1
|
Qiu D, Xiong S, Lai H, Wang Y, Li H, Lai X, Zhu Y, He F. Trifluoromethylation Enables Compact 2D Linear Stacking and Improves the Efficiency and Stability of Q-PHJ Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403821. [PMID: 38949043 DOI: 10.1002/smll.202403821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Compared to the bulk heterojunction (BHJ) devices, the quasiplanar heterojunction (Q-PHJ) exhibits a more stable morphology and superior charge transfer performance. To achieve both high efficiency and long-term stability, it is necessary to design new materials for Q-PHJ devices. In this study, QxIC-CF3 and QxIC-CH3 are designed and synthesized for the first time. The trifluoromethylation of the central core exerts a modulatory effect on the molecular stacking pattern, leveraging the strong electrostatic potential and intermolecular interactions. Compared with QxIC-CH3, the single crystal structure reveals that QxIC-CF3 exhibits a more compact 2D linear stacking behavior. These benefits, combined with the separated electron and hole transport channels in Q-PHJ device, lead to increased charge mobility and reduced energy loss. The devices based on D18/QxIC-CF3 exhibit an efficiency of 18.1%, which is the highest power conversion efficiency (PCE) for Q-PHJ to date. Additionally, the thermodynamic stability of the active layer morphology enhances the lifespan of the aforementioned devices under illumination conditions. Specifically, the T80 is 420 h, which is nearly twice that of the renowned Y6-based BHJ device (T80 = 220 h). By combining the advantages of the trifluoromethylation and Q-PHJ device, efficient and stable organic solar cell devices can be constructed.
Collapse
Affiliation(s)
- Dongsheng Qiu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shilong Xiong
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hanjian Lai
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yunpeng Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Heng Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xue Lai
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yiwu Zhu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
2
|
Qiu D, Memon WA, Lai H, Wang Y, Li H, Zheng N, He F. Synergistic Design of Imidazole-Based Polymer Donors for Enhanced Organic Solar Cell Efficiency. J Phys Chem Lett 2024; 15:10858-10865. [PMID: 39436830 DOI: 10.1021/acs.jpclett.4c02676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Within the realm of organic solar cells (OSCs), designing new high-efficiency polymer donors remains a significant challenge. Achieving the right balance in polymer backbone planarity is crucial: excessive planarity can lead to undesirable aggregation, while insufficient planarity can hinder the charge transport efficiency. In this study, we designed and synthesized an imidazole-based acceptor (A) unit for the first time and then investigated the impact of backbone planarity on charge transport capacity and power conversion efficiency (PCE). Backbone planarity was precisely tuned by incorporating isomeric alkyl chains on the thiophene π-bridge, resulting in four distinct polymer donors: MZC8-F, MZC8-Cl, MZEH-F, and MZEH-Cl. The results showed that the steric hindrance from the EH-branched alkyl chain induced backbone distortion and caused a blue-shift in the absorption spectrum. MZEH-Cl, with its poor planarity and excessively low HOMO energy level, achieved a PCE of just 7.6%. Through careful modulation, MZC8-Cl emerged as the most efficient, with a remarkable PCE of 17.3%, setting a new benchmark for imidazole-based polymer donors. This study not only deepens the understanding of the role of polymer backbone planarity in photovoltaic performance but also lays the groundwork for developing high-efficiency polymer donors.
