1
|
He X, Wu Y, Luo J, Dai X, Song J, Tang Y. First-Principles Study on Janus-Structured Sc 2CX 2/Sc 2CY 2 (X, Y = F, Cl, Br) Heterostructures for Solar Energy Conversion. Molecules 2024; 29:2898. [PMID: 38930962 PMCID: PMC11206758 DOI: 10.3390/molecules29122898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Two-dimensional van der Waals heterostructures have good application prospects in solar energy conversion due to their excellent optoelectronic performance. In this work, the electronic structures of Sc2CF2/Sc2CCl2, Sc2CF2/Sc2CBr2, and Sc2CCl2/Sc2CBr2 heterostructures, as well as their properties in photocatalysis and photovoltaics, have been comprehensively studied using the first-principles method. Firstly, both of the three thermodynamically and dynamically stable heterostructures are found to have type-II band alignment with band gap values of 0.58 eV, 0.78 eV, and 1.35 eV. Meanwhile, the photogenerated carriers in Sc2CF2/Sc2CCl2 and Sc2CF2/Sc2CBr2 heterostructures are predicated to follow the direct Z-scheme path, enabling their abilities for water splitting. As for the Sc2CCl2/Sc2CBr2 heterostructure, its photovoltaic conversion efficiency is estimated to be 20.78%. Significantly, the light absorption coefficients of Sc2CF2/Sc2CCl2, Sc2CF2/Sc2CBr2, and Sc2CCl2/Sc2CBr2 heterostructures are enhanced more than those of the corresponding monolayers. Moreover, biaxial strains have been observed to considerably tune the aforementioned properties of heterostructures. All the theoretical results presented in this work demonstrate the application potential of Sc2CX2/Sc2CY2 (X, Y = F, Cl, Br) heterostructures in photocatalysis and photovoltaics.
Collapse
Affiliation(s)
- Xin He
- School of Energy Engineering, Huanghuai University, Zhumadian 463000, China; (X.H.); (Y.W.); (J.L.); (X.D.); (J.S.)
- Henan Key Laboratory of Smart Lighting, Huanghuai University, Zhumadian 463000, China
| | - Yanan Wu
- School of Energy Engineering, Huanghuai University, Zhumadian 463000, China; (X.H.); (Y.W.); (J.L.); (X.D.); (J.S.)
| | - Jia Luo
- School of Energy Engineering, Huanghuai University, Zhumadian 463000, China; (X.H.); (Y.W.); (J.L.); (X.D.); (J.S.)
| | - Xianglin Dai
- School of Energy Engineering, Huanghuai University, Zhumadian 463000, China; (X.H.); (Y.W.); (J.L.); (X.D.); (J.S.)
| | - Jun Song
- School of Energy Engineering, Huanghuai University, Zhumadian 463000, China; (X.H.); (Y.W.); (J.L.); (X.D.); (J.S.)
- Henan Key Laboratory of Smart Lighting, Huanghuai University, Zhumadian 463000, China
| | - Yong Tang
- School of Energy Engineering, Huanghuai University, Zhumadian 463000, China; (X.H.); (Y.W.); (J.L.); (X.D.); (J.S.)
- Henan Key Laboratory of Smart Lighting, Huanghuai University, Zhumadian 463000, China
| |
Collapse
|
2
|
Jiang Y, Lei S, Wang M. S-Scheme Boron Phosphide/MoS 2 Heterostructure with Excellent Light Conversion Ability for Solar Cells and Water Splitting Photocatalysts. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30521-30533. [PMID: 38812243 DOI: 10.1021/acsami.4c03567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Monolayer molybdenum disulfide (MoS2) with a suitable direct band gap and strong optical absorption is very attractive for utilization in solar cells and photocatalytic water splitting. Nevertheless, the broader utilization of MoS2 is impeded by its low carrier mobility and limited responsiveness to infrared light. To overcome these challenges, we constructed a variety of stackings for the boron phosphide (BP)/MoS2 van der Waals heterostructure (vdWH), all of which display S-scheme band alignments except for the AC' stacking. The constituent BP monolayer has superior carrier mobility and strong infrared and visible light response, which makes up for the shortcomings of MoS2. The study revealed that the AB stacking exhibits a remarkable power conversion efficiency of 22.27%, indicating its significant application prospect in solar cells. Additionally, the AB stacking also exhibits a promising application prospect in photocatalytic water splitting due to its suitable band structure, S-scheme band alignment, strong optical adsorption characteristic, high solar-to-hydrogen efficiency, and robust built-in electric field. Meanwhile, applying uniaxial tensile strains along the x-axis direction is more beneficial for photocatalytic water splitting. Hence, the AB-stacked BP/MoS2 vdWH shows significant potential for use in both solar cells and photocatalytic water splitting. This work paves the way for exploring the application of S-scheme heterostructures in solar energy conversion systems.
Collapse
Affiliation(s)
- Yuncai Jiang
- Key Laboratory of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, 210096 Nanjing, China
| | - Shuangying Lei
- Key Laboratory of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, 210096 Nanjing, China
| | - Mingyuan Wang
- Key Laboratory of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, 210096 Nanjing, China
| |
Collapse
|
3
|
Ferdous N, Islam MS, Park J. A resilient type-III broken gap Ga 2O 3/SiC van der Waals heterogeneous bilayer with band-to-band tunneling effect and tunable electronic property. Sci Rep 2024; 14:12748. [PMID: 38830949 PMCID: PMC11148157 DOI: 10.1038/s41598-024-63354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024] Open
Abstract
The potential of van der Waals (vdW) heterostructure to incorporate the outstanding features of stacked materials to meet a variety of application requirements has drawn considerable attention. Due to the unique quantum tunneling mechanisms, a type-III broken-gap obtained from vdW heterostructure is a promising design strategy for tunneling field-effect transistors. Herein, a unique Ga2O3/SiC vdW bilayer heterostructure with inherent type-III broken gap band alignment has been revealed through first-principles calculation. The underlying physical mechanism to form the broken gap band alignment is thoroughly studied. Due to the overlapping band structures, a tunneling window of 0.609 eV has been created, which enables the charges to tunnel from the VBM of the SiC layer to the CBM of the Ga2O3 layer and fulfills the required condition for band-to-band tunneling. External electric field and strain can be applied to tailor the electronic behavior of the bilayer heterostructure. Positive external electric field and compressive vertical strain enlarge the tunneling window and enhance the band-to-band tunneling (BTBT) scheme while negative electric field and tensile vertical strain shorten the BTBT window. Under external electric field as well as vertical and biaxial strain, the Ga2O3/SiC vdW hetero-bilayer maintains the type-III band alignment, revealing its capability to tolerate the external electric field and strain with resilience. All these results provide a compelling platform of the Ga2O3/SiC vdW bilayer to design high performance tunneling field effect transistor.
Collapse
Affiliation(s)
- Naim Ferdous
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno, NV, 89557, USA
| | - Md Sherajul Islam
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno, NV, 89557, USA.
- Department of Electrical and Electronic Engineering, Khulna University of Engineering and Technology, Khulna, 9203, Bangladesh.
| | - Jeongwon Park
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno, NV, 89557, USA
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON, K1N6N5, Canada
| |
Collapse
|
4
|
Jadhav PR, Kolhe PT, Ghemud VS, Shelke PN, Patole SP, Dhole SD, Dahiwale SS. Modification of WS 2thin film properties using high dose gamma irradiation. NANOTECHNOLOGY 2024; 35:335701. [PMID: 38722286 DOI: 10.1088/1361-6528/ad4901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
The tunability of the transition metal dichalcogenide properties has gained attention from numerous researchers due to their wide application in various fields including quantum technology. In the present work, WS2has been deposited on fluorine doped tin oxide substrate and its properties have been studied systematically. These samples were irradiated using gamma radiation for various doses, and the effect on structural, morphological, optical and electrical properties has been reported. The crystallinity of the material is observed to be decreased, and the results are well supported by x-ray diffraction, Raman spectroscopy techniques. The increase in grain boundaries has been supported by the agglomeration observed in the scanning electron microscopy micrographs. The XPS results of WS2after gamma irradiation show evolution of oxygen, carbon, C=O, W-O and SO4-2peaks, confirming the addition of impurities and formation of point defect. The gamma irradiation creates point defects, and their density increases considerably with increasing gamma dosage. These defects crucially altered the structural, optical and electrical properties of the material. The reduction in the optical band gap with increased gamma irradiation is evident from the absorption spectra and respective Tauc plots. TheI-Vgraphs show a 1000-fold increase in the saturation current after 100 kGy gamma irradiation dose. This work has explored the gamma irradiation effect on the WS2and suggests substantial modification in the material and enhancement in electrical properties.
