detection limit. Our objective of this work is to find one such Cu2+ sensor.
Methods:
We have synthesized a quinoline derivative following very easy synthetic procedures and characterize the
compound by standard methods. For sensing study, we used steady state absorption and emission spectroscopy.
Results:
Our sensor can detect Cu2+ selectively and sensitively in aqueous solution instantaneously even in the presence of
excess amount of other salts. The pale-yellow color of the sensor turns red on the addition of Cu2+
. There is no
interference from other cations and anions. A 2:1 binding mechanism of the ligand with Cu2+ is proposed using Jobs plot
with binding constant in the order of 109 M-2
. We calculated the LOD to be 18 ppb, which is quite low than what is
permissible in drinking water.
Conclusion:
We developed a new quinoline based chemo-sensor following straightforward synthetic procedure from very
cheap starting materials that can detect Cu2+ visually and instantaneously in aqueous solution with ppb level sensitivity
and zero interference from other ions.
Collapse
Affiliation(s)
- Nilimesh Das
- Depatment of Chemistry, Indian Institute of Technology Kanpur, Kanpur - 208 016, UP, India
| | - Tanmoy Khan
- Depatment of Chemistry, Indian Institute of Technology Kanpur, Kanpur - 208 016, UP, India
| | - Aritra Das
- Depatment of Chemistry, Indian Institute of Technology Kanpur, Kanpur - 208 016, UP, India
| | - Vipin Kumar Jain
- Depatment of Chemistry, Indian Institute of Technology Kanpur, Kanpur - 208 016, UP, India
| | - Joydev Acharya
- Depatment of Chemistry, Indian Institute of Technology Kanpur, Kanpur - 208 016, UP, India
| | - Md. Serajul Haque Faizi
- Depatment of Chemistry, Indian Institute of Technology Kanpur, Kanpur - 208 016, UP, India
- Department of Chemistry,
Langat Singh College, B. R. A. Bihar University, Muzaffarpur - 842 001, Bihar, India
| | - Joseph Daniel
- Department of Chemistry,
Christ Church College, Kanpur - 208 001, UP, India
| | - Pratik Sen
- Depatment of Chemistry, Indian Institute of Technology Kanpur, Kanpur - 208 016, UP, India
| |
Collapse
|
15
|
Sompalli NK, Kuppusamy S, Mohan AM, Modak VA, Rao CVSB, Nagarajan S, Deivasigamani P. Probe decorated porous silica and polymer monoliths as solid-state optical sensors and preconcentrators for the selective and fast recognition of ultra-trace arsenic ions. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126828. [PMID: 34396964 DOI: 10.1016/j.jhazmat.2021.126828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
In this work, we manifested a new approach in designing solid-state colorimetric sensors for the selective optical sensing of As3+. The sensor fabrication is modulated using, (i) a cubic mesopores of ordered silica monolith, and (ii) a bimodal macro-/meso-porous polymer monolith, as hosting templates that are immobilized with a tailor-made chromoionophoric probe (DFBEP). The surface morphology and structural dimensions of the monolith templates and the sensor materials are characterized using p-XRD, XPS, FE-SEM-EDAX, HR-TEM-SAED, FT-IR, TGA, and BET/BJH analysis. The sensing components such as pH, probe content, sensor dosage, kinetics, temperature, analyte concentration, linear response range, selectivity, and sensitivity are optimized to arrive at the best sensing conditions. The silica and polymer-based monolithic sensors show a linear spectral response in the concentration range of 2-300 and 2-200 ppb, with a detection limit of 0.87 and 0.75 ppb for As3+, respectively. The real-time ion-monitoring propensity of the sensors is tested with spiked synthetic and real water samples, with a recovery efficiency of ≥99.1% (RSD ≤1.57%). The sensors act as both naked-eye optical sensors and preconcentrators, with a response time of ≤2.5 min. The molecular and photophysical properties of the DFBEP-As3+ complex are studied by TD-DFT calculations, using the B3LYP/6-31G (d,p) method.
