1
|
Liu H, Wang Z, Wang H, Liu Z, Yang J, Zhang H, Liang H, Bai L. Innovative temperature-responsive membrane with an elastic interface for biofouling mitigation in industrial circulating cooling water treatment. WATER RESEARCH 2024; 267:122528. [PMID: 39366326 DOI: 10.1016/j.watres.2024.122528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
To address the issues of scaling caused by heat and water evaporation in regard to circulating cooling water (CCW), TFC membrane filtration systems have been increasingly considered for terminal treatment processes because of their excellent separation performance. However, membrane biofouling phenomenon significantly hinders the widespread utilization of TFC membranes. In this study, to harness the thermal phenomenon of CCW and establish a stable and durable multifunctional antibiofouling layer, temperature-responsive Pnipam and the spectral antibacterial agent Ag were organically incorporated into commercially available TFC membranes. Biological experimental findings demonstrated that above the lower critical solution temperature (LCST), the contraction of Pnipam molecular chains facilitated the inactivation of bacteria by the antibacterial agent, resulting in an impressive sterilization efficiency of up to 99 %. XDLVO analysis revealed that below the LCST, the establishment of a hydration layer on the functional interface resulted in the creation of elevated energy barriers, effectively impeding bacterial adhesion to the membrane surface. Consequently, a high bacterial release rate of 98.4 % was achieved on the low-temperature surface. The alterations in the functional membrane surface conformation induced by temperature variations further amplified the separation between the pollutants and the membrane, creating an enhanced "elastic interface." This efficient and straightforward cleaning procedure mitigated the formation of irreversible fouling without compromising the integrity of the membrane surface. This study presents a deliberately engineered thermoresponsive antibiofouling membrane interface to address the issue of membrane fouling in membrane-based CCW treatment systems while shedding new light on the mechanisms of "inactivation" and "defense."
Collapse
Affiliation(s)
- Hongzhi Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hesong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zihan Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jiaxuan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Han Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Langming Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
2
|
Lainioti GC, Druvari D. Designing Antibacterial-Based Quaternary Ammonium Coatings (Surfaces) or Films for Biomedical Applications: Recent Advances. Int J Mol Sci 2024; 25:12264. [PMID: 39596329 PMCID: PMC11595235 DOI: 10.3390/ijms252212264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Antibacterial coatings based on quaternary ammonium compounds (QACs) have been widely investigated in controlled release applications. Quaternary ammonium compounds are low-cost and easily accessible disinfectants that have been extensively used, especially after the COVID-19 outbreak. There has been a growing interest in developing a clearer understanding of various aspects that need to be taken into account for the design of quaternary ammonium compounds to be used in the biomedical field. In this contribution, we outline the mechanism of action of those materials as well as the key design parameters associated with their structure and antibacterial activity. Moreover, emphasis has been placed on the type of antibacterial coatings based on QACs and their applications in the biomedical field. A brief outlook on future research guidelines for the development of dual-function antibacterial coatings is also discussed.
Collapse
Affiliation(s)
- Georgia C. Lainioti
- Department of Food Science & Technology, University of Patras, GR-30100 Agrinio, Greece
| | - Denisa Druvari
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece;
| |
Collapse
|
3
|
Chang YK, Hao SJ, Wu FG. Recent Biomedical Applications of Functional Materials Based on Polyhedral Oligomeric Silsesquioxane (POSS). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401762. [PMID: 39279395 DOI: 10.1002/smll.202401762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/06/2024] [Indexed: 09/18/2024]
Abstract
Polyhedral oligomeric silsesquioxane (POSS) is a 3D, cage-like nanoparticle with an inorganic Si-O-Si core and eight tunable corner functional groups. Its well-defined structure grants it distinctive physical, chemical, and biological properties and has been widely used for preparing high-performance materials. Recently, click chemistry has enabled the synthesis of various functional POSS-based materials for diverse biomedical applications. This article reviews the recent applications of POSS-based materials in the biomedical field, including cancer treatment, tissue engineering, antibacterial use, and biomedical imaging. Representative examples are discussed in detail. Among the various POSS-based applications, cancer treatment and tissue engineering are the most important. Finally, this review presents the current limitations of POSS-based materials and provides guidance for future research.