Collapse
Affiliation(s)
- P R Jadhav
- Department of Physics, Savitribai Phule Pune University, Pune 411007, India
- Department of Physics, PDEA's Baburaoji Gholap College, Pune 411027, India
| | - P T Kolhe
- Department of Physics, Savitribai Phule Pune University, Pune 411007, India
- Department of Physics, Sangamner Nagarpalika Arts, DJM Commerce and BNS Science College, Sangamner 422605, India
| | - V S Ghemud
- Department of Physics, Savitribai Phule Pune University, Pune 411007, India
- Department of Physics, BJS's Arts, Science & Commerce College, Pune 412207, India
| | - P N Shelke
- Department of Physics, PDEA's Baburaoji Gholap College, Pune 411027, India
- Department of Physics, Waghire College, Saswad, 412301, India
| | - S P Patole
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - S D Dhole
- Department of Physics, Savitribai Phule Pune University, Pune 411007, India
| | - S S Dahiwale
- Department of Physics, Savitribai Phule Pune University, Pune 411007, India
| |
Collapse
|
5
|
Zuo J, Bi J, He S, Jin W, Yu X, He K, Dai W, Lu C. Unexpected thermal transport properties of MgSiO 3monolayer at extreme conditions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:335702. [PMID: 38684164 DOI: 10.1088/1361-648x/ad44fa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
The thermal transport properties of mantle minerals are of paramount importance to understand the thermal evolution processes of the Earth. Here, we perform extensively structural searches of two-dimensional MgSiO3monolayer by CALYPSO method and first-principles calculations. A stable MgSiO3monolayer withPmm2 symmetry is uncovered, which possesses a wide indirect band gap of 4.39 eV. The calculations indicate the lattice thermal conductivities of MgSiO3monolayer are 49.86 W (mK)-1and 9.09 W (mK)-1inxandydirections at room temperature. Our findings suggest that MgSiO3monolayer is an excellent low-dimensional thermoelectric material with highZTvalue of 4.58 from n-type doping in theydirection at 2000 K. The unexpected anisotropic thermal transport of MgSiO3monolayer is due to the puckered crystal structure and the asymmetric phonon dispersion as well as the distinct electron states around the Fermi level. These results offer a detailed description of structural and thermal transport properties of MgSiO3monolayer at extreme conditions.
Collapse
Affiliation(s)
- Jingning Zuo
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Jie Bi
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Shi He
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Wenyuan Jin
- Institute of Physics, Henan Academy of Sciences, Zhengzhou 450046, People's Republic of China
| | - Xin Yu
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, People's Republic of China
| | - Kaihua He
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Wei Dai
- School of Mathematics and Physics, Jingchu University of Technology, Jingmen 448000, People's Republic of China
| | - Cheng Lu
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| |
Collapse
|
6
|
Sahoo RC, Sahoo P, Mohanta MK, Jena P, Matte HSSR. Solution Processing of Spinel Nickel Cobaltite: Exfoliation Mechanism, Dispersion Stability, and Applications. Inorg Chem 2024; 63:7838-7847. [PMID: 38635967 DOI: 10.1021/acs.inorgchem.4c00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The exfoliation of nonlayered materials to mono- or few-layers is of growing interest to realize their full potential for various applications. Nickel cobaltite (NiCo2O4), which has a spinel crystal structure, is one such nonlayered material with unique properties and has been utilized in a wide range of applications. Herein, NiCo2O4 is synthesized from NiCo2- Layered double hydroxides using a topochemical conversion technique. Subsequently, bulk NiCo2O4 is exfoliated into mono- or few-layer nickel cobaltene nanosheets using liquid-phase exfoliation in various low-boiling point solvents. An analytical centrifuge technique is also utilized to understand the solute-solvent interactions by determining their dispersion stability using parameters such as the instability index and sedimentation velocity. Among the studied solvents, water/isopropyl alcohol cosolvent is found to have better dispersion stability. In addition, density functional theory calculations are carried out to understand the exfoliation mechanism. It is found that the surface termination arising from the Co-O bond needs the least energy for exfoliation. Furthermore, the obtained nickel cobaltene nanosheets are utilized as an active material for supercapacitors without any conductive additives or binders. A solid-state symmetric supercapacitor delivers a specific capacitance of 10.2 mF cm-2 with robust stability, retaining ∼98% capacitance after 4000 cycles.
Collapse
Affiliation(s)
- Ramesh Chandra Sahoo
- Energy Materials Laboratory, Centre for Nano and Soft Matter Sciences, Bangalore 562162, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Priyabrata Sahoo
- Energy Materials Laboratory, Centre for Nano and Soft Matter Sciences, Bangalore 562162, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Manish Kumar Mohanta
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Puru Jena
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - H S S Ramakrishna Matte
- Energy Materials Laboratory, Centre for Nano and Soft Matter Sciences, Bangalore 562162, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| |
Collapse
|
7
|
Hsiao HW, Narendra N, Kubis T. Long range piezoelectricity effects in van der Waals heterobilayer systems beyond 1000 atoms. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:265901. [PMID: 38518366 DOI: 10.1088/1361-648x/ad3708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Twist angle is a relevant design and control component for the piezoelectric coefficients of van der Waals (vdW) heterostructures. This theoretical work assesses in high detail the impact of the twist angle on the piezoelectricity of two-dimensional (2D) heterobilayer systems. We expand the density-functional based tight-binding method to predict the piezoelectric coefficients of twisted and corrugated 2D heterobilayer structures with more than 1000 atoms. We showcase the method on hexagonal III-V/transition metal dichalcogenide vdW heterosystems. Our calculations yield a periodic relationship between the in-plane piezoelectric coefficients and the corresponding twist angles, indicating the tunability of the in-plane piezoelectricity. In contrast, the out-of-plane piezoelectricity is not twist angle dependent, but nonlinearly changes with the average interlayer distance.
Collapse
Affiliation(s)
- Han-Wei Hsiao
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, United States of America
| | - Namita Narendra
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, United States of America
| | - Tillmann Kubis
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, United States of America
| |
Collapse
|
8
|
Baker EAD, Price CJ, Hepplestone SP. Computational Study of the Enhancement of Graphene Electrodes for Use in Li-Ion Batteries via Forming Superlattices with Transition Metal Dichalcogenides. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:723-731. [PMID: 38264433 PMCID: PMC10801692 DOI: 10.1021/acs.jpcc.3c06300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024]
Abstract
In our study, we examined nine transition metal dichalcogenide (TMDC)-graphene superlattices as potential Li-ion intercalation electrodes. We determined their voltages, with ScS2-graphene in T- and R-phases showing the highest at around 3 V, while the others ranged from 0 to 1.5 V. Most superlattices exhibited minimal volumetric expansion (5 to 10%), similar to NMC (8%), except for SnS2-T and NiS2-T, which expanded up to nearly 20%. We evaluated their capacities using a stability metric, EIS, and found that ScS2-T, ScS2-R, and TiS2-T could be intercalated up to two Li ions per MX2 unit without decomposing to Li2S, yielding capacities of 306.77 mA h/g for both ScS2 phases and 310.84 mA h/g for TiS2-T, roughly equivalent to LiC2. MoS2-T could accept Li up to a limit of a = 15/16 in LiaMoS2Cb, corresponding to a capacity of 121.29 mA h/g (equivalent to LiC4). Examining the influence of graphene layers on MoS2-T, we observed a voltage decrease and an initial EIS decrease before effectively flat lining, which is due to charge donation to the middle graphene layer, reducing the electron concentration near the TMDC layer. As graphene layers increased, overall volume expansion decreased with Li intercalation, which is attributed to the in-plane expansion changing. Our results underscore the potential of TMDC-graphene superlattices as Li-ion intercalation electrodes, offering low volumetric expansions, high capacities, and a wide voltage range. These superlattices all show an increase in the capacity of the graphene.