Collapse
Affiliation(s)
- Naveen Kumar Sompalli
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Satheesh Kuppusamy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Akhila Maheswari Mohan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Varad A Modak
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - C V S Brahmmananda Rao
- Homi Bhabha National Institute (HBNI), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu 603102, India
| | - Sivaraman Nagarajan
- Homi Bhabha National Institute (HBNI), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu 603102, India
| | - Prabhakaran Deivasigamani
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
16
|
Dayanidhi K, Sheik Eusuff N. Fabrication, Characterization, and Evaluation of Eggshells as a Carrier for Sustainable Slow-Release Multi-Nutrient Fertilizers. ACS APPLIED BIO MATERIALS 2021; 4:8215-8224. [PMID: 35005913 DOI: 10.1021/acsabm.1c00733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Development of environment-friendly fertilizers to adhere to the sustainability in agronomic practices and to overcome the limitations posed by the conventional fertilizers has been an important challenge. In this study, a cost-effective biowaste eggshell (ES) material was utilized as a sustainable support for eco-friendly slow-release multi-nutrient fertilizers (SMFs) by simple impregnation of micro- and macronutrients. The synthesized multi-nutrient composite was characterized by various characterization techniques. The leaching tests were conducted using simulated soil solutions and tap water, which showed slow and steady release patterns of the impregnated nutrients. Also, the water holding and water retention capacity of soil were improved upon addition of ES-SMF. Further, the results of pot experiments showed enhanced plant growth of cucumber (Cucumis sativus) and tomato (Solanum lycopersicum) seedlings that proved the efficiency of ES-SMF to serve as an environment-friendly fertilizer in agriculture to attain sustainability.
Collapse
Affiliation(s)
- Kalaivani Dayanidhi
- PG & Research Department of Chemistry, Guru Nanak College (Autonomous), Affiliated to University of Madras, Velachery, Chennai, Tamil Nadu 600042, India
| | - Noorjahan Sheik Eusuff
- PG & Research Department of Chemistry, Guru Nanak College (Autonomous), Affiliated to University of Madras, Velachery, Chennai, Tamil Nadu 600042, India
| |
Collapse
|
17
|
Zhong Y, Chen C, Liu S, Lu C, Liu D, Pan Y, Sakiyama H, Muddassir M, Liu J. A new magnetic adsorbent of eggshell-zeolitic imidazolate framework for highly efficient removal of norfloxacin. Dalton Trans 2021; 50:18016-18026. [PMID: 34825686 DOI: 10.1039/d1dt03020e] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many effluents contain various antibiotics commonly, where the simultaneous removal of them is a big challenge. In this study, the magnetic biocomposite (eggshell-zeolitic imidazolate framework) was designed and synthesized by green and facile method. Zeolitic imidazolate framework-8 (ZIF-8) particles were stabilized on the surface of magnetic eggshell (Fe3O4-ES), generating a new Fe3O4-ES/ZIF-8 adsorbent, which was also fully characterized using FTIR, XRD, SEM and BET techniques. Thereafter, norfloxacin (NOR) adsorption processes were investigated through different influencing factors (dosage, concentration, pH and temperature). The Langmuir adsorption isotherm could confirm a maximum removal efficiency of 80.13% for NOR. Kinetic studies illustrated that the pseudo-first-order model was in line with the experimental data of the simultaneous removal of NOR. Moreover, the magnetic nature of the adsorbent caused an easy separation from the aqueous solution.
