1
|
Dong M, Sun Y, Dunstan DJ, Young RJ, Papageorgiou DG. Mechanical reinforcement from two-dimensional nanofillers: model, bulk and hybrid polymer nanocomposites. NANOSCALE 2024; 16:13247-13299. [PMID: 38940686 DOI: 10.1039/d4nr01356e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Thanks to their intrinsic properties, multifunctionality and unique geometrical features, two-dimensional nanomaterials have been used widely as reinforcements in polymer nanocomposites. The effective mechanical reinforcement of polymers is, however, a multifaceted problem as it depends not only on the intrinsic properties of the fillers and the matrix, but also upon a number of other important parameters. These parameters include the processing method, the interfacial properties, the aspect ratio, defects, orientation, agglomeration and volume fraction of the fillers. In this review, we summarize recent advances in the mechanical reinforcement of polymer nanocomposites from two-dimensional nanofillers with an emphasis on the mechanisms of reinforcement. Model, bulk and hybrid polymer nanocomposites are reviewed comprehensively. The use of Raman and photoluminescence spectroscopies is examined in light of the distinctive information they can yield upon stress transfer at interfaces. It is shown that the very diverse family of 2D nanofillers includes a number of materials that can attribute distrinctive features to a polymeric matrix, and we focus on the mechanical properties of both graphene and some of the most important 2D materials beyond graphene, including boron nitride, molybdenum disulphide, other transition metal dichalcogenides, MXenes and black phosphorous. In the first part of the review we evaluate the mechanical properties of 2D nanoplatelets in "model" nanocomposites. Next we examine how the performance of these materials can be optimised in bulk nanocomposites. Finally, combinations of these 2D nanofillers with other 2D nanomaterials or with nanofillers of other dimensions are assessed thoroughly, as such combinations can lead to additive or even synergistic mechanical effects. Existing unsolved problems and future perspectives are discussed.
Collapse
Affiliation(s)
- Ming Dong
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK.
| | - Yiwei Sun
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK.
| | - David J Dunstan
- School of Physics and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Robert J Young
- National Graphene Institute, Department of Materials, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, UK.
| | - Dimitrios G Papageorgiou
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK.
| |
Collapse
|
2
|
Adinehloo D, Hendrickson JR, Perebeinos V. Wetting and strain engineering of 2D materials on nanopatterned substrates. NANOSCALE ADVANCES 2024; 6:2823-2829. [PMID: 38817431 PMCID: PMC11134232 DOI: 10.1039/d3na01079a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/31/2024] [Indexed: 06/01/2024]
Abstract
The fascinating realm of strain engineering and wetting transitions in two-dimensional (2D) materials takes place when placed on a two-dimensional array of nanopillars or one-dimensional rectangular grated substrates. Our investigation encompasses a diverse set of atomically thin 2D materials, including transition metal dichalcogenides, hexagonal boron nitride, and graphene, with a keen focus on the impact of van der Waals adhesion energies to the substrate on the wetting/dewetting behavior on nanopatterned substrates. We find a critical aspect ratio of the nanopillar or grating heights to the period of the pattern when the wetting/dewetting transition occurs. Furthermore, energy hysteresis analysis reveals dynamic detachment and re-engagement events during height adjustments, shedding light on energy barriers of 2D monolayer transferred on patterned substrates. Our findings offer avenues for strain engineering in 2D materials, leading to promising prospects for future technological applications.