Collapse
|
9
|
Yao L, Yun J, Kang P, Zhao H, Zhang S, Zeng L, Bi Z, Yan J, Zhao W, Zhang Z. Twist angle and electric gating controllable electronic structure of the two-dimensional stacked BP homo-structure. Phys Chem Chem Phys 2023; 26:230-240. [PMID: 38054276 DOI: 10.1039/d3cp03591c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The boron phosphide (BP) van der Waals (vdW) homostructure is designed to construct high-performance nano-optoelectronic devices due to its distinctive photoelectric properties. Using density functional theory, the electronic properties of twisted and untwisted BP bilayer structures are systematically calculated. We found that the 0° structure is a direct band gap semiconductor with a type II band alignment, the carrier mobility of which is increased to 104, and its photoelectric conversion efficiency is 17.3%. By analyzing the band structure and exciton binding energy calculated at 0° under an electric field, it is further found that 0° is a superior photoelectric material. As for the twist BP bilayer, the band gap changes with torsional structures under the applied electric field, which generates the Stark effect. The twist angles of bilayer BP, specifically 13.17°, 21.79°, 38.21°, and 46.83°, always maintain a direct band gap under the influence of an electric field. While 60° is an indirect band gap, the structure exhibits high resistance to the electric field. Our results reveal that bilayer BP is a potential application prospect in photovoltaic and optoelectronic fields and can provide more insights into optoelectronic devices.
Collapse
Affiliation(s)
- Linwei Yao
- School of Information Science and Technology, Northwest University, Xian, 710127, China.
| | - Jiangni Yun
- School of Information Science and Technology, Northwest University, Xian, 710127, China.
| | - Peng Kang
- Department of Physics, McGill University, Montreal, Quebec, H3A2T8, Canada
| | - Hongyuan Zhao
- School of Information Science and Technology, Northwest University, Xian, 710127, China.
| | - Siyu Zhang
- School of Information Science and Technology, Northwest University, Xian, 710127, China.
| | - Liru Zeng
- School of Information Science and Technology, Northwest University, Xian, 710127, China.
| | - Zhisong Bi
- School of Information Science and Technology, Northwest University, Xian, 710127, China.
| | - Junfeng Yan
- School of Information Science and Technology, Northwest University, Xian, 710127, China.
| | - Wu Zhao
- School of Information Science and Technology, Northwest University, Xian, 710127, China.
| | - Zhiyong Zhang
- School of Information Science and Technology, Northwest University, Xian, 710127, China.
| |
Collapse
|
10
|
Garcia VG, Batista NN, Aldave DA, Capaz RB, Palacios JJ, Menezes MG, Paz WS. Unlocking the Potential of Nanoribbon-Based Sb 2S 3/Sb 2Se 3 van-der-Waals Heterostructure for Solar-Energy-Conversion and Optoelectronics Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54786-54796. [PMID: 37967344 DOI: 10.1021/acsami.3c10868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
High-performance nanosized optoelectronic devices based on van der Waals (vdW) heterostructures have significant potential for use in a variety of applications. However, the investigation of nanoribbon-based vdW heterostructures are still mostly unexplored. In this study, based on first-principles calculations, we demonstrate that a Sb2S3/Sb2Se3 vdW heterostructure, which is formed by isostructural nanoribbons of stibnite (Sb2S3) and antimonselite (Sb2Se3), possesses a direct band gap with a typical type-II band alignment, which is suitable for optoelectronics and solar energy conversion. Optical absorption spectra show broad profiles in the visible and UV ranges for all of the studied configurations, indicating their suitability for photodevices. Additionally, in 1D nanoribbons, we see sharp peaks corresponding to strongly bound excitons in a fashion similar to that of other quasi-1D systems. The Sb2S3/Sb2Se3 heterostructure is predicted to exhibit a remarkable power conversion efficiency (PCE) of 28.2%, positioning it competitively alongside other extensively studied two-dimensional (2D) heterostructures.
Collapse
Affiliation(s)
- Vinícius G Garcia
- Department of Physics, Federal University of Espírito Santo, Vitória, Espírito Santo 29075-910, Brazil
| | - Nathanael N Batista
- Department of Physics, Federal University of Espírito Santo, Vitória, Espírito Santo 29075-910, Brazil
| | - Diego A Aldave
- Departamento de Física de la Materia Condensada, Instituto Nicolás Cabrera (INC), Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | - Rodrigo B Capaz
- Institute of Physics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-972, Brazil
- Brazilian Nanotechnology National Laboratory (LNNano), CNPEM, Campinas, São Paulo 13083-970, Brazil
| | - Juan José Palacios
- Departamento de Física de la Materia Condensada, Instituto Nicolás Cabrera (INC), Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Marcos G Menezes
- Institute of Physics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-972, Brazil
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Wendel S Paz
- Department of Physics, Federal University of Espírito Santo, Vitória, Espírito Santo 29075-910, Brazil
| |
Collapse
|
11
|
Xie W, Pang J, Yang J, Kuang X, Mao A. Highly-efficient heterojunction solar cells based on 2D Janus transition-metal nitride halide (TNH) monolayers with ultrahigh carrier mobility. NANOSCALE 2023; 15:18328-18336. [PMID: 37921002 DOI: 10.1039/d3nr03417h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Symmetry breaking has a crucial effect on electronic band structure and subsequently affects the light-absorption coefficient of monolayers. We systematically report a family of two-dimensional (2D) Janus transition-metal nitride halides (TNHs, T = Ti, Zr, Hf, Fe, Pd, Pt, Os, and Re; H = Cl and F) with breaking of both in-plane and out-of-plane structural symmetry. The dynamical, thermal and mechanical stabilities are calculated to check the stability of the Janus TNHs. The electric properties of ten TNHs are studied via the HSE06+SOC method and the band gaps range from 0.93 eV (PdNCl) to 4.74 eV (HfNCl). Desirable light adsorption coefficients of up to 105 cm-1 are obtained for the Janus TNHs with no central symmetry. The Janus OsNCl monolayer shows excellent electrical transport properties and ultrahigh carrier mobility (104 cm2 V-1 s-1). Heterojunctions formed by stacking two Janus TNH monolayers are further investigated for solar cell applications. Eight of the heterojunctions have type-II band alignments. Surprisingly, the OsNCl/FeNCl heterojunction has a power conversion efficiency (PCE) of 23.45%, which is a larger value compared to the PCE of GeSe/SnSe heterostructures (21.47%). The optical properties and the built-in electric field of the OsNCl/FeNCl heterojunction are investigated. These results indicate that the stable Janus TNH monolayers have potential applications in photoelectric devices, and the vertical heterojunctions can be used in solar cells.
Collapse
Affiliation(s)
- Wanying Xie
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, China.
| | - Jiafei Pang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, China.
| | - Jinni Yang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, China.
| | - Xiaoyu Kuang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, China.
| | - Aijie Mao
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
12
|
Singh A, Jain M, Bhumla P, Bhattacharya S. Electrocatalytic study of the hydrogen evolution reaction on MoS 2/BP and MoSSe/BP in acidic media. NANOSCALE ADVANCES 2023; 5:5332-5339. [PMID: 37767041 PMCID: PMC10521249 DOI: 10.1039/d3na00215b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
Molecular hydrogen (H2) production by the electrochemical hydrogen evolution reaction (HER) is being actively explored for non-precious metal-based electrocatalysts that are earth-abundant and low cost like MoS2. Although it is acid-stable, its applicability is limited by catalytically inactive basal planes, poor electrical transport and inefficient charge transfer at the interface. Therefore, the present work examines its bilayer van der Waals heterostructure (vdW HTS). The second constituent monolayer boron phosphide (BP) is advantageous as an electrode material owing to its chemical stability in both oxygen and water environments. Here, we have performed first-principles based calculations under the framework of density functional theory (DFT) for the HER in an electrochemical double layer model with the BP monolayer, MoS2/BP and MoSSe/BP vdW HTSs. The climbing image nudged elastic band method (CI-NEB) has been employed to determine the minimum energy pathways for Tafel and Heyrovsky reactions. The calculations reveal that the Tafel reaction shows no reaction barrier. Thereafter, for the Heyrovsky reaction, we obtained a low reaction barrier in the vdW HTSs as compared to that in the BP monolayer. Subsequently, we have observed no significant difference in the reaction profile of MoS2/BP and MoSSe/BP vdW HTSs in the case of 2 × 2 supercell configuration. However, in the case of 3 × 3 and 4 × 4 configurations, MoSSe/BP shows a feasible Heyrovsky reaction with no reaction barrier. The coverages with 1/4H+ concentration (conc.) deduced high coverage with low conc. and low coverage with high conc. to be apt for the HER via the Heyrovsky reaction path. Finally, on observing the activation barrier of the Heyrovsky pathway along with that of second H adsorption at the surface, the Heyrovsky path is expected to be favoured.