Collapse
Affiliation(s)
- Yun-Kai Chang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Shi-Jie Hao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| |
Collapse
|
4
|
Xu J, Lu P, Zhao J, Zhao X, Tian W, Ming W, Ren L. Surprisingly fast self-healing coatings with anti-fog and antimicrobial activities via host-guest interaction. J Colloid Interface Sci 2024; 680:139-150. [PMID: 39504744 DOI: 10.1016/j.jcis.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Dual functional coatings with anti-fog and antimicrobial performances greatly enhance the safety and reliability of medical detection devices, but are prone to mechanical damage, resulting in reduced performance and a shorter service lifespan. Herein, a semi-interpenetrating polymer network (SIPN) coating, featuring hydrophobic-hydrophilic balanced copolymers as bulk chains and host-guest inclusion compounds (HGICs) as cross-linkers, is reported, which demonstrates particularly effective anti-fog and antibacterial performances, along with a surprisingly fast self-healing capability under various scenarios. This HGIC-based coating displayed remarkable anti-fog capability over a wide temperature range from -20 ℃ to 85 ℃ and exhibited reliable antibacterial activities (≥98 %) against both gram-positive and gram-negative bacteria. Also, this coating showed extremely high self-healing ability (≥92 % recovery rate) within just 20 s, significantly outperforming traditional self-healing systems. These findings support the development of functional coatings that can highly maintain rapid self-healing performance while also providing anti-fog and antibacterial properties in medical detection devices.
Collapse
Affiliation(s)
- Jingyang Xu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Pengpeng Lu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China.
| | - Xin Zhao
- Guangdong Provincial Key Laboratory of Intelligent Kitchen Appliance and 5G+ Manufacturing Technologies, Guangdong Midea Kitchen Appliances Manufacturing Co., Ltd, Foshan 528311, China.
| | - Weijun Tian
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China.
| | - Weihua Ming
- Department of Chemistry and Biochemistry, Georgia Southern University, P.O. Box 8064, Statesboro, GA 30460, USA
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| |
Collapse
|
5
|
Pan K, Wei X, Zhu Z, Liu C, Yang B. Si-doped carbonized polymer dot as robust hydrophilic coating using for high efficiency antifogging. J Colloid Interface Sci 2024; 672:477-485. [PMID: 38852350 DOI: 10.1016/j.jcis.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/20/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Hydrophilic coating can prevent surface from fogging but its application is limited by low mechanical performance. In this study, a hydrophilic coating was prepared by crosslinking the Si-doped carbonized polymer dot (Si-CPD) with 3-glycidyloxypropyltrimethoxysilane (GPTMS) and ethylene oxide (EO). The hydrophilic coating can be used as robust hydrophilic anti-fogging coating. The Si-CPD derived from ethylene diamine tetraacetic acid (EDTA) and aminopropyl oligosiloxanes (APOS) was successfully prepared via one-step hydrothermal method. Then, a resin solution was prepared by mixing Si-CPD, GPTMS and EO. Epoxy group of GPTMS and EO can react with amino group of Si-CPD. Finally, a composite coating with antifogging function can be obtained by simple heating curing. Due to the introduction of hydroxyl which derived from EO, the coating shows excellent antifogging performance. Meanwhile, the presence of inorganic component endows the coating with outstanding mechanical performance. The coating has great potential in related applications, such as optical lenses, mirrors and other transparency substrates.
Collapse
Affiliation(s)
- Kaibo Pan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Xiaoyu Wei
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Zhicheng Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Chongming Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
6
|
Tang L, Guo Z, Zhao Q, Fan X, Pu Y, He B, Chen J. A Biodegradable Janus Sponge for Negative Pressure Wound Therapy. Biomacromolecules 2024; 25:2542-2553. [PMID: 38547378 DOI: 10.1021/acs.biomac.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Negative pressure wound therapy (NPWT) is effective in repairing serious skin injury. The dressing used in the NPWT is important for wound healing. In this paper, we develop biodegradable amphiphilic polyurethanes (PUs) and fabricate the PUs into sponges as wound dressings (Bi@e) with Janus pore architectures for NPWT. The Bi@e is adaptive to all the stages of the wound healing process. The Janus Bi@e sponge consists of two layers: the dense hydrophobic upper layer with small pores provides protection and support during negative pressure drainage, and the loose hydrophilic lower layer with large pores absorbs large amounts of wound exudate and maintains a moist environment. Additionally, antibacterial agent silver sulfadiazine (SSD) is loaded into the sponge against Escherichia coli and Staphylococcus aureus with a concentration of 0.50 wt%. The Janus sponge exhibits a super absorbent capacity of 19.53 times its own water weight and remarkable resistance to compression. In a rat skin defect model, the Janus Bi@e sponge not only prevents the conglutination between regenerative skin and dressing but also accelerates wound healing compared to commercially available NPWT dressing. The Janus Bi@e sponge is a promising dressing for the NPWT.