Collapse
Affiliation(s)
- Dongsheng Qiu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Waqar Ali Memon
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hanjian Lai
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yunpeng Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Heng Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Nan Zheng
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Khalid M, Fatima N, Arshad M, Adeel M, Braga AAC, Ahamad T. Unveiling the influence of end-capped acceptors modification on photovoltaic properties of non-fullerene fused ring compounds: a DFT/TD-DFT study. RSC Adv 2024; 14:20441-20453. [PMID: 38946775 PMCID: PMC11208900 DOI: 10.1039/d4ra03170a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024] Open
Abstract
Herein, unique A-D-A configuration-based molecules (NBD1-NBD7) were designed from the reference compound (NBR) by utilizing the end-capped acceptor modification approach. Various electron-withdrawing units -F, -Cl, -CN, -NO2, -CF3, -HSO3, and -COOCH3, were incorporated into terminals of reference compound to designed NBD1-NBD7, respectively. A theoretical investigation employing the density functional theory (DFT) and time-dependent DFT (TD-DFT) was performed at B3LYP/6-311G(d,p) level. To reveal diverse opto-electronic and photovoltaic properties, the frontier molecular orbitals (FMOs), absorption maxima (λ max), density of states (DOS), exciton binding energy (E b), open-circuit voltage (V oc) and transition density matrix (TDM) analyses were executed at the same functional. Moreover, the global reactivity parameters (GRPs) were calculated using the HOMO-LUMO energy gaps from the FMOs. Significant results were obtained for the designed molecules (NBD1-NBD7) as compared to NBR. They showed lesser energy band gaps (2.024-2.157 eV) as compared to the NBR reference (2.147 eV). The tailored molecules also demonstrated bathochromic shifts in the chloroform (671.087-717.164 nm) and gas phases (623.251-653.404 nm) as compared to NBR compound (674.189 and 626.178 nm, respectively). From the photovoltaic perspectives, they showed promising results (2.024-2.157 V). Furthermore, the existence of intramolecular charge transfer (ICT) in the designed compounds was depicted via their DOS and TDM graphical plots. Among all the investigated molecules, NBD4 was disclosed as the excellent candidate for solar cell applications owing to its favorable properties such as the least band gap (2.024 eV), red-shifted λ max in the chloroform (717.164 nm) and gas (653.404 nm) phases as well as the minimal E b (0.126 eV). This is due to the presence of highly electronegative -NO2 unit at the terminal of electron withdrawing acceptor moiety, which leads to increased conjugation and enhanced the intramolecular charge transfer (ICT) rate. The obtained insights suggested that the designed molecules could be considered as promising materials for potential applications in the realm of OSCs.
Collapse
Affiliation(s)
- Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Noor Fatima
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Arshad
- Industry Solutions, Northern Alberta Institute of Technology Edmonton Alberta Canada
| | - Muhammad Adeel
- Institute of Chemical Sciences, Gomal University D. I. Khan Pakistan
| | - Ataualpa A C Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo Av. Prof. Lineu Prestes, 748 São Paulo 05508-000 Brazil
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| |
Collapse
|
4
|
Yu K, Zhou T, Liang W, Zhou X, Xu X, Yu L, Hou B, Huang Y, Chen F, Liao Y, Hu H. High-Performance Nonfused Electron Acceptor with Precisely Controlled Side Chain Fluorination. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45158-45166. [PMID: 37708412 DOI: 10.1021/acsami.3c09076] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Modification of the molecular packing of nonfullerene acceptors through fluorination represents one of the most promising strategies to achieve highly efficient organic solar cells (OSCs). In this work, three nonfused electron acceptors, namely, DTCBT-Fx (x = 0, 5, 9) with precisely controlled amounts of fluorine atoms in the side chains are designed and synthesized, and the effect of side chain fluorination is systematically studied. The results demonstrate that the light absorption, energy levels, molecular ordering, and film morphology could be effectively tuned by precisely controlling the side chain fluorination. DTCBT-F5 with an appropriate fluorine functionalization exhibits suitable miscibility with the donor polymer (PM6), leading to diminished charge recombination and improved charge carrier mobility. Consequently, a promising power conversion efficiency of 12.7% was obtained for DTCBT-F5-based solar cells, which outperforms those OSCs based on DTCBT-F0 (11.4%) and DTCBT-F9 (11.6%), respectively. This work demonstrates that precise control of the fluorine functionalization in side chains of nonfused electron acceptors is an effective strategy for realizing highly efficient OSCs.
