1
|
Choi W, Mangal U, Yu JH, Ryu JH, Kim JY, Jun T, Lee Y, Cho H, Choi M, Lee M, Ryu DY, Lee SY, Jung SY, Cha JK, Cha JY, Lee KJ, Lee S, Choi SH, Hong J. Viscoelastic and antimicrobial dental care bioplastic with recyclable life cycle. Nat Commun 2024; 15:9205. [PMID: 39448605 PMCID: PMC11502779 DOI: 10.1038/s41467-024-53489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Medical plastic-appliance-based healthcare services, especially in dentistry, generate tremendous amounts of plastic waste. Given the physiological features of our mouth, it is desirable to substitute dental care plastics with viscoelastic and antimicrobial bioplastics. Herein, we develop a medical-grade and sustainable bioplastic that is viscoelastic enough to align the tooth positions, resists microbial contamination, and exhibits recyclable life cycles. In particular, we devise a molecular template involving entanglement-inducing and antimicrobial groups and prepare a silk fibroin-based dental care bioplastic. The generated compactly entangled structure endows great flexibility, toughness, and viscoelasticity. Therefore, a satisfactory orthodontic outcome is accomplished, as demonstrated by the progressive alignment of male rabbit incisors within the 2.5 mm range. Moreover, the prepared bioplastic exhibits resistance to pathogenic colonization of intraoral microbes such as Streptococcaceae and Veillonellaceae. Because the disentanglement of entangled domains enables selective separation and extraction of the components, the bioplastic can be recycled into a mechanically identical one. The proposed medical-grade and sustainable bioplastic could potentially contribute to a green healthcare future.
Collapse
Affiliation(s)
- Woojin Choi
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea
| | - Utkarsh Mangal
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Jae-Hun Yu
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Jeong-Hyun Ryu
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Ji-Yeong Kim
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Taesuk Jun
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea
| | - Yoojin Lee
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea
| | - Heesu Cho
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea
| | - Moonhyun Choi
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea
| | - Milae Lee
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea
| | - Du Yeol Ryu
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea
| | - Sang-Young Lee
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea
| | - Se Yong Jung
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Kook Cha
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, USA
| | - Jung Yul Cha
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Kee-Joon Lee
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Sangmin Lee
- School of Mechanical Engineering, Chung-ang University, 84, Heukserok-ro, Dongjak-gu, Seoul, Republic of Korea
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea.
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Wang T, Su E. Guardians of Future Food Safety: Innovative Applications and Advancements in Anti-biofouling Materials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21973-21985. [PMID: 39332908 DOI: 10.1021/acs.jafc.4c05156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Biofilm formation is a widespread natural phenomenon that poses a substantial threat to food microbiological safety, with direct implications for consumer health. To combat this challenge effectively, one promising strategy involves the development of functional anti-biofouling layers on food-contact surfaces to deter microbial adhesion. Herein, we explore the methodologies for fabricating both hydrophilic and hydrophobic anti-biofouling materials, along with a detailed examination of their inherent antiadhesive mechanisms. Furthermore, we provide concise insights into exemplary applications of anti-biofouling materials within the context of the food industry. This comprehensive analysis not only advances our understanding of biofilm prevention but also sets the stage for innovative developments in anti-biofouling materials and their future applications in food science. These advancements hold the potential to significantly enhance food microbiological safety, ensuring that consumers can confidently enjoy food products of the highest standards in terms of hygiene and quality.
Collapse
Affiliation(s)
- Tao Wang
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Erzheng Su
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
3
|
Kim MJ, Mangal U, Seo JY, Kim JY, Kim JY, Ryu JH, Kim HJ, Lee KJ, Kwon JS, Choi SH. A novel zwitterion incorporated Nano-crystalline ceramic and polymer for bacterial resistant dental CAD-CAM block. J Dent 2024; 148:105054. [PMID: 38796091 DOI: 10.1016/j.jdent.2024.105054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/28/2024] Open
Abstract
OBJECTIVES To create bacteria-resistant dental CAD-CAM blocks with a biofilm-resistant effect by incorporating Nano-crystalline ceramic and polymer (NCP) with 2-methacryloyloxyethyl phosphorylcholine (MPC) and sulfobetaine methacrylate (SBMA) and at an equimolar ratio, referred to as MS. METHODS Experimental groups comprised NCP blocks containing zwitterions at 0.15wt% (MS015) and 0.45wt% (MS045). NCP blocks without MS served as control (CTRL). Flexural strength, surface hardness, water sorption and solubility, photometric properties, and cytotoxicity were assessed for all samples. Additionally, the resistance to single and multi-species bacterial adhesion was investigated. RESULTS MS045 showed significant reduction in flexural strength (P < 0.01) compared to both CTRL and MS015. Both MS015 and MS045 showed significantly increased water sorption and significant reduction in water solubility compared to CTRL. Light transmission remained consistent across all MS content levels, but the irradiance value decreased by 12 % in the MS045 group compared to the MS015 group. Notably, compared to the CTRL group, the MS015 group exhibited enhanced resistance to adhesion by Porphyromonas gingivalis and a multi-species salivary biofilm, with biofilm thickness and biomass reduced by 45 % and 56 %, respectively. CONCLUSIONS NCP containing 0.15 % MS can effectively reduce adhesion of multiple species of bacteria while maintaining physical and mechanical properties. CLINICAL SIGNIFICANCE NCP integrating zwitterions is clinically advantageous in resisting bacterial adhesion at internal and external margins of milled indirect restoration.
Collapse
Affiliation(s)
- Min-Ji Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea; Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea; BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Utkarsh Mangal
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Ji-Young Seo
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Ji-Yun Kim
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Ji-Yeong Kim
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Jeong-Hyun Ryu
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Hee-Jin Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea; BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Kee-Joon Lee
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Jae-Sung Kwon
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Republic of Korea; Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, Republic of Korea.