Collapse
Affiliation(s)
- Lei Tang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhaoyuan Guo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- Ningbo Baoting Biotech Co., Ltd., Ningbo 315010, China
| | - Quan Zhao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Jianlin Chen
- School of Laboratory Medicine, Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu 610500, China
| |
Collapse
|
7
|
Ma J, Gu X, He J. Rational design and easy fabrication of transparent photothermal/hygroscopic composite coatings with long-lasting antifogging performance under sunlight activation. NANOSCALE 2024; 16:6041-6052. [PMID: 38411539 DOI: 10.1039/d3nr05855g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Hygroscopic polymers are good candidates for antifogging coatings, but their long-term effectiveness is limited by the equilibrium between water absorption and expansion. As an efficient and environmentally friendly solution, photothermal materials are being introduced into the field of antifogging. However, there is a need for enhancement in the spectral characteristics of most photothermal materials within the visible light region. In addition, photothermal antifogging coatings often exhibit a delay in heating response, which hinders their ability to promptly evaporate condensed water droplets in the absence of illumination or during initial illumination. Here, a bilayer structure design of photothermal nanomaterials/hygroscopic polymers is proposed to achieve long-term antifogging under sunlight activation. Ensuring the rapid absorption of condensed water droplets on the coating surface, while simultaneously achieving efficient photothermal conversion for a swift temperature increase over the entire coating, is key to this approach, which will not only suppress early fogging but also lead to an exponential decrease of the nucleation rate of droplets. During this process, a dynamic equilibrium is gradually established between the condensation and evaporation of fog droplets, leading to long-term antifogging properties. The light transmittance of the composite coatings reaches as high as ca. 75% in the visible light region, making them well suited for a diverse range of transparent substrate and device applications. A clear field of view can be maintained for at least 6 h under 1 sun illumination above 65 °C hot steam. The antifogging/defogging performance is effectively demonstrated even under challenging non-ideal natural conditions, such as low solar irradiation during dusk or when placed indoors behind windows.
Collapse
Affiliation(s)
- Jinyue Ma
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Xiuxian Gu
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhui He
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
8
|
Wang W, Liu Q, Sun Y, Li D, Xu S, Lin L, Wang F, Li L, Li J. Radiation polymerization for the preparation of universal coatings: remarkable anti-fogging and frost-resisting performance. RSC Adv 2024; 14:10131-10145. [PMID: 38533095 PMCID: PMC10964754 DOI: 10.1039/d3ra08542b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/03/2024] [Indexed: 03/28/2024] Open
Abstract
Hydrophilic anti-fogging coatings have attracted considerable attention due to their ease of preparation and excellent fog resistance. In this study, a hydrophilic anti-fogging coating based on the random copolymer p(AA-co-SAS) was prepared using acrylic acid (AA) and sodium allylsulfonate (SAS) as monomers through radiation polymerization. The introduction of SAS successfully transformed the random copolymer from a gel state into a film-forming polymer solution. The presence of AA structural units in p(AA-co-SAS) improved the film-forming properties of the polymer solution. Additionally, there was a positive correlation between the proportion of SAS structural units in the random copolymer and the scratch hardness and wetting properties of the coating. After coating polycarbonate (PC) sheets, the surface hydrophilicity was significantly enhanced, with the contact angle of PC-AA10/SAS5 decreasing from 100.1° to 18.8° within 50 seconds. The outstanding wetting properties endowed the coating with exceptional anti-fogging and frost-resisting performance. It exhibited optimal transparency under both testing conditions and demonstrated good stability during cyclic testing. Tape adhesion tests indicated that the adhesion between the coating and PC reached a 5B level. When AA10/SAS5 was applied to PET film, glass, and PMMA goggles, all samples showed excellent anti-fog performance. Even after being naturally placed for one year under ambient conditions, the PMMA goggles still maintained good performance in the anti-fog and frost resistance tests. The remarkable comprehensive properties of the polymer coating based on p(AA-co-SAS) suggest enormous potential applications in industries such as packaging, healthcare, and optical equipment.