Collapse
Affiliation(s)
- Yuyu Zhong
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Chen Chen
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Si Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Chengyu Lu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Dong Liu
- Shenzhen Huachuang Bio-pharmaceutical Technology Co. Ltd., Shenzhen, 518112, Guangdong, China
| | - Ying Pan
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Hiroshi Sakiyama
- Department of Science, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560, Japan
| | - Mohd Muddassir
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jianqiang Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| |
Collapse
|
18
|
Du Z, Chen H, Guo X, Qin L, Lin D, Huo L, Yao Y, Zhang Z. Mechanism and industrial application feasibility analysis on microwave-assisted rapid synthesis of amino-carboxyl functionalized cellulose for enhanced heavy metal removal. CHEMOSPHERE 2021; 268:128833. [PMID: 33183788 DOI: 10.1016/j.chemosphere.2020.128833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/15/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
The study presented the successful microwave-assisted (MW-assisted) preparation of a novel adsorbent derived from rice straw (RSMW-AC) and explored its adsorption performance toward heavy metal ions from water. The RSMW-AC was rapidly synthesized through pretreatment and one step grafting via the MW-assisted approach. The quantitative predictive correlations between target performance of RSMW-AC and process parameters were obtained through the response surface methodology (RSM). Meanwhile, the optimal preparation process conditions were determined: NaOH solution concentration, 20%; MW irradiation temperature for pretreatment, 100 and 150 °C; MW irradiation time for pretreatment and grafting, 10 and 60 min; EDTAD-RS mass ratio, 3. The RSMW-AC showed a good adsorption of different heavy metal ions from water (152.39, 55.46, 52.91, 35.60 and 20.11 mg g-1 for Pb(Ⅱ), Mn(Ⅱ), Cd(Ⅱ), Cu(Ⅱ) and Ni(Ⅱ), respectively). The adsorption behaviors followed the Langmuir model and pseudo second-order kinetics model with a highly significant correlation. Also of note was that amino and carboxyl groups were successfully introduced on the rice straw based on characterization results. Furthermore, preparation mechanism was explored to reveal reasons why microwave irradiation could accelerate the preparation of the adsorbent; its adsorption process was dominated by electrostatic attraction and chelation. Finally, the study made the industrial application feasibility analysis of MW-assisted approach used for pretreatment and graft reaction of agro-waste biomass.
Collapse
Affiliation(s)
- Zhaolin Du
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Fukang Road 31, Nankai District, Tianjin, 300191, China.
| | - Hongan Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Fukang Road 31, Nankai District, Tianjin, 300191, China
| | - Xiaoyan Guo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tongyan Road 38, Haihe Education Park, Jinnan District, Tianjin, 300350, China
| | - Li Qin
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Fukang Road 31, Nankai District, Tianjin, 300191, China
| | - Dasong Lin
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Fukang Road 31, Nankai District, Tianjin, 300191, China
| | - Lili Huo
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Fukang Road 31, Nankai District, Tianjin, 300191, China
| | - Yanpo Yao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Fukang Road 31, Nankai District, Tianjin, 300191, China
| | - Zhihao Zhang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
19
|
New application of a traditional method: colorimetric sensor array for reducing sugars based on the in-situ formation of core-shell gold nanorod-coated silver nanoparticles by the traditional Tollens reaction. Mikrochim Acta 2021; 188:142. [PMID: 33774720 DOI: 10.1007/s00604-021-04796-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
An effective and robust colorimetric sensor array for simultaneous detection and discrimination of five reducing sugars (i.e., glyceraldehyde (Gly), fructose (Fru), glucose (Glu), maltose (Mal), and ribose (Rib)) has been proposed. In the sensor array, two negatively charged polydielectrics (sodium polystyrenesulfonate (NaPSS) and sodium polymethacrylate (NaPMAA)), which served as the sensing elements, were individually absorbed on the surface of the cetyltrimethylammonium bromide (CTAB)-coated gold nanorods (AuNR) with positive charges through electrostatic action, forming the designed sensor units (NaPSS-AuNR and NaPMAA-AuNR). In the presence of Tollens reagent (Ag(NH3)2OH), Ag+ was absorbed on the surface of negatively charged NaPSS-AuNR and NaPMAA-AuNRs. When confronted with differential reducing sugars, different reducing sugars exhibited differential levels of deoxidizing abilities toward Ag+, thus Ag+ was reduced to diverse amounts of silver nanoparticles (AgNPs) in situ to form core-shell AuNR@AgNP by the traditional Tollens reaction method, leading to distinct colorimetric response patterns (value of AS/AL (the ratio of absorbance at 360 nm to that at 760 nm in Ag+-NaPMAA-AuNR, and the ratio of absorbance at 360 nm to that at 740 nm in Ag+-NaPSS-AuNR)). These response patterns are characteristic for each reducing sugar, and can be quantitatively distinguished by linear discriminant analysis (LDA) at concentrations as low as 10 nM with relative standard deviation (RSD) of 4.11% (n = 3). The practicability of this sensor array has been validated by recognition of reducing sugars in serum and urine samples. A colorimetric sensor array for reducing sugar discrimination based on the reduction of Ag+ and in situ formation of AuNR@AgNP.