Collapse
Affiliation(s)
- Davoud Adinehloo
- Department of Electrical Engineering, University at Buffalo Buffalo NY 14228 USA
| | - Joshua R Hendrickson
- Sensors Directorate, Air Force Research Laboratory Wright-Patterson AFB Ohio 45433 USA
| | - Vasili Perebeinos
- Department of Electrical Engineering, University at Buffalo Buffalo NY 14228 USA
| |
Collapse
|
3
|
Yanev ES, Darlington TP, Ladyzhets SA, Strasbourg MC, Trovatello C, Liu S, Rhodes DA, Hall K, Sinha A, Borys NJ, Hone JC, Schuck PJ. Programmable nanowrinkle-induced room-temperature exciton localization in monolayer WSe 2. Nat Commun 2024; 15:1543. [PMID: 38378789 PMCID: PMC10879107 DOI: 10.1038/s41467-024-45936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024] Open
Abstract
Localized states in two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been the subject of intense study, driven by potential applications in quantum information science. Despite the rapidly growing knowledge surrounding these emitters, their microscopic nature is still not fully understood, limiting their production and application. Motivated by this challenge, and by recent theoretical and experimental evidence showing that nanowrinkles generate strain-localized room-temperature emitters, we demonstrate a method to intentionally induce wrinkles with collections of stressors, showing that long-range wrinkle direction and position are controllable with patterned array design. Nano-photoluminescence (nano-PL) imaging combined with detailed strain modeling based on measured wrinkle topography establishes a correlation between wrinkle properties, particularly shear strain, and localized exciton emission. Beyond the array-induced wrinkles, nano-PL spatial maps further reveal that the strain environment around individual stressors is heterogeneous due to the presence of fine wrinkles that are less deterministic. At cryogenic temperatures, antibunched emission is observed, confirming that the nanocone-induced strain is sufficiently large for the formation of quantum emitters. At 300 K, detailed nanoscale hyperspectral images uncover a wide range of low-energy emission peaks originating from the fine wrinkles, and show that the states can be tightly confined to regions <10 nm, even in ambient conditions. These results establish a promising potential route towards realizing room temperature quantum emission in 2D TMDC systems.
Collapse
Affiliation(s)
- Emanuil S Yanev
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Thomas P Darlington
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Sophia A Ladyzhets
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | | | - Chiara Trovatello
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Song Liu
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Daniel A Rhodes
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Kobi Hall
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Aditya Sinha
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Nicholas J Borys
- Department of Physics, Montana State University, Bozeman, MT, USA.
| | - James C Hone
- Department of Mechanical Engineering, Columbia University, New York, NY, USA.
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
4
|
Zhang Y, Hossain MA, Hwang KJ, Ferrari PF, Maduzia J, Peña T, Wu SM, Ertekin E, van der Zande AM. Patternable Process-Induced Strain in 2D Monolayers and Heterobilayers. ACS NANO 2024; 18:4205-4215. [PMID: 38266246 DOI: 10.1021/acsnano.3c09354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Strain engineering in two-dimensional (2D) materials is a powerful but difficult to control approach to tailor material properties. Across applications, there is a need for device-compatible techniques to design strain within 2D materials. This work explores how process-induced strain engineering, commonly used by the semiconductor industry to enhance transistor performance, can be used to pattern complex strain profiles in monolayer MoS2 and 2D heterostructures. A traction-separation model is identified to predict strain profiles and extract the interfacial traction coefficient of 1.3 ± 0.7 MPa/μm and the damage initiation threshold of 16 ± 5 nm. This work demonstrates the utility to (1) spatially pattern the optical band gap with a tuning rate of 91 ± 1 meV/% strain and (2) induce interlayer heterostrain in MoS2-WSe2 heterobilayers. These results provide a CMOS-compatible approach to design complex strain patterns in 2D materials with important applications in 2D heterogeneous integration into CMOS technologies, moiré engineering, and confining quantum systems.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - M Abir Hossain
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439 United States
| | - Kelly J Hwang
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Paolo F Ferrari
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Joseph Maduzia
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Tara Peña
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Stephen M Wu
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Elif Ertekin
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Arend M van der Zande
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro and Nano Technology Lab, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Yu J, Liang C, Lee M, Das S, Ye A, Mujid F, Poddar PK, Cheng B, Abbott NL, Park J. Two-Dimensional Mechanics of Atomically Thin Solids on Water. NANO LETTERS 2022; 22:7180-7186. [PMID: 36047815 PMCID: PMC9479134 DOI: 10.1021/acs.nanolett.2c02499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Movement of a three-dimensional solid at an air-water interface is strongly influenced by the extrinsic interactions between the solid and the water. The finite thickness and volume of a moving solid causes capillary interactions and water-induced drag. In this Letter, we report the fabrication and dynamical imaging of freely floating MoS2 solids on water, which minimizes such extrinsic effects. For this, we delaminate a synthesized wafer-scale monolayer MoS2 onto a water surface, which shows negligible height difference across water and MoS2. Subsequently patterning by a laser generates arbitrarily shaped MoS2 with negligible in-plane strain. We introduce photoswitchable surfactants to exert a lateral force to floating MoS2 with a spatiotemporal control. Using this platform, we demonstrate a variety of two-dimensional mechanical systems that show reversible shape changes. Our experiment provides a versatile approach for designing and controlling a large array of atomically thin solids on water for intrinsically two-dimensional dynamics and mechanics.