Collapse
Affiliation(s)
- Wenrui Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qi Liu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ying Sun
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Danyi Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Siyi Xu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lin Lin
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Fangzheng Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Linfan Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Wuwei Institute of New Energy Gansu 733000 China
| | - Jihao Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Wuwei Institute of New Energy Gansu 733000 China
| |
Collapse
|
9
|
Li H, Jiang F, Chen J, Wang Y, Zhou Z, Lian R. Development of seaweed-derived polysaccharide/cellulose nanocrystal-based antifogging labels loaded with alizarin for monitoring aquatic products' freshness. Int J Biol Macromol 2023; 253:126640. [PMID: 37657568 DOI: 10.1016/j.ijbiomac.2023.126640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Intelligent freshness indicator labels have attracted great interest for their massive potential in monitoring the freshness of aquatic products over the years. However, there is still a challenge where fogging on the labels during dramatic temperature changes affects the reading of freshness. At the same time, the freshness indicator labels need high mechanical strength to resist collision damage during transportation and storage. Herein, an antifogging freshness indicator label was developed based on seaweed extracts and alizarin. Firstly, soluble polysaccharides and insoluble components were extracted from Gelidium amansii, and cellulose nanocrystal (CNC) was further prepared from the insoluble components by sulfuric acid hydrolysis. Subsequently, a polysaccharide-based film was fabricated using soluble polysaccharides as the matrix materials and CNC as the reinforcement agent. Antifogging experiments showed that the hydrophilic composite films presented good antifogging performance. After loading with alizarin, the composite indicator label exhibited both antifogging and freshness-indicating properties for the salmon sample. The work provided a new idea for developing freshness indicator labels suitable for low-temperature transportation and storage.
Collapse
Affiliation(s)
- Huan Li
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Fan Jiang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Jian Chen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China; School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Zhigang Zhou
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Renjie Lian
- Jinghai Group Co., Ltd., Rongcheng 264307, PR China
| |
Collapse
|
10
|
Yang Q, Zhou Q, Guo Z, Song L, Meng F, Tong Z, Zhan X, Liu Q, Ren Y, Zhang Q. A Facile Strategy to Construct Anti-Swelling, Antibacterial, and Antifogging Coatings for Protection of Medical Goggles. Macromol Biosci 2023; 23:e2300099. [PMID: 37263296 DOI: 10.1002/mabi.202300099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/08/2023] [Indexed: 06/03/2023]
Abstract
During the COVID-19 (Corona Virus Disease 2019) pandemic, traditional medical goggles are not only easy to attach bacteria and viruses in long-term exposure, but easy to fogged up, which increases the risk of infection and affects productivity. Bacterial adhesion and fog can be significantly inhibited through the hydrogel coatings, owing to super hydrophilic properties. On the one hand, hydrogel coatings are easy to absorb water and swell in wet environment, resulting in reduced mechanical properties, even peeling off. On the other hand, the hydrogel coatings don't have intrinsic antibacterial properties, which still poses a potential risk of bacterial transmission. Herein, an anti-swelling and antibacterial hydrogel coating is synthesized by 2-hydroxyethyl methacrylate (HEMA), acrylamide (AM), dimethylaminoethyl acrylate bromoethane (IL-Br), and poly(sodium-p-styrenesulfonate) (PSS). Due to the self-driven entropy reduction effect of polycation and polyanion, an ion cross-linking network is formed, which endows the hydrogel coating with excellent antiswelling performance. Moreover, because of the synergistic effect of highly hydrated surfaces and the active bactericidal effect from quaternary ammonium cations, the hydrogel coating exhibits outstanding antifouling performances. This work develops a facile strategy to fabricate anti-swelling, antifouling, and antifogging hydrogel coatings for the protection of medical goggles, and also for biomedical and marine antifouling fields.
Collapse
Affiliation(s)
- Qi Yang
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou, 324000, China
| | - Qiang Zhou
- Zhejiang Jinhua New Material Co., LTD., Quzhou, 324004, China
| | - Ziyi Guo
- Shulan (Hangzhou) Hospital, Hangzhou, 310016, China
| | - Lina Song
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou, 324000, China
| | - Fandong Meng
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou, 324000, China
| | - Zheming Tong
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
| | - Xiaoli Zhan
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou, 324000, China
| | - Quan Liu
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou, 324000, China
| | - Yongyuan Ren
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou, 324000, China
| | - Qinghua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou, 324000, China
| |
Collapse
|
11
|
Saverina EA, Frolov NA, Kamanina OA, Arlyapov VA, Vereshchagin AN, Ananikov VP. From Antibacterial to Antibiofilm Targeting: An Emerging Paradigm Shift in the Development of Quaternary Ammonium Compounds (QACs). ACS Infect Dis 2023; 9:394-422. [PMID: 36790073 DOI: 10.1021/acsinfecdis.2c00469] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In a previous development stage, mostly individual antibacterial activity was a target in the optimization of biologically active compounds and antiseptic agents. Although this targeting is still valuable, a new trend has appeared since the discovery of superhigh resistance of bacterial cells upon their aggregation into groups. Indeed, it is now well established that the great majority of pathogenic germs are found in the environment as surface-associated microbial communities called biofilms. The protective properties of biofilms and microbial resistance, even to high concentrations of biocides, cause many chronic infections in medical settings and lead to serious economic losses in various areas. A paradigm shift from individual bacterial targeting to also affecting more complex cellular frameworks is taking place and involves multiple strategies for combating biofilms with compounds that are effective at different stages of microbiome formation. Quaternary ammonium compounds (QACs) play a key role in many of these treatments and prophylactic techniques on the basis of both the use of individual antibacterial agents and combination technologies. In this review, we summarize the literature data on the effectiveness of using commercially available and newly synthesized QACs, as well as synergistic treatment techniques based on them. As an important focus, techniques for developing and applying antimicrobial coatings that prevent the formation of biofilms on various surfaces over time are discussed. The information analyzed in this review will be useful to researchers and engineers working in many fields, including the development of a new generation of applied materials; understanding biofilm surface growth; and conducting research in medical, pharmaceutical, and materials sciences. Although regular studies of antibacterial activity are still widely conducted, a promising new trend is also to evaluate antibiofilm activity in a comprehensive study in order to meet the current requirements for the development of highly needed practical applications.