Collapse
Affiliation(s)
- Kexin Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Tao Zhou
- College of Chemistry and School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Wenting Liang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoli Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaopeng Xu
- College of Chemistry and School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Liyang Yu
- College of Chemistry and School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Bo Hou
- School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, U.K
| | - Yangen Huang
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Fengkun Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China
| | - Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Huawei Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| |
Collapse
|
5
|
Duan J, Ding J, Wang D, Zhu X, Chen J, Zhu G, Chen C, Yu Y, Liao H, Li Z, Di C, Yue W. Enhancing the Performance of N-Type Thermoelectric Devices via Tuning the Crystallinity of Small Molecule Semiconductors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204872. [PMID: 36437037 PMCID: PMC9875661 DOI: 10.1002/advs.202204872] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/25/2022] [Indexed: 05/28/2023]
Abstract
In the development of high-performance organic thermoelectric devices, n-type materials, especially with small molecule semiconductors, lags far behind p-type materials. In this paper, three small molecules are synthesized based on electron-deficient naphthalene bis-isatin building blocks bearing different alkyl chains with the terminal functionalized with 3-ethylrhodanine unit and studied their aggregation and doping mechanism in detail. It is found that crystallinity plays an essential role in tuning the doping behavior of small molecules. Molecules with too strong crystallinity tend to aggregate with each other to form large crystalline domains, which cause significant performance degradation. While molecules with weak crystallinity can tolerate more dopants, most of them exhibit low mobility. By tuning the crystallinity carefully, organic thermoelectric devices based on C12NR can maintain high mobility and realize effective doping simultaneously, and a high power factor of 1.07 µW m-1 K-2 at 100 °C is realized. This delicate molecular design by modulating crystallinity provides a new avenue for realizing high-performance organic thermoelectric devices.
Collapse
Affiliation(s)
- Jiayao Duan
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable DevicesSchool of Materials and EngineeringSun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Jiamin Ding
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Dongyang Wang
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Xiuyuan Zhu
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable DevicesSchool of Materials and EngineeringSun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Junxin Chen
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable DevicesSchool of Materials and EngineeringSun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Genming Zhu
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable DevicesSchool of Materials and EngineeringSun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Chaoyue Chen
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable DevicesSchool of Materials and EngineeringSun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Yaping Yu
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable DevicesSchool of Materials and EngineeringSun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Hailiang Liao
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable DevicesSchool of Materials and EngineeringSun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Zhengke Li
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable DevicesSchool of Materials and EngineeringSun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Chong‐an Di
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Wan Yue
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable DevicesSchool of Materials and EngineeringSun Yat‐Sen UniversityGuangzhou510275P. R. China
| |
Collapse
|
6
|
Unraveling complex performance-limiting factors of brominated ITIC derivative: PM6 organic solar cells by using time-resolved measurements. Polym J 2022. [DOI: 10.1038/s41428-022-00704-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Theoretical designing of selenium heterocyclic non-fullerene acceptors with enhanced power conversion efficiency for organic solar cells: a DFT/TD-DFT-based prediction and understanding. J Mol Model 2022; 28:228. [DOI: 10.1007/s00894-022-05225-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/13/2022] [Indexed: 01/09/2023]
|
8
|
Zhao N, Zhang R, Zou X, Su X, Dang F, Wen G, Zhang W, Zheng K, Chen H, Wu K. Photoinduced Polaron Formation in a Polymerized Electron-Acceptor Semiconductor. J Phys Chem Lett 2022; 13:5143-5150. [PMID: 35658092 DOI: 10.1021/acs.jpclett.2c01015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polymerized small molecular acceptor (PSMA) based all-polymer solar cells (all-PSC) have achieved power conversion efficiencies (PCE) over 16%, and the PSMA is considered to hold great promise for further improving the performance of all-PSC. Yet, in comparison with that of the polymer donor, the photophysics of a polymerized acceptor remains poorly understood. Herein, the excited state dynamics in a polymerized acceptor PZT810 was comprehensively investigated under various pump intensities and photon energies. The excess excitation energy was found to play a key role in excitons dissociation into free polarons for neat PSMA films, while free polarons cannot be generated from the polaron pairs in neat acceptor films. This work reveals an in-depth understanding of relaxation dynamics for PSMAs and that the underlying photophysical origin of PSMA can be mediated by excitation energies and intensities. These results would benefit the realization of the working mechanism for all-PSC and the designing of new PSMAs.