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Imbia AS, Ounkaew A, Mao X, Zeng H, Liu Y, Narain R. Tannic Acid-Based Coatings Containing Zwitterionic Copolymers for Improved Antifouling and Antibacterial Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38330259 DOI: 10.1021/acs.langmuir.3c03237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The prevention of biofilm formation on medical devices has become highly challenging in recent years due to its resistance to bactericidal agents and antibiotics, ultimately resulting in chronic infections to medical devices. Therefore, developing inexpensive, biocompatible, and covalently bonded coatings to combat biofilm formation is in high demand. Herein, we report a coating fabricated from tannic acid (TA) as an adhesive and a reducing agent to graft the zwitterionic polymer covalently in a one-step method. Subsequently, silver nanoparticles (AgNPs) are generated in situ to develop a coating with antifouling and antibacterial properties. To enhance the antifouling property and biocompatibility of the coating, the bioinspired zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) was copolymerized with 2-aminoethyl methacrylamide hydrochloride (AEMA) using conventional free-radical polymerization. AEMA moieties containing amino groups were used to facilitate the conjugation of the copolymer with quinone groups on TA through the Michael addition reaction. Three copolymers with different ratios of monomers were synthesized to understand their impacts on fouling resistance: PMPC100, p(MPC80-st-AEMA20), and p(MPC90-st-AEMA10). To impart antibacterial properties to the surface, AgNPs were formed in situ, utilizing the unreacted quinone groups on TA, which can reduce the silver ions. The successful coating of TA and copolymer onto the surfaces was confirmed by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and its excellent wettability was verified by the water contact angle (CA). Furthermore, the functionalized coatings showed antibacterial properties against E. coli and S. aureus and remarkably decreased the adhesion of the BSA protein. The surfaces can also prevent the adhesion of bacteria cells, as confirmed by the inhibition zone test. In addition, they showed negligible cytotoxicity to normal human lung fibroblast cells (MRC-5). The as-prepared coatings are potentially valuable for biomedical applications.
Collapse
Affiliation(s)
- Adel S Imbia
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Artjima Ounkaew
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xiaohui Mao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
5
|
Song X, Man J, Qiu Y, Wang J, Liu J, Li R, Zhang Y, Li J, Li J, Chen Y. Design, preparation, and characterization of lubricating polymer brushes for biomedical applications. Acta Biomater 2024; 175:76-105. [PMID: 38128641 DOI: 10.1016/j.actbio.2023.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The lubrication modification of biomedical devices significantly enhances the functionality of implanted interventional medical devices, thereby providing additional benefits for patients. Polymer brush coating provides a convenient and efficient method for surface modification while ensuring the preservation of the substrate's original properties. The current research has focused on a "trial and error" method to finding polymer brushes with superior lubricity qualities, which is time-consuming and expensive, as obtaining effective and long-lasting lubricity properties for polymer brushes is difficult. This review summarizes recent research advances in the biomedical field in the design, material selection, preparation, and characterization of lubricating and antifouling polymer brushes, which follow the polymer brush development process. This review begins by examining various approaches to polymer brush design, including molecular dynamics simulation and machine learning, from the fundamentals of polymer brush lubrication. Recent advancements in polymer brush design are then synthesized and potential avenues for future research are explored. Emphasis is placed on the burgeoning field of zwitterionic polymer brushes, and highlighting the broad prospects of supramolecular polymer brushes based on host-guest interactions in the field of self-repairing polymer brush applications. The review culminates by providing a summary of methodologies for characterizing the structural and functional attributes of polymer brushes. It is believed that a development approach for polymer brushes based on "design-material selection-preparation-characterization" can be created, easing the challenge of creating polymer brushes with high-performance lubricating qualities and enabling the on-demand creation of coatings. STATEMENT OF SIGNIFICANCE: Biomedical devices have severe lubrication modification needs, and surface lubrication modification by polymer brush coating is currently the most promising means. However, the design and preparation of polymer brushes often involves "iterative testing" to find polymer brushes with excellent lubrication properties, which is both time-consuming and expensive. This review proposes a polymer brush development process based on the "design-material selection-preparation-characterization" strategy and summarizes recent research advances and trends in the design, material selection, preparation, and characterization of polymer brushes. This review will help polymer brush researchers by alleviating the challenges of creating polymer brushes with high-performance lubricity and promises to enable the on-demand construction of polymer brush lubrication coatings.
Collapse
Affiliation(s)
- Xinzhong Song
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China.
| | - Yinghua Qiu
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jiali Wang
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Jianing Liu
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Ruijian Li
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Yongqi Zhang
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Yuguo Chen
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| |
Collapse
|
6
|
Jung S, Heo S, Oh Y, Park K, Park S, Choi W, Kim YH, Jung SY, Hong J. Zwitterionic Inhaler with Synergistic Therapeutics for Reprogramming of M2 Macrophage to Pro-Inflammatory Phenotype. Adv Healthc Mater 2023; 12:e2300226. [PMID: 37166052 DOI: 10.1002/adhm.202300226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/03/2023] [Indexed: 05/12/2023]
Abstract
Myriad lung diseases are life threatening and macrophages play a key role in both physiological and pathological processes. Macrophages have each pro-/anti-inflammatory phenotype, and each lung disease can be aggravated by over-polarized macrophage. Therefore, development of a method capable of mediating the macrophage phenotype is one of the solutions for lung disease treatment. For mediating the phenotype of macrophages, the pulmonary delivery system (PDS) is widely used due to its advantages, such as high efficiency and accessibility of the lungs. However, it has a low drug delivery efficiency ironically because of the perfect lung defense system consisting of the mucus layer and airway macrophages. In this study, zwitterion-functionalized poly(lactide-co-glycolide) (PLGA) inhalable microparticles (ZwPG) are synthesized to increase the efficiency of the PDS. The thin layer of zwitterions formed on PLGA surface has high nebulizing stability and show high anti-mucus adhesion and evasion of macrophages. As a reprogramming agent for macrophages, ZwPG containing dexamethasone (Dex) and pirfenidone (Pir) are treated to over-polarized M2 macrophages. As a result, a synergistic effect of Dex/Pir induces reprogramming of M2 macrophage to pro-inflammatory phenotypes.
Collapse
Affiliation(s)
- Sungwon Jung
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sungeun Heo
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yoogyeong Oh
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyungtae Park
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sohyeon Park
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Woojin Choi
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yang-Hee Kim
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - Se Yong Jung
- Division of Pediatric Cardiology, Department of Pediatrics, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jinkee Hong
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
7
|
Kauser A, Parisini E, Suarato G, Castagna R. Light-Based Anti-Biofilm and Antibacterial Strategies. Pharmaceutics 2023; 15:2106. [PMID: 37631320 PMCID: PMC10457815 DOI: 10.3390/pharmaceutics15082106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Biofilm formation and antimicrobial resistance pose significant challenges not only in clinical settings (i.e., implant-associated infections, endocarditis, and urinary tract infections) but also in industrial settings and in the environment, where the spreading of antibiotic-resistant bacteria is on the rise. Indeed, developing effective strategies to prevent biofilm formation and treat infections will be one of the major global challenges in the next few years. As traditional pharmacological treatments are becoming inadequate to curb this problem, a constant commitment to the exploration of novel therapeutic strategies is necessary. Light-triggered therapies have emerged as promising alternatives to traditional approaches due to their non-invasive nature, precise spatial and temporal control, and potential multifunctional properties. Here, we provide a comprehensive overview of the different biofilm formation stages and the molecular mechanism of biofilm disruption, with a major focus on the quorum sensing machinery. Moreover, we highlight the principal guidelines for the development of light-responsive materials and photosensitive compounds. The synergistic effects of combining light-triggered therapies with conventional treatments are also discussed. Through elegant molecular and material design solutions, remarkable results have been achieved in the fight against biofilm formation and antibacterial resistance. However, further research and development in this field are essential to optimize therapeutic strategies and translate them into clinical and industrial applications, ultimately addressing the global challenges posed by biofilm and antimicrobial resistance.