Collapse
|
20
|
Gomaa H, Shenashen MA, Elbaz A, Yamaguchi H, Abdelmottaleb M, El-Safty SA. Mesoscopic engineering materials for visual detection and selective removal of copper ions from drinking and waste water sources. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124314. [PMID: 33168312 DOI: 10.1016/j.jhazmat.2020.124314] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
The monitoring and removal of abundant heavy metals such as Cu ions are considerable global concerns because of their severe impact on the health of humans and other living organisms. To meet this global challenge, we engineered a novel mesoscopic capture protocol for the highly selective removal and visual monitoring of copper (Cu2+) ions from wide-ranging water sources. The capture hierarchy carriers featured three-dimensional, microsized MgO mesoarchitecture rectangular sheet-like mosaics that were randomly built in horizontal and vertical directions, uniformly arranged sheet faces, corners, and edges, smoothly quadrilateral surface coverage for strong Cu2+-to-ligand binding exposure, and multidiffusible pathways. The Cu2+ ion-selectively active captor surface design was engineered through the simple incorporation/encapsulation of a synthetic molecular chelation agent into hierarchical mesoporous MgO rectangular sheet platforms to produce a selective, visual mesoscopic captor (VMC). The nanoscale VMC dressing of MgO rectangular mosaic hierarchy by molecularly electron-enriched chelates with actively double core bindings of azo- and sulfonamide- groups and hydrophobic dodecyl tail showed potential to selectively trap and efficiently remove ultratrace Cu2+-ions with an extreme removal capability of ~233 mg/g from watery solutions, such as drinking water, hospital effluent, and food-processing wastewater at specific pH values. In addition to the Cu2+ ion-selective removal, the VMC design enabled the continuous visual monitoring of ultratrace Cu2+ ions (~3.35 × 10-8 M) as a consequence of strong chelate-to-Cu2+ binding events among all accumulated matrices in water sources. Our experimental recycle protocol provided evidence of reusability and recyclability of VMC (≥10 cycles). With our mesoscopic capture protocol, the VMC can be a promising candidate for the selective decontamination/removal and sensitive detection of hazardous inorganic pollutants from different water sources with indoor or outdoor applications.
Collapse
Affiliation(s)
- H Gomaa
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305-0047, Japan; Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - M A Shenashen
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305-0047, Japan
| | - A Elbaz
- Environmental Engineering Department, Faculty of Engineering, Zagazig University, Egypt
| | - H Yamaguchi
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305-0047, Japan
| | - M Abdelmottaleb
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - S A El-Safty
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305-0047, Japan.