Collapse
Affiliation(s)
- Evgeniya A Saverina
- Tula State University, Lenin pr. 92, 300012 Tula, Russia.,N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Nikita A Frolov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | | | | | - Anatoly N Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| |
Collapse
|
12
|
Antimicrobial-Loaded Polyacrylamide Hydrogels Supported on Titanium as Reservoir for Local Drug Delivery. Pathogens 2023; 12:pathogens12020202. [PMID: 36839473 PMCID: PMC9962340 DOI: 10.3390/pathogens12020202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/11/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Arthroplasty is a highly successful treatment to restore the function of a joint. The contamination of the implant via bacterial adhesion is the first step toward the development of device-associated infections. The emerging concern about antimicrobial resistance resulted in a growing interest to develop alternative therapeutic strategies. Thus, the increment in the incidence of bacterial periprosthetic infections, the complexity of treating infections caused by organisms growing in biofilms, together with the rise in antibiotic resistant bacteria, expose the need to design novel surfaces that provide innovative solutions to these rising problems. The aim of this work is to develop a coating on titanium (Ti) suitable for inhibiting bacterial adhesion and proliferation, and hence, biofilm formation on the surface. We have successfully prepared polyacrylamide hydrogels containing the conventional antibiotic ampicillin (AMP), silver nanoparticles (AgNPs), and both, AMP and AgNPs. The release of the antibacterial agents from the gelled to aqueous media resulted in an excellent antibacterial action of the loaded hydrogels against sessile S. aureus. Moreover, a synergic effect was achieved with the incorporation of both AMP and AgNPs in the hydrogel, which highlights the importance of combining antimicrobial agents having different targets. The polyacrylamide hydrogel coating on the Ti surface was successfully achieved, as it was demonstrated by FTIR, contact angle, and AFM measurements. The modified Ti surfaces having the polyacrylamide hydrogel film containing AgNPs and AMP retained the highest antibacterial effect against S. aureus as it was found for the unsupported hydrogels. The modified surfaces exhibit an excellent cytocompatibility, since healthy, flattened MC3T3-E1 cells spread on the surfaces were observed. In addition, similar macrophage RAW 264.7 adhesion was found on all the surfaces, which could be related to a low macrophage activation. Our results indicate that AMP and AgNP-loaded polyacrylamide hydrogel films on Ti are a good alternative for designing efficient antibacterial surfaces having an excellent cytocompatibility without inducing an exacerbated immune response. The approach emerges as a superior alternative to the widely used direct adsorption of therapeutic agents on surfaces, since the antimicrobial-loaded hydrogel coatings open the possibility of modulating the concentration of the antimicrobial agents to enhance bacterial killing, and then, reducing the risk of infections in implantable materials.
Collapse
|
13
|
Li M, Yang T, Yang Q, Wang S, Fang Z, Cheng Y, Hou X, Chen F. Slippery quartz surfaces for anti‐fouling optical windows. DROPLET 2023; 2. [DOI: 10.1002/dro2.41] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/21/2022] [Indexed: 01/05/2025]
Abstract
AbstractThe surface of camera‐based medical devices is easily smeared by blood and fog during the surgical procedure, causing visual field loss and bringing great distress to both doctors and patients. In this article, a slippery liquid‐infused porous surface (SLIPS) on a quartz window surface that can repel various liquids, especially blood droplets is reported. A femtosecond laser pulse train was used to create periodic microhole structures on the silica surface. The subsequent low surface energy treatment and lubricant infusion led to the successful preparation of a slippery surface. Such blood‐repellent windows exhibited high transparency, great antifogging, and antibacterial properties. In addition, the slippery ability of the as‐prepared surface exhibited outstanding stability since the surface could withstand harsh treatments/environments, such as repeated pipette scratches and immersion in different pH solutions. The as‐prepared millimeter‐sized quartz samples with SLIPS were attached to the endoscope lens as a protective coating and could maintain high visibility after repeated immersion in blood. We believe that the coating developed in this study will provide inspiration for the design of next‐generation endoscopes or other camera‐guided devices that will resist fouling, keep clear vision, and reduce operation time, thus offering great potential applications in lesion diagnosis and therapy.