Collapse
Affiliation(s)
- Ambreen Kauser
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (A.K.); (E.P.)
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena 3, LV-1048 Riga, Latvia
| | - Emilio Parisini
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (A.K.); (E.P.)
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Giulia Suarato
- Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, Consiglio Nazionale delle Ricerche, CNR-IEIIT, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Rossella Castagna
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (A.K.); (E.P.)
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
8
|
Jin J, Mangal U, Seo JY, Kim JY, Ryu JH, Lee YH, Lugtu C, Hwang G, Cha JY, Lee KJ, Yu HS, Kim KM, Jang S, Kwon JS, Choi SH. Cerium oxide nanozymes confer a cytoprotective and bio-friendly surface micro-environment to methacrylate based oro-facial prostheses. Biomaterials 2023; 296:122063. [PMID: 36848780 DOI: 10.1016/j.biomaterials.2023.122063] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/03/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Poly-(methyl methacrylate) (PMMA) is the preferred biomaterial for orofacial prostheses used for the rehabilitation of naso-palatal defects. However, conventional PMMA has limitations determined by the complexity of the local microbiota and the friability of oral mucosa adjacent to these defects. Our purpose was to develop a new type of PMMA, i-PMMA, with good biocompatibility and better biological effects such as higher resistance to microbial adhesion of multiple species and enhanced antioxidant effect. The addition of cerium oxide nanoparticles to PMMA using a mesoporous nano-silica carrier and polybetaine conditioning, resulted in an increased release of cerium ions and enzyme mimetic activity, without tangible loss of mechanical properties. Ex vivo experiments confirmed these observations. In stressed human gingival fibroblasts, i-PMMA reduced the levels of reactive oxygen species and increased the expression of homeostasis-related proteins (PPARg, ATG5, LCI/III). Furthermore, i-PMMA increased the levels of expression of superoxide dismutase and mitogen-activated protein kinases (ERK and Akt), and cellular migration. Lastly, we demonstrated the biosafety of i-PMMA using two in vivo models: skin sensitization assay and oral mucosa irritation test, respectively. Therefore, i-PMMA offers a cytoprotective interface that prevents microbial adhesion and attenuates oxidative stress, thus supporting physiological recovery of the oral mucosa.
Collapse
Affiliation(s)
- Jie Jin
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Utkarsh Mangal
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji-Young Seo
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji-Yeong Kim
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jeong-Hyun Ryu
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Young-Hee Lee
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si, 54907, Republic of Korea
| | - Cerjay Lugtu
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Geelsu Hwang
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Jung-Yul Cha
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kee-Joon Lee
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyung-Seog Yu
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sungil Jang
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si, 54907, Republic of Korea.
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
9
|
Liu L, Liu Y, Chen X, Feng S, Wan Y, Lu H, Luo J. A nanofiltration membrane with outstanding antifouling ability: Exploring the structure-property-performance relationship. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Choi W, Jun T, Lee M, Park K, Choi M, Jung S, Cha JK, Kwon JS, Jin Y, Lee S, Ryu DY, Hong J. Regulation of the Inevitable Water-Responsivity of Silk Fibroin Biopolymer by Polar Amino Acid Activation. ACS NANO 2022; 16:17274-17288. [PMID: 36129365 DOI: 10.1021/acsnano.2c07971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In nature, water is vital for maintaining homeostasis. Particularly, organisms (e.g., plant leaf, bird feather) exploit water fluidics for motions. Hydration-adaptive crystallization is the representative water-responsive actuation of biopolymers. This crystallization has inspired the development of intelligent human-robot interfaces. At the same time, it hinders the consistent adhesion of tissue adhesive. As hydration-adaptive crystallization is inevitable, the on-demand control of crystallization is desirable in the innovative biopolymeric biomedical systems. To this end, this study developed an amino acid-based technology to artificially up- or down-regulate the inevitable crystallization of silk fibroin. A case II diffusion model was constructed, and it revealed that the activity of polar amino acid is related to crystallization kinetics. Furthermore, the water dynamics study suggested that active amino acid stabilizes crystallization-triggering water molecules. As a proof-of-concept, we verified that a 30% increase in the activity of serine resulted in a 50% decrease in the crystallization rate. Furthermore, the active amino acid-based suppression of hydration-adaptive crystallization enabled the silk fibroin to keep its robust adhesion (approximately 160 kJ m-3) by reducing the water-induced loss of adhesive force. The proposed silk fibroin was demonstrated as a stable tissue adhesive applied on ex vivo porcine mandible tissue. This amino acid-based regulation of hydration-adaptive crystallization will pioneer next-generation biopolymer-based healthcare.
Collapse
Affiliation(s)
- Woojin Choi
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Taesuk Jun
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Milae Lee
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyungtae Park
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Moonhyun Choi
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sungwon Jung
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jae-Kook Cha
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Youngho Jin
- Agency for Defense Development, Chem-Bio Technology Center, Yuseong-Gu, Daejeon, 34186, Republic of Korea
| | - Sangmin Lee
- School of Mechanical Engineering, Chung-ang University, 84, Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Du Yeol Ryu
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
11
|
Ma L, Wan Y, Wang T, Liu Y, Yin Y, Zhang L. Self-Assembled CMC/UiO-66-NH 2 Membrane with Anti-Crude Oil Adhesion Property for Highly Efficient Oil-Water Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12499-12509. [PMID: 36194832 DOI: 10.1021/acs.langmuir.2c01905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Developing the high-anti-fouling membrane has kept continuous attention in oil/water emulsion treatment. However, the majority of works on anti-fouling membranes mainly focused on low-viscosity oils, which greatly limited the development and application of a membrane to face the real crude oil wastewater. Inspired by the hydrophilicity of sodium carboxymethyl cellulose (CMC) and zirconium base metal-organic frame (Zr-MOF), an anti-oil-fouling CMC/UiO-66-NH2 composite membrane was constructed by a self-assembly method. Profiting from the hydrophilicity and micro-nanostructure of the CMC/UiO-66-NH2 layer, the obtained CMC/UiO-66-NH2 membranes displayed underwater superoleophobicity and desired oil resistance. It could display the effective separation capability with 1282 ± 62 to 6160 ± 81 L/(m2·h·bar) and above 99.08% toward the different light oil emulsions. More importantly, the CMC/UiO-66-NH2 membrane displayed ultralow crude oil adhesion behaviors toward the crude oil emulsions, which could achieve a considerably high flux (746 ± 60 to 5224 ± 87 L/(m2·h·bar)). Furthermore, electrostatic interaction and physical enwinding-wrapping between CMC and UiO-66-NH2 also endowed the composite membranes with outstanding stability. After immersing the as-prepared membranes into the harsh environments for 24 h, the membranes still maintained high underwater-oil contact angles (UWOCA > 155°) and separation ability (oil rejection was above 99.0%). Therefore, CMC/UiO-66-NH2 composite membranes could demonstrate promising prospects in real oily emulsion treatment.