| |
Collapse
|
21
|
Enhanced degradation of aqueous tetracycline hydrochloride by integrating eggshell-derived CaCO3/CuS nanocomposite with advanced oxidation process. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Rasouli Z, Ghavami R. A 3×3 visible-light cross-reactive sensor array based on the nanoaggregation of curcumin in different pH and buffers for the multivariate identification and quantification of metal ions. Talanta 2021; 226:122131. [PMID: 33676685 DOI: 10.1016/j.talanta.2021.122131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022]
Abstract
Here, a facilely constructed 3 × 3 visible-light cross reactive sensor array based on nanoaggregation of curcumin (Cur) is proposed for the identification and quantification of metal ions (MIs). Synthesis of nanocurcumin (NCur) was characterized by UV-Vis spectrophotometry, transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR). The average particle size was estimated about 5.21 ± 1.13 nm) n = 50 (. Our sensor array consists of nine receptors with distinct but overlapping specificities for 11 MIs: Al3+, Cd2+, Co2+, Cu2+, Hg2+, Fe2+, Fe3+, Mn2+, Ni2+, Pb2+, and Zn2+. The receptors include the nine solutions of NCur at three buffers of phosphate, ammonium, and tris each at three pH of 7, 8, and 9 (in total 9 receptors). On account of different pH and buffers, NCur-MI binding affinities can be distinguished by monitoring the UV-Vis absorbance changes. These changes are optical fingerprints that can be used to identify each MI. The absorption values in sixteen wavelengths (i.e. 332, 352, 372, 392, 412, 432, 452, 472, 492, 512, 532, 552, 572, 592, 612, and 632 nm) are considered as analytical signals to quantitatively evaluate of the absorbance responses of the sensor array. A color difference map is provided to qualitatively visualize of the colorimetric sensor array responses. Under optimal conditions, the MIs are successfully discriminated in the range of 4-48 μmol L-1. The limit of detections (LODs) values ranged from 0.47 (for Fe3+) to 1.40 μmol L-1 (for Pb2+). Furthermore, two different mixing sets of the MIs are prepared for multivariate multicomponent analysis. Finally, the suggested sensor array is employed to evaluate its practicability in the discrimination of MIs in samples of river water and serum. Moreover, it can identify the MIs in these samples. The sensor array presents a simple, save time, cost-effective, and environmentally friendly method for the identification and quantification of MIs.
Collapse
Affiliation(s)
- Zolaikha Rasouli
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, P. O. Box 416, Sanandaj, 66177-15175, Iran
| | - Raouf Ghavami
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, P. O. Box 416, Sanandaj, 66177-15175, Iran.
| |
Collapse
|
23
|
Singh P, Singh RK, Kumar R. Journey of ZnO quantum dots from undoped to rare-earth and transition metal-doped and their applications. RSC Adv 2021; 11:2512-2545. [PMID: 35424186 PMCID: PMC8693809 DOI: 10.1039/d0ra08670c] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/05/2020] [Indexed: 12/20/2022] Open
Abstract
Currently, developments in the field of quantum dots (QDs) have attracted researchers worldwide. A large variety of QDs have been discovered in the few years, which have excellent optoelectronic, antibacterial, magnetic, and other properties. However, ZnO is the single known material that can exist in the quantum state and can hold all the above properties. There is a lot of work going on in this field and we will be shorthanded if we do not accommodate this treasure at one place. This manuscript will prove to be a milestone in this noble cause. Having a tremendous potential, there is a developing enthusiasm toward the application of ZnO QDs in diverse areas. Sol-gel method being the simplest is the widely-favored synthetic method. Synthesis via this method is largely affected by a number of factors such as the reaction temperature, duration of the reaction, type of solvent, pH of the solution, and the precipitating agent. Doping enhances the optical, magnetic, anti-bacterial, anti-microbial, and other properties of ZnO QDs. However, doping elements reside mostly on the surface of the QDs. The presence of doping elements inside the core is still a major challenge for doping techniques. In this review article, we have focused on pure, rare-earth, and transition metal-doped ZnO QD properties, and the various synthetic processes and applications. Quantum confinement effect is present in nearly every aspect of the QDs. The effect of quantum confinement has also been summarized in this manuscript. Furthermore, the doping of rare earth elements and transition metal, synthetic methods for different organic molecule-capped ZnO QDs, mechanisms for reactive oxygen species (ROS) generation, drug delivery system for cancer treatment, and many more application are discussed in this paper.