Collapse
Affiliation(s)
- Minjing Li
- School of Mechanical Engineering Xi'an Jiaotong University Xi'an China
| | - Tongzhen Yang
- School of Mechanical Engineering Xi'an Jiaotong University Xi'an China
| | - Qing Yang
- School of Mechanical Engineering Xi'an Jiaotong University Xi'an China
| | - Shaokun Wang
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering Xi'an Jiaotong University Xi'an China
| | - Zheng Fang
- School of Mechanical Engineering Xi'an Jiaotong University Xi'an China
| | - Yang Cheng
- School of Mechanical Engineering Xi'an Jiaotong University Xi'an China
| | - Xun Hou
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering Xi'an Jiaotong University Xi'an China
| | - Feng Chen
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering Xi'an Jiaotong University Xi'an China
| |
Collapse
|
14
|
Kong R, Ren J, Mo M, Zhang L, Zhu J. Multifunctional antifogging, self-cleaning, antibacterial, and self-healing coatings based on polyelectrolyte complexes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Recent progress in the mechanisms, preparations and applications of polymeric antifogging coatings. Adv Colloid Interface Sci 2022; 309:102794. [DOI: 10.1016/j.cis.2022.102794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 11/21/2022]
|
16
|
Karkantonis T, Gaddam A, Sharma H, Cummins G, See TL, Dimov S. Laser-Enabled Surface Treatment of Disposable Endoscope Lens with Superior Antifouling and Optical Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11392-11405. [PMID: 36069741 PMCID: PMC9494739 DOI: 10.1021/acs.langmuir.2c01671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Endoscopes are ubiquitous in minimally invasive or keyhole surgeries globally. However, frequent removal of endoscopes from the patient's body due to the lens contaminations results in undesirable consequences. Therefore, a cost-effective process chain to fabricate thermoplastic-based endoscope lenses with superior antifouling and optical properties is proposed in this research. Such multifunctional surface response was achieved by lubricant impregnation of nanostructures. Two types of topographies were produced by femtosecond laser processing of metallic molds, especially to produce single-tier laser-induced periodic surface structures (LIPSS) and two-tier multiscale structures (MS). Then, these two LIPSS and MS masters were used to replicate them onto two thermoplastic substrates, namely polycarbonate and cyclic olefin copolymer, by using hot embossing. Finally, the LIPSS and MS surfaces of the replicas were infiltrated by silicone oils to prepare lubricant-impregnated surfaces (LIS). Droplet sliding tests revealed that the durability of the as-prepared LIS improved with the increase of the lubricant viscosity. Moreover, the single-tier LIPSS replicas exhibited longer-lasting lubricant conservation properties than the MS ones. Also, LIPSS-LIS replicas demonstrated an excellent optical transparency, better than the MS-LIS ones, and almost match the performance of the reference polished ones. Furthermore, the LIPSS-LIS treatment led to superior antifouling characteristics, i.e., regarding fogging, blood adhesion, protein adsorption, and microalgae attachment, and thus demonstrated its high suitability for treating endoscopic lenses. Finally, a proof-of-concept LIPSS-LIS treatment of endoscope lenses was conducted that confirmed their superior multifunctional response.
Collapse
Affiliation(s)
- Themistoklis Karkantonis
- Department
of Mechanical Engineering, School of Engineering, The University of Birmingham, Birmingham B15 2TT, U.K.
| | - Anvesh Gaddam
- Department
of Mechanical Engineering, School of Engineering, The University of Birmingham, Birmingham B15 2TT, U.K.
| | - Himani Sharma
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Gerard Cummins
- Department
of Mechanical Engineering, School of Engineering, The University of Birmingham, Birmingham B15 2TT, U.K.
| | - Tian Long See
- The
Manufacturing Technology Centre Ltd., Coventry CV7 9JU, U.K.
| | - Stefan Dimov
- Department
of Mechanical Engineering, School of Engineering, The University of Birmingham, Birmingham B15 2TT, U.K.