Collapse
Affiliation(s)
- Lan Ma
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan610039, China
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan610500, China
| | - Yan Wan
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan610039, China
| | - Teng Wang
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan610039, China
| | - Yaling Liu
- Sichuan Special Equipment Inspection and Research Institute, Chenglong Avenue, Chengdu, Sichuan610500, China
| | - Ying Yin
- Sichuan Special Equipment Inspection and Research Institute, Chenglong Avenue, Chengdu, Sichuan610500, China
| | - Liyun Zhang
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan610039, China
| |
Collapse
|
12
|
Bu F, Liu M, Xie Z, Chen X, Li G, Wang X. Targeted Anti-Biofilm Therapy: Dissecting Targets in the Biofilm Life Cycle. Pharmaceuticals (Basel) 2022; 15:1253. [PMID: 36297365 PMCID: PMC9611117 DOI: 10.3390/ph15101253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/13/2024] Open
Abstract
Biofilm is a crucial virulence factor for microorganisms that causes chronic infection. After biofilm formation, the bacteria present improve drug tolerance and multifactorial defense mechanisms, which impose significant challenges for the use of antimicrobials. This indicates the urgent need for new targeted technologies and emerging therapeutic strategies. In this review, we focus on the current biofilm-targeting strategies and those under development, including targeting persistent cells, quorum quenching, and phage therapy. We emphasize biofilm-targeting technologies that are supported by blocking the biofilm life cycle, providing a theoretical basis for design of targeting technology that disrupts the biofilm and promotes practical application of antibacterial materials.
Collapse
Affiliation(s)
| | | | | | | | | | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
13
|
Ma Y, Zohaib Aslam M, Wu M, Nitin N, Sun G. Strategies and perspectives of developing anti-biofilm materials for improved food safety. Food Res Int 2022; 159:111543. [DOI: 10.1016/j.foodres.2022.111543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/04/2022] [Accepted: 06/18/2022] [Indexed: 11/04/2022]
|
14
|
Kim JY, Choi W, Mangal U, Seo JY, Kang TY, Lee J, Kim T, Cha JY, Lee KJ, Kim KM, Kim JM, Kim D, Kwon JS, Hong J, Choi SH. Multivalent network modifier upregulates bioactivity of multispecies biofilm-resistant polyalkenoate cement. Bioact Mater 2022; 14:219-233. [PMID: 35310353 PMCID: PMC8897648 DOI: 10.1016/j.bioactmat.2021.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/25/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022] Open
Affiliation(s)
- Ji-Yeong Kim
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Woojin Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Utkarsh Mangal
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ji-Young Seo
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Tae-Yun Kang
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Joohee Lee
- Johns Hopkins University, 3400 N. Charles St., Mason Hall, Baltimore, MD 21218, USA
| | - Taeho Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jung-Yul Cha
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kee-Joon Lee
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jin-Man Kim
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Dohyun Kim
- Department of Conservative Dentistry, Oral Science Research Center, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jae-Sung Kwon
- BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Corresponding author. Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Corresponding author. Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Corresponding author. Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
15
|
Zhu J, Chu W, Luo J, Yang J, He L, Li J. Dental Materials for Oral Microbiota Dysbiosis: An Update. Front Cell Infect Microbiol 2022; 12:900918. [PMID: 35846759 PMCID: PMC9280126 DOI: 10.3389/fcimb.2022.900918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
The balance or dysbiosis of the microbial community is a major factor in maintaining human health or causing disease. The unique microenvironment of the oral cavity provides optimal conditions for colonization and proliferation of microbiota, regulated through complex biological signaling systems and interactions with the host. Once the oral microbiota is out of balance, microorganisms produce virulence factors and metabolites, which will cause dental caries, periodontal disease, etc. Microbial metabolism and host immune response change the local microenvironment in turn and further promote the excessive proliferation of dominant microbes in dysbiosis. As the product of interdisciplinary development of materials science, stomatology, and biomedical engineering, oral biomaterials are playing an increasingly important role in regulating the balance of the oral microbiome and treating oral diseases. In this perspective, we discuss the mechanisms underlying the pathogenesis of oral microbiota dysbiosis and introduce emerging materials focusing on oral microbiota dysbiosis in recent years, including inorganic materials, organic materials, and some biomolecules. In addition, the limitations of the current study and possible research trends are also summarized. It is hoped that this review can provide reference and enlightenment for subsequent research on effective treatment strategies for diseases related to oral microbiota dysbiosis.
Collapse
Affiliation(s)
- Jieyu Zhu
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenlin Chu
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jiaojiao Yang, ; Libang He,
| | - Libang He
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jiaojiao Yang, ; Libang He,
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Wang XT, Deng X, Zhang TD, Zhang J, Chen LL, Wang YF, Cao X, Zhang YZ, Zheng X, Yin DC. A Versatile Hydrophilic and Antifouling Coating Based on Dopamine Modified Four-Arm Polyethylene Glycol by One-Step Synthesis Method. ACS Macro Lett 2022; 11:805-812. [PMID: 35666550 DOI: 10.1021/acsmacrolett.2c00277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A versatile hydrophilic and antifouling coating was designed and prepared based on catechol-modified four-arm polyethylene glycol. The dopamine (DA) molecules were grafted onto the end of the four-arm polyethylene glycol carboxyl (4A-PEG-COOH) through the amidation reaction, which was proven by 1H NMR and FTIR analysis, assisting the strong adhesion of PEG on the surface of various types of materials, including metallic, inorganic, and polymeric materials. The reduction of the water contact angle and the bacteria-repellent and protein-repellent effects indicated that the coating had good hydrophilicity and antifouling performance. Raman spectroscopy analysis demonstrated the affinity between the polymeric surface and water, which further confirmed the hydrophilicity of the coating. Finally, in vitro cytotoxicity assay demonstrated good biocompatibility of the coating layer.