Collapse
Affiliation(s)
- Ningjiu Zhao
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Rui Zhang
- Department of Physics, Chemsitry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Xianshao Zou
- Division of Chemical Physics, Lund University, Lund, 22100, Sweden
| | - Xiaojun Su
- Department of Basic Courses, Guangzhou Maritime University, Guangzhou, 510725, China
| | - Fan Dang
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Guanzhao Wen
- School of Physics and Materials Science, Guangzhou University, Guangzhou, 510006, China
| | - Wei Zhang
- School of Physics and Materials Science, Guangzhou University, Guangzhou, 510006, China
- Research Center for Advanced Information Materials (CAIM), Huangpu Research and Graduate School of Guangzhou University, Guangzhou, 510006, China
- Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, China
| | - Kaibo Zheng
- Division of Chemical Physics, Lund University, Lund, 22100, Sweden
| | - Hailong Chen
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Kehui Wu
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| |
Collapse
|
9
|
Schweda B, Reinfelds M, Hofstadler P, Trimmel G, Rath T. Recent Progress in the Design of Fused-Ring Non-Fullerene Acceptors-Relations between Molecular Structure and Optical, Electronic, and Photovoltaic Properties. ACS APPLIED ENERGY MATERIALS 2021; 4:11899-11981. [PMID: 35856015 PMCID: PMC9286321 DOI: 10.1021/acsaem.1c01737] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Organic solar cells are on the dawn of the next era. The change of focus toward non-fullerene acceptors has introduced an enormous amount of organic n-type materials and has drastically increased the power conversion efficiencies of organic photovoltaics, now exceeding 18%, a value that was believed to be unreachable some years ago. In this Review, we summarize the recent progress in the design of ladder-type fused-ring non-fullerene acceptors in the years 2018-2020. We thereby concentrate on single layer heterojunction solar cells and omit tandem architectures as well as ternary solar cells. By analyzing more than 700 structures, we highlight the basic design principles and their influence on the optical and electrical structure of the acceptor molecules and review their photovoltaic performance obtained so far. This Review should give an extensive overview of the plenitude of acceptor motifs but will also help to understand which structures and strategies are beneficial for designing materials for highly efficient non-fullerene organic solar cells.
Collapse
Affiliation(s)
- Bettina Schweda
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Matiss Reinfelds
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Petra Hofstadler
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Gregor Trimmel
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Thomas Rath
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| |
Collapse
|
10
|
Liu KK, Huang H, Wang JL, Wan SS, Zhou X, Bai HR, Ma W, Zhang ZG, Li Y. Modulating Crystal Packing, Film Morphology, and Photovoltaic Performance of Selenophene-Containing Acceptors through a Combination of Skeleton Isomeric and Regioisomeric Strategies. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50163-50175. [PMID: 34664507 DOI: 10.1021/acsami.1c12028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Here, we report a series of acceptor-donor-acceptor (A-D-A) architecture isomeric acceptors (SeCT-IC, CSeT-IC, and CTSe-IC), which have an identical electron-deficient terminal A-group and three different central D-cores with the selenophene at the innermost, relatively outer, and outermost positions of the central core, respectively. From CSeT-IC to the atom regioisomer of CTSe-IC and to the conjugated skeleton isomer of SeCT-IC, the optical band gap of neat films continuously reduced and highest occupied molecular orbitals (HOMO) gradually upshifted with changing the selenophene from relatively outer position to the outermost position and to the innermost position of the central core. More importantly, the single-crystal structure and the GIWAXS measurements revealed that CTSe-IC presents the closest π-π stacking distance, the largest CCL, and the best molecular order and crystallinity, which led to the highest electron mobility in neat films. Furthermore, the J71:CTSe-IC blend film presents a more ordered film morphology with more proper phase separation domain size, more dominant face-on orientation, and relatively higher and more balanced electron-hole mobilities in comparison with that of J71:SeCT-IC and J71:CSeT-IC. Consequently, the J71:CTSe-IC-based organic solar cell gave a superior power conversion efficiency (PCE) of 11.59%, which was obviously higher than those for J71:SeCT-IC (10.89%) and J71:CSeT-IC (8.52%). Our results demonstrate that the acceptor with selenophene in the outermost position led to significantly enhance the PCE. More importantly, rational modulation of the central fused core in combination with the conjugated skeleton isomeric method and the atom regioisomeric method provides an effective way to understand the structure-crystallinity-photovoltaic property relationship of selenophene-based regioisomers.