Collapse
Affiliation(s)
- Arunima Singh
- Department of Physics, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Manjari Jain
- Department of Physics, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Preeti Bhumla
- Department of Physics, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Saswata Bhattacharya
- Department of Physics, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| |
Collapse
|
13
|
Monolayer BP: A Promising Photocatalyst for Water Splitting with High Carrier Mobility. Catal Letters 2023. [DOI: 10.1007/s10562-023-04291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
14
|
Ray S, Tarafder K. Investigation of CdSe and ZnSe as Potential Back Surface Field Layers for CdTe‐Based Solar Cells: A Study from First Principles Calculations. ADVANCED THEORY AND SIMULATIONS 2023. [DOI: 10.1002/adts.202200718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Subhasmita Ray
- Department of Physics National Institute of Technology Karnataka Srinivasnagar, Surathkal Mangalore Karnataka 575025 India
| | - Kartick Tarafder
- Department of Physics National Institute of Technology Karnataka Srinivasnagar, Surathkal Mangalore Karnataka 575025 India
| |
Collapse
|
15
|
Zeng L, Zhang S, Yao L, Bi Z, Zhang Y, Kang P, Yan J, Zhang Z, Yun J. A type-II NGyne/GaSe heterostructure with high carrier mobility and tunable electronic properties for photovoltaic application. NANOTECHNOLOGY 2022; 34:065702. [PMID: 36356303 DOI: 10.1088/1361-6528/aca1cc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The two-dimensional heterostructures with type-II band alignment and super-high carrier mobility offer an updated perspective for photovoltaic devices. Here, based on the first-principles calculation, a novel vertical NGyne/GaSe heterostructure with an intrinsic type-II band alignment, super-high carrier mobility (104cm2V-1s-1), and strong visible to ultraviolet light absorption (104-105cm-1) is constructed. We investigate the electronic structure and the interfacial properties of the NGyne/GaSe heterostructure under electric field and strain. The band offsets and band gap of the NGyne/GaSe heterostructure can be regulated under applied vertical electric field and strain efficiently. Further study reveals that the photoelectric conversion efficiency of the NGyne/GaSe heterostructure is vastly improved under a negative electric field and reaches up to 25.09%. Meanwhile, near-free electron states are induced under a large applied electric field, leading to the NGyne/GaSe heterostructure transform from semiconductors to metal. Our results indicate that the NGyne/GaSe heterostructure will have extremely potential in optoelectronic devices, especially solar cells.
Collapse
Affiliation(s)
- Liru Zeng
- School of Information Science and Technology, Northwest University, Xi'an, 710127, People's Republic of China
| | - Siyu Zhang
- School of Information Science and Technology, Northwest University, Xi'an, 710127, People's Republic of China
| | - Linwei Yao
- School of Information Science and Technology, Northwest University, Xi'an, 710127, People's Republic of China
| | - Zhisong Bi
- School of Information Science and Technology, Northwest University, Xi'an, 710127, People's Republic of China
| | - Yanni Zhang
- College of Physics & Electronic Engineering, Xianyang Normal University, Xianyang, 712000, People's Republic of China
| | - Peng Kang
- Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada
| | - Junfeng Yan
- School of Information Science and Technology, Northwest University, Xi'an, 710127, People's Republic of China
| | - Zhiyong Zhang
- School of Information Science and Technology, Northwest University, Xi'an, 710127, People's Republic of China
| | - Jiangni Yun
- School of Information Science and Technology, Northwest University, Xi'an, 710127, People's Republic of China
- Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada
| |
Collapse
|
16
|
Attaccalite C, Prete MS, Palummo M, Pulci O. Interlayer and Intralayer Excitons in AlN/ WS2 Heterostructure. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8318. [PMID: 36499811 PMCID: PMC9735989 DOI: 10.3390/ma15238318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
The study of intra and interlayer excitons in 2D semiconducting vdW heterostructures is a very hot topic not only from a fundamental but also an applicative point of view. Due to their strong light-matter interaction, Transition Metal Dichalcogenides (TMD) and group-III nitrides are particularly attractive in the field of opto-electronic applications such as photo-catalytic and photo-voltaic ultra-thin and flexible devices. Using first-principles ground and excited-state simulations, we investigate here the electronic and excitonic properties of a representative nitride/TMD heterobilayer, the AlN/WS2. We demonstrate that the band alignment is of type I, and low energy intralayer excitons are similar to those of a pristine WS2 monolayer. Further, we disentangle the role of strain and AlN dielectric screening on the electronic and optical gaps. These results, although they do not favor the possible use of AlN/WS2 in photo-catalysis, as envisaged in the previous literature, can boost the recently started experimental studies of 2D hexagonal aluminum nitride as a good low screening substrate for TMD-based electronic and opto-electronic devices. Importantly, our work shows how the inclusion of both spin-orbit and many-body interactions is compulsory for the correct prediction of the electronic and optical properties of TMD/nitride heterobilayers.
Collapse
Affiliation(s)
- Claudio Attaccalite
- Centre Interdisciplinaire de Nanoscience de Marseille UMR 7325 Campus de Luminy, CNRS/Aix-Marseille Université, CEDEX 9, 13288 Marseille, France
- European Theoretical Spectroscopy Facilities (ETSF)
| | - Maria Stella Prete
- Dipartimento di Fisica, Universitá di Roma Tor Vergata, and INFN, Via della Ricerca Scientifica 1, I-00133 Rome, Italy
| | - Maurizia Palummo
- European Theoretical Spectroscopy Facilities (ETSF)
- Dipartimento di Fisica, Universitá di Roma Tor Vergata, and INFN, Via della Ricerca Scientifica 1, I-00133 Rome, Italy
| | - Olivia Pulci
- European Theoretical Spectroscopy Facilities (ETSF)
- Dipartimento di Fisica, Universitá di Roma Tor Vergata, and INFN, Via della Ricerca Scientifica 1, I-00133 Rome, Italy
| |
Collapse
|
17
|
Yan S, Wang Y, Tao F, Ren J. High-Throughput Estimation of Phonon Thermal Conductivity from First-Principles Calculations of Elasticity. J Phys Chem A 2022; 126:8771-8780. [DOI: 10.1021/acs.jpca.2c06286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shenshen Yan
- Center for Phononics and Thermal Energy Science, China-EU Joint Lab on Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Sciences and Engineering, Tongji University, Shanghai200092, China
| | - Yi Wang
- Center for Phononics and Thermal Energy Science, China-EU Joint Lab on Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Sciences and Engineering, Tongji University, Shanghai200092, China
| | - Fang Tao
- Center for Phononics and Thermal Energy Science, China-EU Joint Lab on Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Sciences and Engineering, Tongji University, Shanghai200092, China
| | - Jie Ren
- Center for Phononics and Thermal Energy Science, China-EU Joint Lab on Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Sciences and Engineering, Tongji University, Shanghai200092, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai200092, China
| |
Collapse
|
18
|
Corletto A, Ellis AV, Shepelin NA, Fronzi M, Winkler DA, Shapter JG, Sherrell PC. Energy Interplay in Materials: Unlocking Next-Generation Synchronous Multisource Energy Conversion with Layered 2D Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203849. [PMID: 35918607 DOI: 10.1002/adma.202203849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Layered 2D crystals have unique properties and rich chemical and electronic diversity, with over 6000 2D crystals known and, in principle, millions of different stacked hybrid 2D crystals accessible. This diversity provides unique combinations of properties that can profoundly affect the future of energy conversion and harvesting devices. Notably, this includes catalysts, photovoltaics, superconductors, solar-fuel generators, and piezoelectric devices that will receive broad commercial uptake in the near future. However, the unique properties of layered 2D crystals are not limited to individual applications and they can achieve exceptional performance in multiple energy conversion applications synchronously. This synchronous multisource energy conversion (SMEC) has yet to be fully realized but offers a real game-changer in how devices will be produced and utilized in the future. This perspective highlights the energy interplay in materials and its impact on energy conversion, how SMEC devices can be realized, particularly through layered 2D crystals, and provides a vision of the future of effective environmental energy harvesting devices with layered 2D crystals.