Collapse
Affiliation(s)
- Xue-Ting Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xudong Deng
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tuo-Di Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jie Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Liang-Liang Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yi-Fan Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Xin Cao
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Yao-Zhong Zhang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Xing Zheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
17
|
Ishihara K, Fukazawa K. Cell-membrane-inspired polymers for constructing biointerfaces with efficient molecular recognition. J Mater Chem B 2022; 10:3397-3419. [PMID: 35389394 DOI: 10.1039/d2tb00242f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fabrication of devices that accurately recognize, detect, and separate target molecules from mixtures is a crucial aspect of biotechnology for applications in medical, pharmaceutical, and food sciences. This technology has also been recently applied in solving environmental and energy-related problems. In molecular recognition, biomolecules are typically complexed with a substrate, and specific molecules from a mixture are recognized, captured, and reacted. To increase sensitivity and efficiency, the activity of the biomolecules used for capture should be maintained, and non-specific reactions on the surface should be prevented. This review summarizes polymeric materials that are used for constructing biointerfaces. Precise molecular recognition occurring at the surface of cell membranes is fundamental to sustaining life; therefore, materials that mimic the structure and properties of this particular surface are emphasized in this article. The requirements for biointerfaces to eliminate nonspecific interactions of biomolecules are described. In particular, the major issue of protein adsorption on biointerfaces is discussed by focusing on the structure of water near the interface from a thermodynamic viewpoint; moreover, the structure of polymer molecules that control the water structure is considered. Methodologies enabling stable formation of these interfaces on material surfaces are also presented.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kyoko Fukazawa
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
18
|
Jin J, Bhat R, Mangal U, Seo JY, Min Y, Yu J, Kim DE, Kuroda K, Kwon JS, Choi SH. Molecular weight tuning optimizes poly(2-methoxyethyl acrylate) dispersion to enhance the aging resistance and anti-fouling behavior of denture base resin. Biomater Sci 2022; 10:2224-2236. [PMID: 35344987 DOI: 10.1039/d2bm00053a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(methyl methacrylate) (PMMA)-based denture base resins easily develop oral bacterial and fungal biofilms, which may constitute a significant health risk. Conventional bacterial-resistant additives and coatings often cause undesirable changes in the resin. Reduced bacterial resistance over time in the harsh oral environment is a major challenge in resin development. Poly(2-methoxyethyl acrylate) (PMEA) has anti-fouling properties; however, due to the oily/rubbery state of this polymer, and its surface aggregation tendency in a resin mixture, its direct use as a resin additive is limited. This study aimed to optimize the use of PMEA in dental resins. Acrylic resins containing a series of PMEA polymers with various molecular weights (MWs) at different concentrations were prepared, and the mechanical properties, surface gloss, direct transmittance, and cytotoxicity were evaluated, along with the distribution of PMEA in the resin. Resins with low-MW PMEA (2000 g mol-1) (PMEA-1) at low concentrations satisfied the clinical requirements for denture resins, and the PMEA was homogeneously distributed. The anti-fouling performance of the resin was evaluated for protein adsorption, bacterial and fungal attachment, and saliva-derived biofilm formation. The PMEA-1 resin most effectively inhibited biofilm formation (∼50% reduction in biofilm mass and thickness compared to those of the control). Post-aged resins maintained their mechanical properties and anti-fouling activity, and polished surfaces had the same anti-biofilm behavior. Based on wettability and tribological results, we propose that the PMEA additive creates a non-stick surface to inhibit biofilm formation. This study demonstrated that PMEA additives can provide a stable and biocompatible anti-fouling surface, without sacrificing the mechanical properties and aesthetics of denture resins.
Collapse
Affiliation(s)
- Jie Jin
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Rajani Bhat
- Department of Biologic & Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, 1011 N. University Ave., Ann Arbor, MI 48109, USA
| | - Utkarsh Mangal
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Ji-Young Seo
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - YouJin Min
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jaehun Yu
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea. .,BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Dae-Eun Kim
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kenichi Kuroda
- Department of Biologic & Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, 1011 N. University Ave., Ann Arbor, MI 48109, USA
| | - Jae-Sung Kwon
- BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea. .,Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea. .,BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
19
|
Jung S, Park K, Park S, Heo J, Choi W, Hong J. Unraveling the Structured Solvation Shell of Zwitterion Nanoparticles for Controlled Release of Nitric Oxide. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54363-54374. [PMID: 34730330 DOI: 10.1021/acsami.1c15701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Zwitterions have been attracting emerging attention as an anti-fouling polymer. However, the relationship between structured solvation shells and controlled drug release induced by deceleration of water molecule's translational and vibrational motions of zwitterions is an uncharted territory. Herein, sulfobetaine zwitterion nanoparticles (ZWNPs) were designed as a stable nitric oxide (NO)-delivering carrier. The condensed water structure of the solvation shell at its isoelectric point (PI) and the loose structure of water under different pH conditions were investigated through rheological and thermodynamical analyses. The ZWNPs showed a sustained-release profile at the PI, which presented a structured solvation barrier. On the other hand, NO-loaded ZWNPs showed different release profiles with the burst release at pH 5.5. Notably, an increased cell proliferation rate and a decreased antibacterial effect were observed at the same concentration depending on solvation shell's characteristics.
Collapse
Affiliation(s)
- Sungwon Jung
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kyungtae Park
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sohyeon Park
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jiwoong Heo
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Woojin Choi
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jinkee Hong
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
20
|
Parhi S, Pal S, Das SK, Ghosh P. Strategies toward development of antimicrobial biomaterials for dental healthcare applications. Biotechnol Bioeng 2021; 118:4590-4622. [PMID: 34599764 DOI: 10.1002/bit.27948] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/19/2021] [Accepted: 09/26/2021] [Indexed: 12/25/2022]
Abstract
Several approaches for elimination of oral pathogens are being explored at the present time since oral diseases remain prevalent affecting approximately 3.5 billion people worldwide. Need for antimicrobial biomaterials in dental healthcare include but is not restricted to designing resin composites and adhesives for prevention of dental caries. Constant efforts are also being made to develop antimicrobial strategies for clearance of endodontic space prior root canal treatment and for treatment of periimplantitis and periodontitis. This article discusses various conventional and nanotechnology-based strategies to achieve antimicrobial efficacy in dental biomaterials. Recent developments in the design and synthesis of antimicrobial peptides and antifouling zwitterionic polymers to effectively lessen the risks of antimicrobial drug resistance are also outlined in this review. Further, the role of contemporary strategies such as use of smart biomaterials, ionic solvent-based biomaterials and quorum quenchers incorporated biomaterials in the elimination of dental pathogens are described in detail. Lastly, we mentioned the approach of using polymers to print custom-made three-dimensional antibacterial dental products via additive manufacturing technologies. This review provides a critical perspective on the chemical, biomimetic, and engineering strategies intended for developing antimicrobial biomaterials that have the potential to substantially improve the dental health.