Collapse
Affiliation(s)
- Kai-Kai Liu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - He Huang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jin-Liang Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shi-Sheng Wan
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaobo Zhou
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hai-Rui Bai
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhi-Guo Zhang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongfang Li
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
11
|
Arefinia Z, Samajdar DP. Novel semi-analytical optoelectronic modeling based on homogenization theory for realistic plasmonic polymer solar cells. Sci Rep 2021; 11:3261. [PMID: 33547355 PMCID: PMC7864904 DOI: 10.1038/s41598-021-82525-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/20/2021] [Indexed: 11/30/2022] Open
Abstract
Numerical-based simulations of plasmonic polymer solar cells (PSCs) incorporating a disordered array of non-uniform sized plasmonic nanoparticles (NPs) impose a prohibitively long-time and complex computational demand. To surmount this limitation, we present a novel semi-analytical modeling, which dramatically reduces computational time and resource consumption and yet is acceptably accurate. For this purpose, the optical modeling of active layer-incorporated plasmonic metal NPs, which is described by a homogenization theory based on a modified Maxwell-Garnett-Mie theory, is inputted in the electrical modeling based on the coupled equations of Poisson, continuity, and drift-diffusion. Besides, our modeling considers the effects of absorption in the non-active layers, interference induced by electrodes, and scattered light escaping from the PSC. The modeling results satisfactorily reproduce a series of experimental data for photovoltaic parameters of plasmonic PSCs, demonstrating the validity of our modeling approach. According to this, we implement the semi-analytical modeling to propose a new high-efficiency plasmonic PSC based on the PM6:Y6 PSC, having the highest reported power conversion efficiency (PCE) to date. The results show that the incorporation of plasmonic NPs into PM6:Y6 active layer leads to the PCE over 18%.
Collapse
Affiliation(s)
- Zahra Arefinia
- Department of Photonics, Faculty of Physics, University of Tabriz, 51666-14766, Tabriz, Iran.
| | - Dip Prakash Samajdar
- Department of Electronics and Communication Engineering, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, Madhya Pradesh, 482005, India
| |
Collapse
|
12
|
Zhang X, Yao C, Zhao J, Ali MU, Li A, Shen CKF, Yan C, He Y, Miao J, Meng H. Molecular tailoring of trifluoromethyl-substituted conjugated polymers for efficient organic solar cells. Polym Chem 2021. [DOI: 10.1039/d1py00177a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports a series of novel trifluoromethylated polymers as efficient donor materials for high-performance OSCs.