Collapse
Affiliation(s)
- Alexander Corletto
- Department of Chemical Engineering, The University of Melbourne, Grattan Street, Parkville, Victoria, 3010, Australia
| | - Amanda V Ellis
- Department of Chemical Engineering, The University of Melbourne, Grattan Street, Parkville, Victoria, 3010, Australia
| | - Nick A Shepelin
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, Forschungsstrasse 111, Villigen, CH-5232, Switzerland
| | - Marco Fronzi
- School of Mathematical and Physical Science, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - David A Winkler
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
- School of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, Victoria, 3086, Australia
- School of Pharmacy, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Joseph G Shapter
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Peter C Sherrell
- Department of Chemical Engineering, The University of Melbourne, Grattan Street, Parkville, Victoria, 3010, Australia
| |
Collapse
|
19
|
Wang H, Ma J, Chen Z, Yuan Y, Zhou B, Li W. Promoted photocarrier separation by dipole engineering in two-dimensional perovskite/C 2N van der Waals heterostructures. Phys Chem Chem Phys 2022; 24:17348-17360. [PMID: 35819077 DOI: 10.1039/d2cp01555b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the aggravation of environmental pollution and the energy crisis, it is urgent to develop and design environment-friendly and efficient photocatalysts for water splitting. van der Waals heterostructures composed of different two-dimensional materials offer an easily accessible way to combine properties of individual materials for applications. Herein, a novel Cs3Bi2I9/C2N heterostructure is proposed through first-principles calculations. The structural, electronic, and optical properties, as well as the charge transfer mechanism at the interface of Cs3Bi2I9/C2N are systematically investigated. Due to the difference between the work functions of Cs3Bi2I9 and C2N monolayers, when they are constructed into heterostructures, redistribution of charge occurs in the whole structure, and some of the charge transfer occurs at the interface due to the formation of an internal electric field. The band structure of Cs3Bi2I9/C2N has type-II band alignment, and the band edge position as well as the band-gap value of the heterostructure are suitable for visible light water splitting. The in-plane biaxial strain, interfacial spacing, and external electric field can effectively modulate the electronic structure and photocatalytic performance of the heterostructure. Under certain conditions, the heterostructure can be changed from type-II to type-I band alignment, accompanied by the transition from an indirect band-gap semiconductor to a direct band-gap semiconductor. Moreover, the intrinsic anion defect (I vacancy) at different positions, as donor defects, can introduce defect levels near the conduction band edge, which affects the transition of photogenerated carriers in these systems. Our findings provide a theoretical design for strategies to improve the performance of two-dimensional perovskites/C2N in photocatalytic and optoelectronic applications.
Collapse
Affiliation(s)
- Hui Wang
- Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Jun Ma
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zheng Chen
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Yujie Yuan
- Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Baozeng Zhou
- Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Wei Li
- Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
20
|
Baker EAD, Pitfield J, Price CJ, Hepplestone SP. Computational analysis of the enhancement of photoelectrolysis using transition metal dichalcogenide heterostructures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:375001. [PMID: 35767988 DOI: 10.1088/1361-648x/ac7d2c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Finding a material with all the desired properties for a photocatalytic water splitter is a challenge yet to be overcome, requiring both a surface with ideal energetics for all steps in the hydrogen and oxygen evolution reactions (HER and OER) and a bulk band gap large enough to mediate said steps. We have instead examined separating these challenges by investigating the energetic properties of two-dimensional transition metal dichalcogenides (TMDCs) that could be used as a surface coating to a material with a large enough bulk band gap. First we investigated the energetics of monolayer MoS2and PdSe2using density functional theory and then investigated how these energetics changed when they were combined into a heterostructure. Our results show that the surface properties were practically (<0.2 eV) unchanged when combined and the MoS2layer aligns well with the OER and HER. This work highlights the potential of TMDC monolayers as surface coatings for bulk materials that have sufficient band gaps for photocatalytic applications.
Collapse
Affiliation(s)
- Edward A D Baker
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom
| | - Joe Pitfield
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom
| | - Conor J Price
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom
| | - Steven P Hepplestone
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom
| |
Collapse
|
21
|
Tao LQ, Zou S, Wang G, Peng Z, Zhu C, Sun H. Theoretical analysis of the absorption of CO 2 and CO on pristine and Al-doped C 3B. Phys Chem Chem Phys 2022; 24:27224-27231. [DOI: 10.1039/d2cp04181b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Real-time detection of CO2 and CO is of great importance because CO2 is a major cause of global warming and CO endangers the human nervous and cardiovascular systems.
Collapse
Affiliation(s)
- Lu-Qi Tao
- Beijing Engineering Research Center of Industrial Spectrum Imaging, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Simin Zou
- School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Guanya Wang
- School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Zhirong Peng
- School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Congcong Zhu
- School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Hao Sun
- School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
22
|
Sherrell PC, Fronzi M, Shepelin NA, Corletto A, Winkler DA, Ford M, Shapter JG, Ellis AV. A bright future for engineering piezoelectric 2D crystals. Chem Soc Rev 2021; 51:650-671. [PMID: 34931635 DOI: 10.1039/d1cs00844g] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The piezoelectric effect, mechanical-to-electrical and electrical-to-mechanical energy conversion, is highly beneficial for functional and responsive electronic devices. To fully exploit this property, miniaturization of piezoelectric materials is the subject of intense research. Indeed, select atomically thin 2D materials strongly exhibit the piezoelectric effect. The family of 2D crystals consists of over 7000 chemically distinct members that can be further manipulated in terms of strain, functionalization, elemental substitution (i.e. Janus 2D crystals), and defect engineering to induce a piezoelectric response. Additionally, most 2D crystals can stack with other similar or dissimilar 2D crystals to form a much greater number of complex 2D heterostructures whose properties are quite different to those of the individual constituents. The unprecedented flexibility in tailoring 2D crystal properties, coupled with their minimal thickness, make these emerging highly attractive for advanced piezoelectric applications that include pressure sensing, piezocatalysis, piezotronics, and energy harvesting. This review summarizes literature on piezoelectricity, particularly out-of-plane piezoelectricity, in the vast family of 2D materials as well as their heterostructures. It also describes methods to induce, enhance, and control the piezoelectric properties. The volume of data and role of machine learning in predicting piezoelectricity is discussed in detail, and a prospective outlook on the 2D piezoelectric field is provided.
Collapse
Affiliation(s)
- Peter C Sherrell
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Marco Fronzi
- School of Mathematical and Physical Science, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia.,Shibaura Institute of Technology, SIT Research Laboratories, 3-7-5, Toyosu, Koto-ku, Tokyo, 135-8548, Japan.
| | - Nick A Shepelin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia. .,Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Alexander Corletto
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia. .,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - David A Winkler
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.,School of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, Victoria 3086, Australia.,School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Mike Ford
- School of Mathematical and Physical Science, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Joseph G Shapter
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Amanda V Ellis
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
23
|
Wang Z, Liu Y, Li F, Zhao J. Controlled 2H/1T phase transition in MoS 2 monolayers by a strong interface with M 2C MXenes: a computational study. Phys Chem Chem Phys 2021; 23:20107-20116. [PMID: 34505593 DOI: 10.1039/d1cp02648h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the high conductivity and abundant active sites, the metallic 1T phase of a two-dimensional molybdenum sulfide monolayer (1T-MoS2) has witnessed a broad range of potential applications in catalysis, and spintronic and phase-switching devices, which, however, are greatly hampered by its poor stability. Thus, the development of particular strategies to realize the phase transition from the stable 2H phase to the metastable 1T phase for MoS2 nanosheets is highly desirable. Herein, by means of density functional theory (DFT) computations, we systematically explored the potential of the interfacial interaction of 2H- and 1T-MoS2 monolayers with a series of M2C MXenes (M = Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W) for achieving the 2H/1T phase transformation. Our results revealed that the 2H → 1T transition for MoS2 monolayers can occur thermodynamically by anchoring on Ti2C, Zr2C, or Hf2C substrates with the extremely strong metal-S interaction, which can be well rationalized by the analysis of the charge transfer, work function, and density of states. Specially, these obtained stable 1T-MoS2/M2C hybrid materials exhibit excellent metallic features, outstanding magnetism, and enhanced mechanical properties. Our findings provide a new avenue to tune the phase transformation for MoS2 monolayers by strong interfacial interactions, which helps to further widen the potential applications of MoS2 monolayers.