Collapse
Affiliation(s)
- Shivangi Parhi
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad, India
| | - Sreyasi Pal
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sujoy K Das
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad, India.,Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Paulomi Ghosh
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad, India
| |
Collapse
|
21
|
Gao F. Adsorption of Mussel Protein on Polymer Antifouling Membranes: A Molecular Dynamics Study. Molecules 2021; 26:5660. [PMID: 34577131 PMCID: PMC8468479 DOI: 10.3390/molecules26185660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Biofouling is one of the most difficult problems in the field of marine engineering. In this work, molecular dynamics simulation was used to study the adsorption process of mussel protein on the surface of two antifouling films-hydrophilic film and hydrophobic film-trying to reveal the mechanism of protein adsorption and the antifouling mechanism of materials at the molecular level. The simulated conclusion is helpful to design and find new antifouling coatings for the experiments in the future.
Collapse
Affiliation(s)
- Fengfeng Gao
- Department of Chemical Engineering, Zibo Vocational Institute, Zibo 255300, China
| |
Collapse
|
22
|
Gao L, Liu X, Xu M, Sun G, Xu S, Zou T, Wang L, Wang F, Da J, Wang Y, Wang L. Biodegradable Anti-Biofilm Fiber-Membrane Ureteral Stent Constructed with a Robust Biomimetic Superhydrophilic Polycationic Hydration Surface Exhibiting Synergetic Antibacterial and Antiprotein Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006815. [PMID: 33783975 DOI: 10.1002/smll.202006815] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/01/2021] [Indexed: 06/12/2023]
Abstract
The biofouling of ureteral stents and subsequent urinary tract infections mainly come from the adsorption and adhesion of proteins and microorganisms and their ensuing proliferation. Although general polycationic surfaces in implants have good antibacterial activities, they suffer from limited durability due to severe protein and bacterial adsorption. Here, a biodegradable and anti-biofilm fiber-membrane structured ureteral stent (FMBUS) with synergetic contact-killing antibacterial activity and antiprotein adsorption is described. The stent is prepared by generating hyperbranched poly(amide-amine)-grafted polydopamine microparticles (≈300 nm) on the surface of fibers by in situ polymerization and Schiff base reactions. The biomimetic surface endows the FMBUS with a positive charge (+21.36 mV) and superhydrophilicity (water contact angle: 0°). As a result, the stents fulfilled the following functions: i) reduced attachment of host protein due to superhydrophilicity (Lysozyme: 92.1%; human serum albumin: 39.4%); ii) high bactericidal activities against contact pathogenic bacteria (contact-killing rate: 99.9999% for both E. coli and S. aureus; antiadhesion rate: 99.2% for E. coli and 99.9999% for S. aureus); iii) biocompatibility in vitro (relative growth rate of L929: >90% on day 3) and in vivo; and iv) gradient biodegradability to avoid a second surgery of stent extraction 1-2 weeks after implantation.
Collapse
Affiliation(s)
- Liheng Gao
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xingxing Liu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Mingxi Xu
- Department of Urology, Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200011, China
| | - Gang Sun
- Fiber and Polymer Science, University of California, Davis, CA, 95616, USA
| | - Sijun Xu
- School of Textile and Clothing, Nantong University, Nantong, 226019, China
| | - Ting Zou
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Litianmu Wang
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Fujun Wang
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jun Da
- Department of Urology, Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200011, China
| | - Yiwei Wang
- Department of Urology, Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200011, China
| | - Lu Wang
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
23
|
Choi W, Park S, Kwon JS, Jang EY, Kim JY, Heo J, Hwang Y, Kim BS, Moon JH, Jung S, Choi SH, Lee H, Ahn HW, Hong J. Reverse Actuation of Polyelectrolyte Effect for In Vivo Antifouling. ACS NANO 2021; 15:6811-6828. [PMID: 33769787 DOI: 10.1021/acsnano.0c10431] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Zwitterionic polymers have extraordinary properties, that is, significant hydration and the so-called antipolyelectrolyte effect, which make them suitable for biomedical applications. The hydration induces an antifouling effect, and this has been investigated significantly. The antipolyelectrolyte effect refers to the extraordinary ion-responsive behavior of particular polymers that swell and hydrate considerably in physiological solutions. This actuation begins to attract attention to achieve in vivo antifouling that is challenging for general polyelectrolytes. In this study, we established the sophisticated cornerstone of the antipolyelectrolyte effect in detail, including (i) the essential parameters, (ii) experimental verifications, and (iii) effect of improving antifouling performance. First, we find that both osmotic force and charge screening are essential factors. Second, we identify the antipolyelectrolyte effect by visualizing the swelling and hydration dynamics. Finally, we verify that the antifouling performance can be enhanced by exploiting the antipolyelectrolyte effect and report reduction of 85% and 80% in ex and in vivo biofilm formation, respectively.
Collapse
Affiliation(s)
- Woojin Choi
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sohyeon Park
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Eun-Young Jang
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji-Yeong Kim
- Department of Orthodontics, Institute of Craniofacial Deformity and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Jiwoong Heo
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - YoungDeok Hwang
- Paul H. Chook Department of Information Systems and Statistics, Baruch College CUNY, New York, New York 10010, United States
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Ji-Hoi Moon
- Department of Oral Microbiology, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sungwon Jung
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin-si, Gyeonggi-do 16890, Republic of Korea
| | - Hyo-Won Ahn
- Department of Orthodontics, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
24
|
Ren Y, Zhou H, Lu J, Huang S, Zhu H, Li L. Theoretical and Experimental Optimization of the Graft Density of Functionalized Anti-Biofouling Surfaces by Cationic Brushes. MEMBRANES 2020; 10:membranes10120431. [PMID: 33348625 PMCID: PMC7766574 DOI: 10.3390/membranes10120431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 11/30/2022]
Abstract
Diseases and complications related to catheter materials are severe problems in biomedical material applications, increasing the infection risk and medical expenses. Therefore, there is an enormous demand for catheter materials with antibacterial and antifouling properties. Considering this, in this work, we developed an approach of constructing antibacterial surfaces on polyurethane (PU) via surface-initiated atom transfer radical polymerization (SI-ATRP). A variety of cationic polymers were grafted on PU. The biocompatibility and antifouling properties of all resulting materials were evaluated and compared. We also used a theoretical algorithm to investigate the anticoagulant mechanism of our PU-based grafts. The hemocompatibility and anti-biofouling performance improved at a 86–112 μg/cm2 grafting density. The theoretical simulation demonstrated that the in vivo anti-fouling performance and optimal biocompatibility of our PU-based materials could be achieved at a 20% grafting degree. We also discuss the mechanism responsible for the hemocompatibility of the cationic brushes fabricated in this work. The results reported in this paper provide insights and novel ideas on material design for applications related to medical catheters.