Collapse
Affiliation(s)
- Pushpendra Singh
- Department of Physics, Dr Harisingh Gour Central University Sagar 470003 M. P. India +91 9425635731
| | - Rajan Kumar Singh
- Department of Physics, Dr Harisingh Gour Central University Sagar 470003 M. P. India +91 9425635731
- Department of Chemical Engineering, National Taiwan University Taipei Taiwan ROC
| | - Ranveer Kumar
- Department of Physics, Dr Harisingh Gour Central University Sagar 470003 M. P. India +91 9425635731
| |
Collapse
|
24
|
Liu X, Liu H, Tang X, Liu G, Pu S. A highly selective colorimetric and fluorescent probe for Cu2+ based diarylethene with a diaminomaleonitrile unit. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Dayanidhi K, Sheik Eusuff N. Distinctive detection of Fe 2+ and Fe 3+ by biosurfactant capped silver nanoparticles via naked eye colorimetric sensing. NEW J CHEM 2021. [DOI: 10.1039/d1nj01342d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Distinctive detection of Fe2+ and Fe3+via naked eye colorimetic sensing.
Collapse
Affiliation(s)
- Kalaivani Dayanidhi
- PG & Research Department of Chemistry
- Guru Nanak College (Autonomous)
- Affiliated to University of Madras
- Velachery
- Chennai
| | - Noorjahan Sheik Eusuff
- PG & Research Department of Chemistry
- Guru Nanak College (Autonomous)
- Affiliated to University of Madras
- Velachery
- Chennai
| |
Collapse
|
26
|
Lin Q, Zong Z, Tong J, Xie W, Liang L. Two cluster-based metal–organic frameworks with selective detection of Hg 2+ ion and magnetic properties. CrystEngComm 2021. [DOI: 10.1039/d1ce00826a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two cluster-based metal–organic frameworks have been synthesized—one exhibits highly selective fluorescent detection of trace Hg2+ and the other shows antiferromagnetic interactions between Mn3+ ions.
Collapse
Affiliation(s)
- Qingfang Lin
- Department of Chemistry, Bengbu Medical College, Bengbu 233030, P. R. China
| | - Zhihui Zong
- Department of Chemistry, Bengbu Medical College, Bengbu 233030, P. R. China
| | - Jing Tong
- Department of Chemistry, Bengbu Medical College, Bengbu 233030, P. R. China
| | - Wen Xie
- Department of Chemistry, Bengbu Medical College, Bengbu 233030, P. R. China
| | - Lili Liang
- Department of Chemistry, Bengbu Medical College, Bengbu 233030, P. R. China
| |
Collapse
|
27
|
Ingenious aspartic acid-functionalized gold nanoparticles by one-pot protocol for the sensitive detection of chromium (III) ions. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
28
|
Wang J, Guo X. Adsorption isotherm models: Classification, physical meaning, application and solving method. CHEMOSPHERE 2020; 258:127279. [PMID: 32947678 DOI: 10.1016/j.chemosphere.2020.127279] [Citation(s) in RCA: 504] [Impact Index Per Article: 126.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 05/28/2023]
Abstract
Adsorption is widely applied separation process, especially in environmental remediation, due to its low cost and high efficiency. Adsorption isotherm models can provide mechanism information of the adsorption process, which is important for the design of adsorption system. However, the classification, physical meaning, application and solving method of the isotherms have not been systematical analyzed and summarized. In this paper, the adsorption isotherms were classified into adsorption empirical isotherms, isotherms based on Polanyi's theory, chemical adsorption isotherms, physical adsorption isotherms, and the ion exchange model. The derivation and physical meaning of the isotherm models were discussed in detail. In addition, the application of the isotherm models were analyzed and summarized based on over 200 adsorption equilibrium data in literature. The statistical parameters for evaluating the fitness of the models were also discussed. Finally, a user interface (UI) was developed based on Excel software for solving the isotherm models, which was provided in supplemental material and can be easily used to model the adsorption equilibrium data. This paper will provide theoretical basis and guiding methodology for the selection and use of the adsorption isotherms.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing, 100084, PR China.