Collapse
Affiliation(s)
- Zhongxu Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Yu Liu
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China.
| | - FengYu Li
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China.
| | - Jingxiang Zhao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
24
|
Zhang WX, Yin Y, He C. P Doping Promotes the Spontaneous Visible-Light-Driven Photocatalytic Water Splitting in Isomorphic Type II GaSe/InS Heterostructure. J Phys Chem Lett 2021; 12:7892-7900. [PMID: 34382815 DOI: 10.1021/acs.jpclett.1c02040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development and design of clean and efficient water splitting photocatalysts is important for the current situation of energy shortage and environmental pollution. A new type of isomorphic GaSe/InS heterostructure is constructed, and the optoelectronic properties were studied through first-principles calculations. The results show that GaSe/InS vdW heterostructure is a type II semiconductor with a band gap of 2.09 eV. However, through the analysis of the energy band edge position and Gibbs free energy change of water splitting, it is found that the GaSe/InS heterostructure is difficult to undergo overall water splitting. Therefore, nonmetallic element P doping is considered, the established P-doped GaSe/InS (P-GaSe/InS) heterostructure could maintain the type II band arrangement, and under acidic conditions, P-GaSe/InS heterostructure could spontaneously undergo overall water splitting thermodynamically. Furthermore, the low exciton binding energy of P-GaSe/InS heterostructure highlights better light absorption performance. Therefore, these findings indicate that P-GaSe/InS heterostructure is a promising photocatalyst in overall water splitting.
Collapse
Affiliation(s)
- W X Zhang
- School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
| | - Y Yin
- School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
| | - C He
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
25
|
Wang C, Jing Y, Zhou X, Li YF. Sb 2TeSe 2 Monolayers: Promising 2D Semiconductors for Highly Efficient Excitonic Solar Cells. ACS OMEGA 2021; 6:20590-20597. [PMID: 34396004 PMCID: PMC8359126 DOI: 10.1021/acsomega.1c02746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
On the basis of density functional theory computations, we demonstrated that two-dimensional (2D) α- and β-Sb2TeSe2 monolayers are promising candidates for constructing high-efficiency heterojunction excitonic solar cells. These two 2D materials possess moderate band gaps (∼1.1 eV), which can be flexibly tuned by applying external strains. They possess high carrier mobility (∼3000 cm2 V-1 s-1) and can absorb sunlight over the whole range of the solar spectrum. Remarkably, the α- and β-Sb2TeSe2 monolayers can form desirable type II heterostructures with HfSe2 and BiOI monolayers, respectively. The power conversion efficiencies of α-Sb2TeSe2/HfSe2 and β-Sb2TeSe2/BiOI heterojunction excitonic solar cells can reach 22.5 and 20.3%, respectively. Since α-Sb2TeSe2 and β-Sb2TeSe2 monolayers have good stability and high synthesis feasibility, they have important applications in photovoltaic solar cell devices.
Collapse
Affiliation(s)
- Chun Wang
- Jiangsu
Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation
Centre of Biomedical Functional Materials, School of Chemistry and
Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yu Jing
- Jiangsu
Co-Innovation Centre of Efficient Processing and Utilization of Forest
Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaocheng Zhou
- Jiangsu
Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation
Centre of Biomedical Functional Materials, School of Chemistry and
Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ya-fei Li
- Jiangsu
Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation
Centre of Biomedical Functional Materials, School of Chemistry and
Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
26
|
Li MS, Mo DC, Lyu SS. Thermoelectric transports in pristine and functionalized boron phosphide monolayers. Sci Rep 2021; 11:10030. [PMID: 33976318 PMCID: PMC8113530 DOI: 10.1038/s41598-021-89579-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/03/2021] [Indexed: 02/03/2023] Open
Abstract
Recently, a new monolayer Group III-V material, two-dimensional boron phosphide (BP), has shown great potential for energy storage and energy conversion applications. We study the thermoelectric properties of BP monolayer as well as the effect of functionalization by first-principles calculation and Boltzmann transport theory. Combined with a moderate bandgap of 0.90 eV and ultra-high carrier mobility, a large ZT value of 0.255 at 300 K is predicted for two-dimensional BP. While the drastically reduced thermal conductivity in hydrogenated and fluorinated BP is favored for thermoelectric conversion, the decreased carrier mobility has limited the improvement of thermoelectric figure of merit.
Collapse
Affiliation(s)
- Min-Shan Li
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
- Guangdong Engineering Technology Research Centre for Advanced Thermal Control Material and System Integration (ATCMSI), Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Dong-Chuan Mo
- School of Materials, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
- Guangdong Engineering Technology Research Centre for Advanced Thermal Control Material and System Integration (ATCMSI), Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Shu-Shen Lyu
- School of Materials, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- Guangdong Engineering Technology Research Centre for Advanced Thermal Control Material and System Integration (ATCMSI), Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
27
|
Mohanta MK, Arora A, De Sarkar A. Conflux of tunable Rashba effect and piezoelectricity in flexible magnesium monochalcogenide monolayers for next-generation spintronic devices. NANOSCALE 2021; 13:8210-8223. [PMID: 33885124 DOI: 10.1039/d1nr00149c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The coupling of piezoelectric properties with Rashba spin-orbit coupling (SOC) has proven to be the limit breaker that paves the way for a self-powered spintronic device (ACS Nano, 2018, 12, 1811-1820). For further advancement in next-generation devices, a new class of buckled, hexagonal magnesium-based chalcogenide monolayers (MgX; X = S, Se, Te) have been predicted which are direct band gap semiconductors satisfying all the stability criteria. The MgTe monolayer shows a strong SOC with a Rashba constant of 0.63 eV Å that is tunable to the extent of ±0.2 eV Å via biaxial strain. Also, owing to its broken inversion symmetry and buckling geometry, MgTe has a very large in-plane as well as out-of-plane piezoelectric coefficient. These results indicate its prospects for serving as a channel semiconducting material in self-powered piezo-spintronic devices. Furthermore, a prototype for a digital logic device can be envisioned using the ac pulsed technology via a perpendicular electric field. Heat transport is significantly suppressed in these monolayers as observed from their intrinsic low lattice thermal conductivity at room temperature: MgS (9.32 W m-1 K-1), MgSe (4.93 W m-1 K-1) and MgTe (2.02 W m-1 K-1). Further studies indicate that these monolayers can be used as photocatalytic materials for the simultaneous production of hydrogen and oxygen on account of having suitable band edge alignment and high charge carrier mobility. This work provides significant theoretical insights into both the fundamental and applied properties of these new buckled MgX monolayers, which are highly suitable for futuristic applications at the nanoscale in low-power, self-powered multifunctional electronic and spintronic devices and solar energy harvesting.
Collapse
Affiliation(s)
- Manish Kumar Mohanta
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, Mohali, Punjab-140306, India.
| | - Anu Arora
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, Mohali, Punjab-140306, India.
| | - Abir De Sarkar
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, Mohali, Punjab-140306, India.
| |
Collapse
|
28
|
Novakov S, Jariwala B, Vu NM, Kozhakhmetov A, Robinson JA, Heron JT. Interface Transparency and Rashba Spin Torque Enhancement in WSe 2 Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13744-13750. [PMID: 33705093 DOI: 10.1021/acsami.0c19266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rashba spin current generation emerges in heterostructures of ferromagnets and transition metal dichalcogenides (TMDs) due to an interface polarization and associated inversion symmetry breaking. Recent work exploring the synthesis and transfer of epitaxial films on the top of low layer count 2D materials reveals that atomic potentials from the underlying substrate interface are not completely screened. The extension of this transparency effect to other interfacial phenomena, such as the Rashba effect and associated spin torques, has not yet been demonstrated. Here, we report enhanced spin transfer torques from the Rashba spin current in heterostructures of permalloy (Py) and WSe2. We show that insertion of up to two monolayers of WSe2 enhances the spin transfer torques in a Rashba system by up to 3×, without changing the fieldlike Rashba spin-orbit torque (SOT), a measure of interface polarization. Our results indicate that low layer count TMD films can be used as an interfacial "scattering promoter" in heterostructure interfaces without quenching the original polarization.