Collapse
Affiliation(s)
- Xueqiao Zhang
- School of Advanced Materials
- Peking University Shenzhen Graduate School
- Shenzhen 518055
- China
| | - Chao Yao
- School of Advanced Materials
- Peking University Shenzhen Graduate School
- Shenzhen 518055
- China
| | - Jiajun Zhao
- School of Advanced Materials
- Peking University Shenzhen Graduate School
- Shenzhen 518055
- China
| | - Muhammad Umair Ali
- Tsinghua-Berkeley Shenzhen Institute (TBSI)
- Tsinghua University
- Shenzhen 518055
- China
| | - Aiyuan Li
- School of Advanced Materials
- Peking University Shenzhen Graduate School
- Shenzhen 518055
- China
| | | | - Chaoyi Yan
- School of Advanced Materials
- Peking University Shenzhen Graduate School
- Shenzhen 518055
- China
| | - Yaowu He
- School of Advanced Materials
- Peking University Shenzhen Graduate School
- Shenzhen 518055
- China
| | - Jingsheng Miao
- School of Advanced Materials
- Peking University Shenzhen Graduate School
- Shenzhen 518055
- China
| | - Hong Meng
- School of Advanced Materials
- Peking University Shenzhen Graduate School
- Shenzhen 518055
- China
| |
Collapse
|
13
|
Wang J, Ding Y, Li C, Zheng N, Xie Z, Ma Z, Lu Y, Wan X, Chen Y. Effect of Nitro-Substituted Ending Groups on the Photovoltaic Properties of Nonfullerene Acceptors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41861-41868. [PMID: 32819097 DOI: 10.1021/acsami.0c11698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Chemical modification of end groups has proved to be an effective way to design new acceptor-donor-acceptor (A-D-A)-structured nonfullerene acceptors (NFAs) for high-performance organic solar cells (OSCs). Herein, we designed and synthesized two nitro-substituted end groups, N1 and N2. Using the two end groups as A units, two A-D-A acceptors, F-N1 and F-N2, were obtained. It also has been found that the nitro substitution position on end groups affects not only the absorptions and energy levels of the resultant acceptor materials but also their molecular packing behavior and active layer morphologies. In addition, the devices based on the two acceptors showed different energy losses. Power-conversion efficiencies (PCEs) of 10.66 and 11.86% were achieved for F-N1- and F-N2-based devices, respectively. This work reveals that the nitration of end groups is one of the potential strategies for designing high-performance photovoltaic active layer materials.
Collapse
Affiliation(s)
- Jing Wang
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Yunqian Ding
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chenxi Li
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Nan Zheng
- Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zengqi Xie
- Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zaifei Ma
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
| | - Yan Lu
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Xiangjian Wan
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yongsheng Chen
- College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
14
|
Wang R, Xue Y, Jiang F, Zhou W, Xu J, Duan X, Zhu D, Xu L, Cai Y, Liang A. Trifluoromethyl functionalized polyindoles: electrosynthesis, characterization, and improved capacitive performance. NEW J CHEM 2020. [DOI: 10.1039/d0nj00812e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trifluoromethyl functionalized polyindoles, comb-like 5-PFMIn and flower-like 6-PFMIn, are prepared and they exhibit high specific capacitance and good stability.
Collapse
Affiliation(s)
- Rui Wang
- Flexible Electronics Innovation Institute (FEII)
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
- Jiangxi Engineering Laboratory of Waterborne Coatings
| | - Yu Xue
- Flexible Electronics Innovation Institute (FEII)
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| | - Fengxing Jiang
- Flexible Electronics Innovation Institute (FEII)
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| | - Weiqiang Zhou
- Flexible Electronics Innovation Institute (FEII)
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
- Jiangxi Engineering Laboratory of Waterborne Coatings
| | - Jingkun Xu
- Flexible Electronics Innovation Institute (FEII)
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
- College of Chemistry and Molecular Engineering
| | - Xuemin Duan
- Flexible Electronics Innovation Institute (FEII)
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| | - Danhua Zhu
- Flexible Electronics Innovation Institute (FEII)
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| | - Liming Xu
- Flexible Electronics Innovation Institute (FEII)
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| | - Yue Cai
- Flexible Electronics Innovation Institute (FEII)
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| | - Aiqin Liang
- Flexible Electronics Innovation Institute (FEII)
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| |
Collapse
|