| | - Xuan Guo
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
29
|
Dayanidhi K, Vadivel P, Jothi S, Eusuff NS. Facile synthesis of Silver@Eggshell nanocomposite: A heterogeneous catalyst for the removal of heavy metal ions, toxic dyes and microbial contaminants from water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:110962. [PMID: 32778272 DOI: 10.1016/j.jenvman.2020.110962] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/15/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
In this work, silver nanoparticles have been synthesized with an average particle size of 35 nm, within 90s, using microwave and Sapindus mukorossi extract as a stabilizing agent. The AgNps were surface immobilized on eggshells (ES) to obtain Ag@ES, which was characterized by UV-Vis, UV-DRS, FT-IR, ICP-OES, TGA-DSC, SEM-EDX, XRD and XPS. Its applicability as an environmental catalyst was evaluated by Cr (VI) adsorption, photocatalytic degradation of methyl orange, eriochrome black-T, methylene blue, rhodamine-B as model dyes and microbial inhibition against Staphylococcus aureus, Escherichia coli and Candida albicans. The results revealed that Ag@ES exhibited maximum adsorption capacity of 93 mg/g for Cr (VI) ion and degradation efficiency of ~90-98% for removing anionic and cationic dyes. Further, it showed a minimum inhibitory concentration of 15.6, 7.8 and 31.2 μg/mL for S. aureus, E. coli and C. albicans respectively. Moreover, the Ag@ES being a heterogeneous catalyst can be regenerated and reused without significant loss in its efficiency.
Collapse
Affiliation(s)
- Kalaivani Dayanidhi
- Department of Chemistry, Guru Nanak College (Autonomous), Velachery, Chennai, Tamil Nadu, India
| | - Porchezhiyan Vadivel
- Department of Chemistry, Guru Nanak College (Autonomous), Velachery, Chennai, Tamil Nadu, India
| | - Shobana Jothi
- Department of Chemistry, Guru Nanak College (Autonomous), Velachery, Chennai, Tamil Nadu, India; Department of Chemistry, Justice Basheer Ahmed Sayeed College for Women (Autonomous), Chennai, Tamil Nadu, India
| | - Noorjahan Sheik Eusuff
- Department of Chemistry, Guru Nanak College (Autonomous), Velachery, Chennai, Tamil Nadu, India.
| |
Collapse
|
30
|
Guo MY, Li P, Yang SL, Bu R, Piao XQ, Gao EQ. Distinct and Selective Amine- and Anion-Responsive Behaviors of an Electron-Deficient and Anion-Exchangeable Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43958-43966. [PMID: 32880426 DOI: 10.1021/acsami.0c14648] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Smart materials that respond to chemical stimuli with color or luminescence changes are highly desirable for daily-life and high-tech applications. Here, we report a novel porous metal-organic framework (MOF) that shows multiple, selective, and discriminative responsive properties owing to the combination of different functional ingredients [tripyridinium chromogen, Eu(III) luminophore, cationic framework, and special porous structure]. The MOF contains two interpenetrated three-dimensional cationic coordination networks built of a tetrahedral [Eu4(μ3-OH)4] cluster and a tripyridinium-tricarboxylate zwitterionic linker. It shows reversible and discriminative chromic response to aliphatic amines and aniline through different host-guest interactions between electron-deficient pyridinium and electron-rich amines. The size- and shape-selective response to aliphatic amines is ascribed to the radical formation through host-guest electron transfer, whereas the response to aniline is ascribed to the formation of sandwich-type acceptor-donor-acceptor complexes. The MOF is capable of reversible anion exchange with various anions and shows selective and discriminative ionochromic response to iodide, bromide, and thiocyanate, which is attributed to charge-transfer complexation. The above chromic behaviors are accompanied by efficient quenching of Eu(III) photoluminescence. The MOF represents a multi-stimuli dual-output responsive system. It can be used for discrimination and identification of anions and amines. The potential use in invisible printing, reusable sensory films, and optical switches was demonstrated by the ink and the membrane made of the MOF and organic polymers.