Collapse
Affiliation(s)
- Jaehyung Yu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Ce Liang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Myungjae Lee
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Soumik Das
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Andrew Ye
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Fauzia Mujid
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Preeti K Poddar
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Baorui Cheng
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Nicholas L Abbott
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jiwoong Park
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
6
|
Wang J, Han M, Wang Q, Ji Y, Zhang X, Shi R, Wu Z, Zhang L, Amini A, Guo L, Wang N, Lin J, Cheng C. Strained Epitaxy of Monolayer Transition Metal Dichalcogenides for Wrinkle Arrays. ACS NANO 2021; 15:6633-6644. [PMID: 33819027 DOI: 10.1021/acsnano.0c09983] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Wrinkling two-dimensional (2D) transition metal dichalcogenides (TMDCs) provides a mechanism to adjust the physical and chemical properties as per need. Traditionally, TMDCs wrinkles achieved by transferring exfoliated materials on prestretched polymer suffer from poor control and limited sample area, which significantly hinders desirable applications. Herein, we fabricate large-area monolayer TMDCs wrinkle arrays directly on the m-quartz substrate using strained epitaxy. The uniaxial thermal expansion coefficient mismatch between the substrate and TMDCs materials enables the generation of large uniaxial thermal strain. By quenching the TMDCs after growth, this uniaxial thermal strain can be quickly released as a form of wrinkle arrays along the [0001]quartz direction. Using WS2 as a model system, the size of as-grown wrinkles can be finely modulated within sub-100 nm by changing the quenching temperature. These WS2 wrinkles can be locally folded and form various multilayer structures with odd layer numbers during the transfer process. Besides, the corrugated structures in WS2 wrinkles induce significant changes to optical properties including anisotropic Raman response, enhanced photoluminescence, and second harmonic generation emissions. Furthermore, these wrinkle arrays exhibit enhanced chemical reactivity that can be selectively engineered to ribbon arrays with improved electrocatalytic performance. The developed strategy of strained epitaxy here should enable flexibility in the design of more sophisticated 2D-based structures, offering a simple but effective way toward the modulation of properties with enhanced performances.
Collapse
Affiliation(s)
- Jingwei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
- Department of Physics, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Mengjiao Han
- Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Qun Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Yaqiang Ji
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Xian Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Run Shi
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
- Department of Physics, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Zefei Wu
- Department of Physics, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Liang Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Abbas Amini
- Center for Infrastructure Engineering, Western Sydney University, Kingswood, NSW 2751, Australia
| | - Liang Guo
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Ning Wang
- Department of Physics, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Junhao Lin
- Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Chun Cheng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen 518055, China
| |
Collapse
|
7
|
Yu J, Han E, Hossain MA, Watanabe K, Taniguchi T, Ertekin E, Zande AM, Huang PY. Designing the Bending Stiffness of 2D Material Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007269. [PMID: 33491821 DOI: 10.1002/adma.202007269] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/30/2020] [Indexed: 05/27/2023]
Affiliation(s)
- Jaehyung Yu
- Department of Mechanical Science and Engineering University of Illinois at Urbana‐Champaign Urbana IL 61801 USA
| | - Edmund Han
- Department of Materials Science and Engineering University of Illinois at Urbana‐Champaign Urbana IL 61801 USA
| | - M. Abir Hossain
- Department of Mechanical Science and Engineering University of Illinois at Urbana‐Champaign Urbana IL 61801 USA
| | - Kenji Watanabe
- Research Center for Functional Materials National Institute for Materials Science 1‐1 Namiki Tsukuba Ibaraki 305‐0044 Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics National Institute for Materials Science 1‐1 Namiki Tsukuba Ibaraki 305‐0044 Japan
| | - Elif Ertekin
- Department of Mechanical Science and Engineering University of Illinois at Urbana‐Champaign Urbana IL 61801 USA
- Materials Research Laboratory University of Illinois at Urbana‐Champaign Urbana IL 61801 USA