Collapse
Affiliation(s)
- Yijie Ren
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China; (Y.R.); (H.Z.); (J.L.); (S.H.)
- School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, No. 1 Wenyuan Road, Nanjing 210023, China
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Hongxia Zhou
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China; (Y.R.); (H.Z.); (J.L.); (S.H.)
- School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Jin Lu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China; (Y.R.); (H.Z.); (J.L.); (S.H.)
- School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Sicheng Huang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China; (Y.R.); (H.Z.); (J.L.); (S.H.)
- School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Haomiao Zhu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China; (Y.R.); (H.Z.); (J.L.); (S.H.)
- School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, No. 1 Wenyuan Road, Nanjing 210023, China
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, No. 1 Wenyuan Road, Nanjing 210023, China
- Correspondence: (H.Z.); (L.L.)
| | - Li Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China; (Y.R.); (H.Z.); (J.L.); (S.H.)
- School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, No. 1 Wenyuan Road, Nanjing 210023, China
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, No. 1 Wenyuan Road, Nanjing 210023, China
- Correspondence: (H.Z.); (L.L.)
| |
Collapse
|
25
|
Mangal U, Kwon JS, Choi SH. Bio-Interactive Zwitterionic Dental Biomaterials for Improving Biofilm Resistance: Characteristics and Applications. Int J Mol Sci 2020; 21:E9087. [PMID: 33260367 PMCID: PMC7730019 DOI: 10.3390/ijms21239087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Biofilms are formed on surfaces inside the oral cavity covered by the acquired pellicle and develop into a complex, dynamic, microbial environment. Oral biofilm is a causative factor of dental and periodontal diseases. Accordingly, novel materials that can resist biofilm formation have attracted significant attention. Zwitterionic polymers (ZPs) have unique features that resist protein adhesion and prevent biofilm formation while maintaining biocompatibility. Recent literature has reflected a rapid increase in the application of ZPs as coatings and additives with promising outcomes. In this review, we briefly introduce ZPs and their mechanism of antifouling action, properties of human oral biofilms, and present trends in anti-biofouling, zwitterionic, dental materials. Furthermore, we highlight the existing challenges in the standardization of biofilm research and the future of antifouling, zwitterated, dental materials.
Collapse
Affiliation(s)
- Utkarsh Mangal
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea;
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| |
Collapse
|
26
|
Lee MJ, Kim JY, Seo JY, Mangal U, Cha JY, Kwon JS, Choi SH. Resin-Based Sealant with Bioactive Glass and Zwitterionic Material for Remineralisation and Multi-Species Biofilm Inhibition. NANOMATERIALS 2020; 10:nano10081581. [PMID: 32806515 PMCID: PMC7466479 DOI: 10.3390/nano10081581] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 01/30/2023]
Abstract
Since pits and fissures are the areas most commonly affected by caries due to their structural irregularity, bioactive resin-based sealant (RBS) may contribute to the prevention of secondary caries. This study aims to investigate the mechanical, physical, ion-release, enamel remineralisation, and antibacterial capabilities of the novel RBS with bioactive glass (BAG) and 2-methacryloyloxyethyl phosphorylcholine (MPC). For the synthesis, 12.5 wt% BAG and 3 wt% MPC were incorporated into RBS. The contact angle, flexural strength, water sorption, solubility, and viscosity were investigated. The release of multiple ions relating to enamel remineralisation was investigated. Further, the attachments of bovine serum albumin, brain heart infusion broth, and Streptococcus mutans on RBS were studied. Finally, the thickness and biomass of a human saliva-derived microsm biofilm model were analysed before aging, with static immersion aging and with thermocycling aging. In comparison to commercial RBS, BAG+MPC increased the wettability, water sorption, solubility, viscosity, and release of multiple ions, while the flexural strength did not significantly differ. Furthermore, RBS with MPC and BAG+MPC significantly reduced protein and bacteria adhesion and suppressed multi-species biofilm attachment regardless of the existence of aging and its type. The novel RBS has great potential to facilitate enamel remineralisation and suppress biofilm adhesion, which could prevent secondary dental caries.
Collapse
Affiliation(s)
- Myung-Jin Lee
- Division of Health Science, Department of Dental Hygiene, Baekseok University, Cheonan 31065, Korea;
| | - Ji-Yeong Kim
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul 03722, Korea; (J.-Y.K.); (J.-Y.S.); (U.M.); (J.-Y.C.)
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Ji-Young Seo
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul 03722, Korea; (J.-Y.K.); (J.-Y.S.); (U.M.); (J.-Y.C.)
| | - Utkarsh Mangal
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul 03722, Korea; (J.-Y.K.); (J.-Y.S.); (U.M.); (J.-Y.C.)
| | - Jung-Yul Cha
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul 03722, Korea; (J.-Y.K.); (J.-Y.S.); (U.M.); (J.-Y.C.)
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Jae-Sung Kwon
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea
- Correspondence: (J.-S.K.); (S.-H.C.); Tel.: +82-2-2228-8301 (J.-S.K.); +82-2-2228-3102 (S.-H.C.)
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul 03722, Korea; (J.-Y.K.); (J.-Y.S.); (U.M.); (J.-Y.C.)
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Correspondence: (J.-S.K.); (S.-H.C.); Tel.: +82-2-2228-8301 (J.-S.K.); +82-2-2228-3102 (S.-H.C.)
| |
Collapse
|
27
|
Torres Jr L, Bienek DR. Use of Protein Repellents to Enhance the Antimicrobial Functionality of Quaternary Ammonium Containing Dental Materials. J Funct Biomater 2020; 11:E54. [PMID: 32752169 PMCID: PMC7565790 DOI: 10.3390/jfb11030054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/27/2022] Open
Abstract
An advancement in preventing secondary caries has been the incorporation of quaternary ammonium containing (QAC) compounds into a composite resin mixture. The permanent positive charge on the monomers allows for electrostatic-based killing of bacteria. Spontaneous adsorption of salivary proteins onto restorations dampens the antimicrobial capabilities of QAC compounds. Protein-repellent monomers can work with QAC restorations to achieve the technology's full potential. We discuss the theory behind macromolecular adsorption, direct and indirect characterization methods, and advances of protein repellent dental materials. The translation of protein adsorption to microbial colonization is covered, and the concerns and fallbacks of the state-of-the-art protein-resistant monomers are addressed. Last, we present new and exciting avenues for protein repellent monomer design that have yet to be explored in dental materials.