Collapse
Affiliation(s)
- Meng-Yue Guo
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Peng Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China
| | - Shuai-Liang Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ran Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xian-Qing Piao
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - En-Qing Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
31
|
Liu Y, Li J, Wang G, Zu B, Dou X. One-Step Instantaneous Detection of Multiple Military and Improvised Explosives Facilitated by Colorimetric Reagent Design. Anal Chem 2020; 92:13980-13988. [PMID: 32938181 DOI: 10.1021/acs.analchem.0c02893] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although colorimetric detection based on reagents has been widely used in the fields of practical trace analysis, its versatility for detecting multitargets remains the most challenging problem. As a proof of concept, a general colorimetric reagent based on potassium isopropanol (C3H7KO) and dimethyl sulfoxide for one-step instantaneous detection and discrimination of typical military and improvised explosives was designed. Vivid colors from none to purple red, blue green, yellow green, and green were shown, respectively, when detecting 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), elemental sulfur (S), and potassium permanganate (KMnO4). The unique design including the specific nucleophilic addition reaction and the base-catalyzed oxidation-induced electron transfer ensures perfect selectivity even upon facing more than 20 interferents. It is further experimentally demonstrated that the confinement effect introduced by Tween-20 plays an essential role in enhancing the color signal on the surface and thus boosts the detection performance even with a mass as low as 1.45 ng. The applicability of this versatile colorimetric reagent was further verified by integrating the reagent onto paper strips for the in-field identification of TNT, DNT, S, and KMnO4 with the help of a portable smartphone-based microscope apparatus, and a practical detection mass of 10.3 ng could be realized. We expect the present colorimetric reagent design strategy would pave a way for one-step instantaneous visual detection toward trace multianalytes.
Collapse
Affiliation(s)
- Yong Liu
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry; Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiguang Li
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry; Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangfa Wang
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry; Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baiyi Zu
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry; Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xincun Dou
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry; Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Cao L, Kang ZW, Ding Q, Zhang X, Lin H, Lin M, Yang DP. Rapid pyrolysis of Cu 2+-polluted eggshell membrane into a functional Cu 2+-Cu +/biochar for ultrasensitive electrochemical detection of nitrite in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138008. [PMID: 32203798 DOI: 10.1016/j.scitotenv.2020.138008] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/03/2020] [Accepted: 03/16/2020] [Indexed: 05/28/2023]
Abstract
Bioremediation is one of efficient methods to solve the issues of water or soil contaminated by metal ions. However, the harvested biowaste is often troublesome to handle owing to the second pollution. Herein, the waste eggshell membrane was used to adsorb Cu2+ in wastewater, which was then converted into biochar containing copper ions (Cu2+-Cu+/Biochar) via a rapid pyrolysis. By integrating the collective advantages of eggshell membrane and Cu2+-Cu+, such as superior electrical conductivity, enlarged electrochemically active surface area, unique three-dimensional porous network characteristics, and fast charge transport, the Cu2+-Cu+/Biochar system can be used as a self-supporting sensor for detection of nitrite (NO2-). The sensor demonstrated superior electrochemical sensing abilities accompanied by a broad linear range (1-300 μM), ultralow detection limit (0.63 μM), and high sensitivity (30.0 μA·mM-1·cm-2). In addition, the fabricated electrochemical sensor has excellent stability, good reproducibility, and strong anti-interference performance. More importantly, the sensor has a high recovery rate when it is used to detect nitrite in tap water, mineral water, and sausage, indicating the feasibility of using this sensor in practical applications. This study provides a green and sustainable approach for simultaneous treatment of biomass waste eggshell membrane, remedy of heavy metals, and electrochemical detection of nitrite.
Collapse
Affiliation(s)
- Liping Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Ze-Wen Kang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Qi Ding
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Xiaohui Zhang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Hetong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Mengshi Lin
- Food Science Program, Division of Food System & Bioengineering, University of Missouri, Columbia, MO 65211-5160, USA
| | - Da-Peng Yang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China.
| |
Collapse
|