Collapse
Affiliation(s)
- Steve Novakov
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bhakti Jariwala
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nguyen M Vu
- Department of Material Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Azimkhan Kozhakhmetov
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joshua A Robinson
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2D and Layered Materials, Center for Atomically Thin Multifunctional Materials and the Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - John T Heron
- Department of Material Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
29
|
Mohanta MK, Kishore A, De Sarkar A. Two-dimensional ultrathin van der Waals heterostructures of indium selenide and boron monophosphide for superfast nanoelectronics, excitonic solar cells, and digital data storage devices. NANOTECHNOLOGY 2020; 31:495208. [PMID: 32975227 DOI: 10.1088/1361-6528/abaf20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Semiconducting indium selenide (InSe) monolayers have drawn a great deal of attention among all the chalcogenide two-dimensional materials on account of their high electron mobility; however, they suffer from low hole mobility. This inherent limitation of an InSe monolayer can be overcome by stacking it on top of a boron phosphide (BP) monolayer, where the complementary properties of BP can bring additional benefits. The electronic, optical, and external perturbation-dependent electronic properties of InSe/BP hetero-bilayers have been systematically investigated within density functional theory in anticipation of its cutting-edge applications. The InSe/BP heterostructure has been found to be an indirect semiconductor with an intrinsic type-II band alignment where the conduction band minimum (CBM) and valence band maximum (VBM) are contributed by the InSe and BP monolayers, respectively. Thus, the charge carrier mobility in the heterostructure, which is mainly derived from the BP monolayer, reaches as high as 12 × 103 cm2 V-1 s-1, which is very much desired in superfast nanoelectronics. The suitable bandgap accompanied by a very low conduction band offset between the donor and acceptor along with robust charge carrier mobility, and the mechanical and dynamical stability of the heterostructure attests its high potential for applications in solar energy harvesting and nanoelectronics. The solar to electrical power conversion efficiency (20.6%) predicted in this work surpasses the efficiencies reported for InSe based heterostructures, thereby demonstrating its superiority in solar energy harvesting. Moreover, the heterostructure transits from the semiconducting state (the OFF state) to the metallic state (the ON state) by the application of a small electric field (∼0.15 V Å-1) which is brought about by the actual movement of the bands rather than via the nearly empty free electron gas (NFEG) feature. This thereby testifies to its potential for applications in digital data storage. Moreover, the heterostructure shows strong absorbance over a wide spectrum ranging from UV to the visible light of solar radiation, which will be of great utility in UV-visible light photodetectors.
Collapse
Affiliation(s)
- Manish Kumar Mohanta
- Institute of Nano Science and Technology, Phase 10, Sector 64, Mohali, Punjab, 160062, India
| | - Amal Kishore
- Institute of Nano Science and Technology, Phase 10, Sector 64, Mohali, Punjab, 160062, India
| | - Abir De Sarkar
- Institute of Nano Science and Technology, Phase 10, Sector 64, Mohali, Punjab, 160062, India
| |
Collapse
|
30
|
Mohanta MK, De Sarkar A. Interfacial hybridization of Janus MoSSe and BX (X = P, As) monolayers for ultrathin excitonic solar cells, nanopiezotronics and low-power memory devices. NANOSCALE 2020; 12:22645-22657. [PMID: 33155008 DOI: 10.1039/d0nr07000a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we explored the interfacial two-dimensional (2D) physics and significant advancements in the application prospects of MoSSe monolayer when it is combined with a boron pnictide (BP, BAs) monolayer in a van der Waals heterostructure (vdWH) setup. The constructed vdWHs were found to be mechanically and dynamically stable, and they form type-II p-n heterojunctions. Thus, the photogenerated electron-hole pairs are spatially separated. In the BX/MoSSe vdWHs, the BX monolayer serves as excellent donor material for MoSSe, having an ideal donor band gap of ∼1.3 eV. The small value of the conduction band offset (CBO) between the individual monolayers in the vdWHs makes it an excellent candidate for solar energy harvesting in excitonic solar cells, where the power conversion efficiencies were calculated to be 22.97% (BP/MoSSe) and 20.86% (BAs/MoSSe). Also, more than four-fold enhancement in the out-of-plane piezoelectric coefficient (d33) was observed in the MoSSe-based vdWH relative to that in the MoS2-based vdWH owing to the intrinsic built-in vertical electric field in MoSSe. This is consistent with the out-of-plane piezoelectricity brought about by the alteration in symmetry at the metal-semiconductor Schottky junction, which has been observed experimentally [M.-M. Yang, Z.-D. Luo, Z. Mi, J. Zhao, S. P. E and M. Alexe, Nature, 2020, 584, 377-381]. The results obtained in this work provide useful insights into the design of nanomaterials for future applications in nano-optoelectronics, more efficient excitonic solar cells, and nanoelectromechanical systems (NEMS). Furthermore, this work demonstrates outstanding potential for the application of these vdWHs in superfast electronics, including low-power digital data storage and memory devices, where the tunnel current between the source and drain is effectively tunable using a normal electric field of small magnitude serving as the gate voltage.
Collapse
Affiliation(s)
- Manish Kumar Mohanta
- Institute of Nano Science and Technology, Phase 10, Sector 64, Mohali, Punjab - 160062, India.
| | | |
Collapse
|
31
|
Zhang Y, Wang W, Huang M, Liu P, Hu G, Feng C, Lei X, Gu M, Yang H, Liu K, Xiang B, Lu Y. MnPS 3 spin-flop transition-induced anomalous Hall effect in graphite flake via van der Waals proximity coupling. NANOSCALE 2020; 12:23266-23273. [PMID: 33206092 DOI: 10.1039/d0nr05314g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Detection of the antiferromagnetic (AFM) state is an important issue for the application of two-dimensional (2D) antiferromagnets in spintronics, and interfacial exchange coupling is a highly efficient means to detect AFM order. However, there are no experimental reports of AFM state detection in van der Waals heterostructures, based on which 2D AFM spintronics can be developed. In this paper, we report a spin flop transition (SFT)-induced anomalous Hall effect in a heterostructure of MnPS3/graphite flake (GF) through van der Waals proximity coupling. The scaling behavior study and theoretical calculations confirm that the SFT in AFM MnPS3 can generate momentum-space nonzero Berry curvature integration in the adjacent GF. Our work opens a path for the realization of AFM state detection through the proximity effect in a stacking structure, thereby promoting the application of 2D antiferromagnets in future 2D spintronics.
Collapse
Affiliation(s)
- Ying Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science & Engineering, CAS Key Lab of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhu XL, Yang H, Zhou WX, Wang B, Xu N, Xie G. KAgX (X = S, Se): High-Performance Layered Thermoelectric Materials for Medium-Temperature Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36102-36109. [PMID: 32666784 DOI: 10.1021/acsami.0c08843] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Monolayer KAgX are a class of novel two-dimensional (2D) layered materials with efficient optical absorption and superior carrier mobility, signifying their potential application prospect in photovoltaic (PV) and thermoelectric (TE) fields. Motivated by the recent theoretical studies on the KAgX monolayer, we carried out systematic investigations on the TE performance of KAgS and KAgSe monolayers, employing density functional theory (DFT) and semiclassical Boltzmann transport equation (BTE). For both KAgSe and KAgS monolayers, large Grüneisen parameters, low group velocities, and short phonon scattering time greatly hinder their heat transport and result in an ultralow thermal conductivity, 0.26 and 0.33 W m-1 K-1 at 300 K, respectively. A twofold degeneracy appearing at the Γ point and the abrupt slope of the density of states (DOS) near the Fermi level give rise to high Seebeck coefficients of KAgX monolayers. Due to the ultralow thermal conductivity and excellent electronic transport performance, the ZT values as high as 4.65 (3.11) and 4.05 (2.63) at 500 (300) K in the n-type doping for KAgSe and KAgS monolayers are obtained. The exceptional performance of KAgX monolayers sheds light on their immense potential applications in the medium-temperature (around 300-500 K) thermoelectric devices and greatly stimulates further experimental synthesis and validation.