Collapse
Affiliation(s)
| | - Diane R. Bienek
- ADA Science & Research Institute, LLC, Innovative & Technology Research, Frederick, MD 21704, USA;
| |
Collapse
|
28
|
Huang DN, Wang J, Ren KF, Ji J. Functionalized biomaterials to combat biofilms. Biomater Sci 2020; 8:4052-4066. [PMID: 32500875 DOI: 10.1039/d0bm00526f] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pathogenic microbial biofilms that readily form on implantable medical devices or human tissues have posed a great threat to worldwide healthcare. Hopes are focused on preventive strategies towards biofilms, leaving a thought-provoking question: how to tackle the problem of established biofilms? In this review, we briefly summarize the functionalized biomaterials to combat biofilms and highlight current approaches to eradicate pre-existing biofilms. We believe that all of these strategies, alone or in combination, could represent a blueprint for fighting biofilm-associated infections in the postantibiotic era.
Collapse
Affiliation(s)
- Dan-Ni Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | | | | | | |
Collapse
|
29
|
Jin J, Kim JY, Choi W, Lee MJ, Seo JY, Yu J, Kwon JS, Hong J, Choi SH. Incorporation of carboxybetaine methacrylate into poly(methyl methacrylate) to prevent multi-species biofilm formation. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Qiao Y, Li Y, Zhang Q, Wang Q, Gao J, Wang L. Dopamine-Mediated Zwitterionic Polyelectrolyte-Coated Polypropylene Hernia Mesh with Synergistic Anti-inflammation Effects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5251-5261. [PMID: 32336102 DOI: 10.1021/acs.langmuir.0c00602] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Over 20 million ventral hernia repairs are performed worldwide annually and only a minority (<10%) of cases are not mesh-based. However, even polypropylene (PP), endorsed as the "gold standard" of all prosthetic materials used in this field, is still subject to many complications caused by the foreign body reaction (FBR). Here, we describe the buildup of dopamine-mediated zwitterionic poly(sulfobetaine methacrylate) (PSBMA) coatings to inhibit nonspecific protein adsorption. Based on the universal adhesive ability of polydopamine (PDA), PSBMA has been coated on the PP mesh surface via two strategies: sequential deposition (PSBMA-PDA-PP) and co-deposition (PSBMA@PDA-PP). The presence of PSBMA shows great contribution to obviously decreased hydrophobicity of the PP surface (WCAco = 36.3° and WCAseq = 30.7°) as well as improved protein resistance (Reductionco = 74% and Reductionseq = 82%). Notably, as the intermedia between PP and PSBMA, PDA can endow the PP mesh with antioxidant activity, further featuring synergistic anti-inflammation therapeutic effect when coupled with PSBMA. With almost equal surface content of PSBMA, PSBMA-PDA-PP exhibited a more superior ability against macrophage adhesion and proliferation and showed more significantly decreased releases of TNF-α and IL-6 (p < 0.05) than those of PSBMA@PDA-PP, fundamentally attributed to its more neutral surface potential and the protection for polyphenols of PDA from oxidation with PSBMA as the outer layer. Furthermore, the coating layers demonstrated good stability and no sacrifice of the pristine mechanical property. The proposed dopamine-mediated PSBMA coatings possess high potential in biomedical implant areas for attenuating the FBR.
Collapse
Affiliation(s)
- Yansha Qiao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yan Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Qian Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Qian Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jing Gao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
31
|
Shin E, Lim C, Kang UJ, Kim M, Park J, Kim D, Choi W, Hong J, Baig C, Lee DW, Kim BS. Mussel-Inspired Copolyether Loop with Superior Antifouling Behavior. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00481] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Eeseul Shin
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Chanoong Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Uk Jung Kang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Minseong Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jinwoo Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dongseok Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Woojin Choi
- Department of Chemical & Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jinkee Hong
- Department of Chemical & Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Chunggi Baig
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dong Woog Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
32
|
Incorporating Aminated Nanodiamonds to Improve the Mechanical Properties of 3D-Printed Resin-Based Biomedical Appliances. NANOMATERIALS 2020; 10:nano10050827. [PMID: 32357463 PMCID: PMC7712581 DOI: 10.3390/nano10050827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/17/2020] [Accepted: 04/23/2020] [Indexed: 01/04/2023]
Abstract
The creation of clinically patient-specific 3D-printed biomedical appliances that can withstand the physical stresses of the complex biological environment is an important objective. To that end, this study aimed to evaluate the efficacy of aminated nanodiamonds (A-NDs) as nanofillers in biological-grade acrylate-based 3D-printed materials. Solution-based mixing was used to incorporate 0.1 wt% purified nanodiamond (NDs) and A-NDs into UV-polymerized poly(methyl methacrylate) (PMMA). The ND and A-ND nanocomposites showed significantly lower water contact angles (p < 0.001) and solubilities (p < 0.05) compared to those of the control. Both nanocomposites showed markedly improved mechanical properties, with the A-ND-containing nanocomposite showing a statistically significant increase in the flexural strength (p < 0.001), elastic modulus (p < 0.01), and impact strength (p < 0.001) compared to the control and ND-containing groups. The Vickers hardness and wear-resistance values of the A-ND-incorporated material were significantly higher (p < 0.001) than those of the control and were comparable to the values observed for the ND-containing group. In addition, trueness analysis was used to verify that 3D-printed orthodontic brackets prepared with the A-ND- and ND-nanocomposites exhibited no significant differences in accuracy. Hence, we conclude that the successful incorporation of 0.1 wt% A-ND in UV-polymerized PMMA resin significantly improves the mechanical properties of the resin for the additive manufacturing of precisive 3D-printed biomedical appliances.
Collapse
|
33
|
He Y, Wan X, Lin W, Li J, Li Z, Luo F, Li J, Tan H, Fu Q. The synergistic effect of hierarchical structure and alkyl chain length on the antifouling and bactericidal properties of cationic/zwitterionic block polymer brushes. Biomater Sci 2020; 8:6890-6902. [DOI: 10.1039/d0bm00903b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A well-organized hierarchical structure and appropriate alkyl chain length facilitate the synergistic anti-biofilm effect.
Collapse
Affiliation(s)
- Yuanyuan He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Xinyuan Wan
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Weiwei Lin
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Jiehua Li
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Zhen Li
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Feng Luo
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Jianshu Li
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Hong Tan
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Qiang Fu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|