| |
Collapse
|
17
|
Zhang B, Zhang Y, Ma S, Zhang H. Slippery Liquid-infused Porous Surface (SLIPS) with Super-repellent and Contact-killing Antimicrobial Performances. Colloids Surf B Biointerfaces 2022; 220:112878. [DOI: 10.1016/j.colsurfb.2022.112878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 10/14/2022]
|
18
|
Lee SH, Kang M, Jang H, Kondaveeti S, Sun K, Kim S, Park HH, Jeong HE. Bifunctional Amphiphilic Nanospikes with Antifogging and Antibiofouling Properties. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39478-39488. [PMID: 35959590 DOI: 10.1021/acsami.2c08266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Over the past few decades, extensive research efforts have been devoted to developing surfaces with unique functionalities, such as controlled wettability, antibiofouling, antifogging, and anti-icing behavior, for applications in a wide range of fields, including biomedical devices, optical instruments, microfluidics, and energy conservation and harvesting. However, many of the previously reported approaches have limitations with regard to eco-friendliness, multifunctionality, long-term stability and efficacy, and cost effectiveness. Herein, we propose a scalable bifunctional surface that simultaneously exhibits excellent antifogging and antibiofouling properties based on the synergistic integration of an eco-friendly and bio-friendly polyethylene glycol (PEG) hydrogel, oleamide (OA), and nanoscale architectures in a single flexible platform. We demonstrate that the PEG-OA-nanostructure hybrid exhibits excellent antifogging performance owing to its enhanced water absorption and spreading properties. We further show that the triple hybrid exhibits notable biofilm resistance without the use of toxic biocides or chemicals by integrating the "fouling-resistant" mechanism of the PEG hydrogel, the "fouling-release" mechanism of OA, and the "foulant-killing" mechanism of the nanostructures.
Collapse
Affiliation(s)
- Sang-Hyeon Lee
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Minsu Kang
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyejin Jang
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Stalin Kondaveeti
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kahyun Sun
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Somi Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyun-Ha Park
- Department of Mechanical Engineering, Wonkwang University, Jeonbuk 54538, Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
19
|
Li W, Zhang Y, Ding J, Zhang S, Hu T, Li S, An X, Ren Y, Fu Q, Jiang X, Li X. Temperature-triggered fluorocopolymer aggregate coating switching from antibacterial to antifouling and superhydrophobic hemostasis. Colloids Surf B Biointerfaces 2022; 215:112496. [PMID: 35427845 DOI: 10.1016/j.colsurfb.2022.112496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/09/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
The multifunction antibacterial hemostatic materials can reduce blood loss, infection and wound complications, which probably decrease morbidity and health care costs. However, the contradictory relationship between antibacterial ability and biocompatibility, and the unnecessary blood loss restricts the practical application of hydrophilic cationic antibacterial hemostatic materials. Herein, a multifunctional temperature-triggered antibacterial hemostatic fluorocopolymer aggregate coating was developed. After self-assembly and quaternization process, the quaternized poly(N,N-dimethylaminoethylmethacrylate)-b-poly(1H,1H,2H,2H-heptadecafluorodecyl acrylate) block copolymers (PDMA-b-PFOEMA) aggregate coating consisting of fluoropolymer and quaternary ammonium salt were built. The synergistic effect on fluorinated block with low surface energy and quaternary ammonium salt block with bactericide activity severs the way of initial bacterial attachment and proliferation, while the migration of fluorinated block greatly promotes the biocompatibility and anti-adhesion performance in response to the switch from room temperature to physiological temperature. Furthermore, the fluorocopolymer aggregate coating with hydrophobic properties possessed the property of rapid coagulation, low blood loss, minor secondary bleeding and least bacteria infiltration. The multifunctional temperature-triggered fluorocopolymer aggregate coating with antifouling, antibacterial and hemostatic properties may have a great potential in the biomedical application.
Collapse
Affiliation(s)
- Wenting Li
- Institute for Smart Materials & Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, Jinan 250022, PR China; School of Chemistry and Chemical Engineering, University of Jinan, No. 336 Nan Xinzhuang west road, Jinan 250022, PR China
| | - Yufu Zhang
- Shandong Boda Medical Products Co., LTD, East end of Dandang Road, Shan County Economic Development Zone, Shan County 274300, PR China
| | - Jiyuan Ding
- Shandong Boda Medical Products Co., LTD, East end of Dandang Road, Shan County Economic Development Zone, Shan County 274300, PR China
| | - Shuo Zhang
- Shandong Boda Medical Products Co., LTD, East end of Dandang Road, Shan County Economic Development Zone, Shan County 274300, PR China
| | - Tingyong Hu
- Guangxi Wuyi Pipe Industry Co. Ltd., Wuzhou 543000, PR China
| | - Sen Li
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336 Nan Xinzhuang west road, Jinan 250022, PR China
| | - Xiaoyan An
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336 Nan Xinzhuang west road, Jinan 250022, PR China
| | - Yufang Ren
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336 Nan Xinzhuang west road, Jinan 250022, PR China
| | - Qingwei Fu
- Institute for Smart Materials & Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, Jinan 250022, PR China
| | - Xuchuan Jiang
- Institute for Smart Materials & Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, Jinan 250022, PR China
| | - Xue Li
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336 Nan Xinzhuang west road, Jinan 250022, PR China.