Collapse
Affiliation(s)
- Xue-Liang Zhu
- School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Hengyu Yang
- School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Wu-Xing Zhou
- School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Baotian Wang
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Ning Xu
- Department of Physics, Yancheng Institute of Technology, Yancheng 224051, China
| | - Guofeng Xie
- School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Xiangtan 411201, China
| |
Collapse
|
33
|
Mohanta MK, Rawat A, Jena N, Ahammed R, De Sarkar A. Superhigh flexibility and out-of-plane piezoelectricity together with strong anharmonic phonon scattering induced extremely low lattice thermal conductivity in hexagonal buckled CdX (X =S, Se) monolayers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:355301. [PMID: 32340009 DOI: 10.1088/1361-648x/ab8d73] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Although CdX (X = S, Se) has been mostly studied in the field of photocatalysis, photovoltaics, their intrinsic properties, such as, mechanical, piezoelectric, electron and phonon transport properties have been completely overlooked in buckled CdX monolayers. Ultra-low lattice thermal conductivity [1.08 W m-1K-1(0.75 W m-1K-1)] and high p-type Seebeck coefficient [1300μV K-1(850μV K-1)] in CdS (CdSe) monolayers have been found in this work based on first-principles DFT coupled to semi-classical Boltzmann transport equations, combining both the electronic and phononic transport. The dimensionless thermoelectric figure of merit is calculated to be 0.78 (0.5) in CdS (CdSe) monolayers at room temperature, which is comparable to that of two-dimensional (2D) tellurene (0.8), arsenene and antimonene (0.8), indicating its great potential for applications in 2D thermoelectrics. Such a low lattice thermal conductivity arise from the participation of both acoustic [91.98% (89.22%)] and optical modes [8.02% (10.78%)] together with low Debye temperature [254 K (187 K)], low group velocity [4 km s-1(3 km s-1)] in CdS (CdSe) monolayers, high anharmonicity and short phonon lifetime. Substantial cohesive energy (∼4-5 eV), dynamical and mechanical stability of the monolayers substantiate the feasibility in synthesizing the single layers in experiments. The inversion symmetry broken along thezdirection causes out-of-plane piezoelectricity. |d33| ∼ 21.6 pm V-1, calculated in CdS monolayer is found to be the highest amongst structures having atomic-layer thickness. Superlow Young's modulus ∼41 N m-1(31 N m-1) in CdS (CdSe) monolayers, which is comparable to that of planar CdS (29 N m-1) and TcTe2(34 N m-1), is an indicator of its superhigh flexibility. Direct semiconducting band gap, high carrier mobility (∼500 cm2V-1s-1) and superhigh flexibility in CdX monolayers signify its gigantic potential for applications in ultrathin, stretchable and flexible nanoelectronics. The all-round properties can be synergistically combined together in futuristic applications in nano-piezotronics as well.
Collapse
Affiliation(s)
- Manish Kumar Mohanta
- Institute of Nano Science and Technology, Phase 10, Sector 64, Mohali, Punjab-160062, India
| | - Ashima Rawat
- Institute of Nano Science and Technology, Phase 10, Sector 64, Mohali, Punjab-160062, India
| | - Nityasagar Jena
- Institute of Nano Science and Technology, Phase 10, Sector 64, Mohali, Punjab-160062, India
| | - Raihan Ahammed
- Institute of Nano Science and Technology, Phase 10, Sector 64, Mohali, Punjab-160062, India
| | - Abir De Sarkar
- Institute of Nano Science and Technology, Phase 10, Sector 64, Mohali, Punjab-160062, India
| |
Collapse
|
34
|
Mohanta MK, Sarkar AD. Tweaking the Physics of Interfaces between Monolayers of Buckled Cadmium Sulfide for a Superhigh Piezoelectricity, Excitonic Solar Cell Efficiency, and Thermoelectricity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18123-18137. [PMID: 32223217 DOI: 10.1021/acsami.0c00864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Interfaces of heterostructures are routinely studied for different applications. Interestingly, monolayers of the same material when interfaced in an unconventional manner can bring about novel properties. For instance, CdS monolayers, stacked in a particular order, are found to show unprecedented potential in the conversion of nanomechanical energy, solar energy, and waste heat into electricity, which has been systematically investigated in this work, using DFT-based approaches. Moreover, stable ultrathin structures showing strong capabilities for all kinds of energy conversion are scarce. The emergence of a very high out-of-plane piezoelectricity, |d33| ≈ 56 pm/V, induced by the inversion symmetry broken in the buckled structure helps to supersede the previously reported bulk wurzite GaN, AlN, and Janus multilayer structures of Mo- and W-based dichalcogenides. The piezoelectric coefficients have been found to be largely dependent on the relative stacking between the two layers. CdS bilayer is a direct band gap semiconductor, with its band edges straddling the water redox potential, thereby making it thermodynamically favorable for photocatalytic applications. Strain engineering facilitates its transition from type I to type II semiconductor in CdS bilayer stacked over monolayer boron phosphide, and the theoretically calculated power conversion efficiency (PCE) in the 2D excitonic solar cell exceeds 27% for a fill factor of 0.8, which is much higher than that in ZnO/CdS/CuInGaSe solar cell (20% efficiency). Thermoelectric properties have been investigated using semi classical Boltzmann transport equations for electrons and phonons within the constant relaxation time approximation coupled to deformation potential theory, which reveal ultralow thermal conductivity (κl ≈ 0.78 W m-1 K-1) at room temperature because of the presence of heavy element Cd, strong anharmonicity (high mode Gruneisen parameter at long wavelength, phonon lifetime <5 ps), low phonon group velocity (4 km/s), and low Debye temperature (260 K). Such a low thermal conductivity is lower than that of dumbbell silicene (2.86 W m-1 K-1), SnS2 (6.41 W m-1 K-1) and SnSe2 (3.82 W m-1 K-1), and SnP3 (4.97 W m-1 K-1). CdS bilayer shows a thermoelectric figure of merit (ZT) ≈ 0.8 for p-type and ∼0.7 for n-type doping at room temperature. Its ultrahigh carrier mobility (μe ≈ 2270 cm2 V-1 s-1) is higher than that of single-layer MoS2 and comparable to that in InSe. The versatile properties of CdS bilayer together with its all-round stability supported by ab initio molecular dynamics simulation, phonon dispersion, and satisfaction of Born-Huang stability criteria highlight its outstanding potential for applications in device fabrication and applications in next-generation nanoelectronics and energy harvesting.
Collapse
Affiliation(s)
- Manish Kumar Mohanta
- Institute of Nano Science and Technology, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Abir De Sarkar
- Institute of Nano Science and Technology, Phase 10, Sector 64, Mohali, Punjab 160062, India
| |
Collapse
|
35
|
Hu R, Zhou ZZ, Sheng CY, Wang L, Liu JH, Han SH, Liu HJ. Surprisingly good thermoelectric performance of a black phosphorus/blue phosphorus van der Waals heterostructure. Phys Chem Chem Phys 2020; 22:22390-22398. [DOI: 10.1039/d0cp03125a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Thermoelectric properties of a black phosphorus/blue phosphorus van der Waals heterostructure are investigated by using first-principles calculations and Boltzmann transport theory for both electrons and phonons.
Collapse
Affiliation(s)
- R. Hu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology
- Wuhan University
- Wuhan 430072
- China
| | - Z. Z. Zhou
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology
- Wuhan University
- Wuhan 430072
- China
| | - C. Y. Sheng
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology
- Wuhan University
- Wuhan 430072
- China
| | - L. Wang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology
- Wuhan University
- Wuhan 430072
- China
| | - J. H. Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology
- Wuhan University
- Wuhan 430072
- China
| | - S. H. Han
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology
- Wuhan University
- Wuhan 430072
- China
| | - H. J. Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology
- Wuhan University
- Wuhan 430072
- China
| |
Collapse
|
36
|
Mohanta MK, Fathima IS, De Sarkar A. Exceptional mechano-electronic properties in the HfN2 monolayer: a promising candidate in low-power flexible electronics, memory devices and photocatalysis. Phys Chem Chem Phys 2020; 22:21275-21287. [DOI: 10.1039/d0cp02999h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The response of the electronic properties of the HfN2 monolayer to external perturbation such as strain and electric fields has been investigated using density functional theory calculations for its device-based applications and photocatalysis.
Collapse
|