| | - Arend M. Zande
- Department of Mechanical Science and Engineering University of Illinois at Urbana‐Champaign Urbana IL 61801 USA
- Materials Research Laboratory University of Illinois at Urbana‐Champaign Urbana IL 61801 USA
| | - Pinshane Y. Huang
- Department of Materials Science and Engineering University of Illinois at Urbana‐Champaign Urbana IL 61801 USA
- Materials Research Laboratory University of Illinois at Urbana‐Champaign Urbana IL 61801 USA
| |
Collapse
|
8
|
Hossain MA, Yu J, van der Zande AM. Realizing Optoelectronic Devices from Crumpled Two-Dimensional Material Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48910-48916. [PMID: 32975108 DOI: 10.1021/acsami.0c10787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Due to their high in-plane stiffness and low flexural rigidity, two-dimensional (2D) materials are excellent candidates for engineering three-dimensional (3D) nanostructures using crumpling. An important new direction is to integrate 2D materials into crumpled heterostructures, which can have much more complex device geometries. Here, we demonstrate phototransistors from crumpled 2D heterostructures formed from graphene contacts to a monolayer transition-metal dichalcogenide (MoS2, WSe2) channel and quantify the membrane morphology and optoelectronic performance. First, we examined the morphology of folds in the heterostructure and constituent monolayers under uniaxial compression. The 2D membranes relieve the stress by delaminating from the substrate and creating nearly periodic folds whose spacing depends on the membrane type. The matched mechanical stiffness of the constituting layers allows the 2D heterostructure to maintain a conformal interface through large deformations. Next, we examined the optoelectronic performance of a biaxially crumpled graphene-WSe2 phototransistor. Photoluminescence (PL) spectroscopy shows that the optical band gap of WSe2 shifts by less than 2 meV between flat and 15% biaxial crumpling, corresponding to a change in strain of less than 0.05%. The photoresponsivity scaled as P-0.38 and reached 20 A/W under an illumination power density of 4 μW/cm2 at 20 V bias, a performance comparable to flat photosensors. Using photocurrent microscopy, we observe that the photoresponsivity increases by only 20% after crumpling. Both the PL and photoresponse confirm that crumpling and delamination prevent the buildup of compressive strain leading to highly deformed materials and devices with similar performance to their flat analogs. These results set a foundation for crumpled all-2D heterostructure devices and circuitry for flexible and stretchable electronic applications.
Collapse
Affiliation(s)
- M Abir Hossain
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jaehyung Yu
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Arend M van der Zande
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 S Goodwin Avenue MC-230, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Cui T, Yip K, Hassan A, Wang G, Liu X, Sun Y, Filleter T. Graphene fatigue through van der Waals interactions. SCIENCE ADVANCES 2020; 6:6/42/eabb1335. [PMID: 33055156 PMCID: PMC7556834 DOI: 10.1126/sciadv.abb1335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Graphene is often in contact with other materials through weak van der Waals (vdW) interactions. Of particular interest is the graphene-polymer interface, which is constantly subjected to dynamic loading in applications, including flexible electronics and multifunctional coatings. Through in situ cyclic loading, we directly observed interfacial fatigue propagation at the graphene-polymer interface, which was revealed to satisfy a modified Paris' law. Furthermore, cyclic loading through vdW contact was able to cause fatigue fracture of even pristine graphene through a combined in-plane shear and out-of-plane tear mechanism. Shear fracture was found to mainly initiate at the fold junctions induced by cyclic loading and propagate parallel to the loading direction. Fracture mechanics analysis was conducted to explain the kinetics of an exotic self-tearing behavior of graphene during cyclic loading. This work offers mechanistic insights into the dynamic reliability of graphene and graphene-polymer interface, which could facilitate the durable design of graphene-based structures.
Collapse
Affiliation(s)
- Teng Cui
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S3G8, Canada
| | - Kevin Yip
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S3G8, Canada
| | - Aly Hassan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S3G8, Canada
| | - Guorui Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S3G8, Canada
| | - Xingjian Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S3G8, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S3G8, Canada.
| | - Tobin Filleter
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S3G8, Canada.
| |
Collapse
|