| |
Collapse
|
20
|
Qiu Z, Chen J, Dai R, Wang Z. Modification of ultrafiltration membrane with antibacterial agent intercalated layered nanosheets: Toward superior antibiofouling performance for water treatment. WATER RESEARCH 2022; 219:118539. [PMID: 35526429 DOI: 10.1016/j.watres.2022.118539] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/15/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Membrane fouling, especially biofouling induced by biofilm formation on membranes, can result in frequent cleaning or even replacement of membranes. Fabrication of membrane with excellent antibiofouling property is quite attractive due to its effectiveness and low-impact on the operation of membrane-based process. Herein, a cationic antibacterial agent, quaternary ammonium compound (QAC), was intercalated into the interlayer spaces of the MgAl layered double hydroxide (QAC/LDH) by self-assembly. The QAC/LDH composite was incorporated into polyethersulfone (PES) ultrafiltration (UF) membrane (PES-QLDH). The QAC/LDH enhanced the hydrophilicity, water flux, and resistance to organic fouling for the PES-QLDH membrane. The PES-QLDH membrane exhibited superior antibiofouling performance than the control PES membrane, with deposition of a thinner biofilm layer consisted of almost dead cells. The superior antibacterial activity inhibits the adhesion and growth of bacteria on the membrane surface, effectively retarding the formation of biofilms. Importantly, the synergistic effect of QAC and LDH in the PES-QLDH membrane resulted in a high biocidal activity based on both direct and indirect killing mechanisms. The PES-QLDH membrane maintained a stable and high antibacterial activity after several fouling-cleaning cycles. These results imply that the PES-QLDH membrane provides an effective and promising strategy for its long-term application in wastewater treatment.
Collapse
Affiliation(s)
- Zhiwei Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jiansuxuan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
21
|
Yi Y, Jiang R, Liu Z, Dou H, Song L, Tian L, Ming W, Ren L, Zhao J. Bioinspired nanopillar surface for switchable mechano-bactericidal and releasing actions. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128685. [PMID: 35338932 DOI: 10.1016/j.jhazmat.2022.128685] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Constructing safe and effective antibacterial surfaces has continuously received great attention, especially in healthcare-related fields. Bioinspired mechano-bactericidal nanostructure surfaces could serve as a promising strategy to reduce surface bacterial contamination while avoiding the development of antibiotic resistance. Although effective, these nanostructure surfaces are prone to be contaminated by the accumulation of dead bacteria, inevitably compromising their long-term antibacterial activity. Herein, a bioinspired nanopillar surface with both mechano-bactericidal and releasing actions is developed, via grafting zwitterionic polymer (poly(sulfobetaine methacrylate) (PSBMA)) on ZnO nanopillars. Under dry conditions, this nanopillar surface displays remarkable mechano-bactericidal activity, because the collapsed zwitterionic polymer layer makes no essential influence on nanopillar structure. Once being incubated with aqueous solution, the surface could readily detach the killed bacteria and debris, owing to the swelling of the zwitterionic layer. Consequentially, the surface antibacterial performances can be rapidly and controllably switched between mechano-bactericidal action and bacteria-releasing activity, guaranteeing a long-lasting antibacterial performance. Notably, these collaborative antibacterial behaviors are solely based on physical actions, avoiding the risk of triggering bacteria resistance. The resultant nanopillar surface also enjoys the advantages of substrate-independency and good biocompatibility, offering potential antibacterial applications for biomedical devices and hospital surfaces.
Collapse
Affiliation(s)
- Yaozhen Yi
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Rujian Jiang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Ziting Liu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Haixu Dou
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Lingjie Song
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Limei Tian
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Weihua Ming
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA 30460, United States
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China.
| |
Collapse
|
22
|
Zhang J, Hu L, Zhang Q, Guo C, Wu C, Shi Y, Shu R, Tan L. Polyhexamethylene guanidine hydrochloride modified sodium alginate nonwoven with potent antibacterial and hemostatic properties for infected full-thickness wound healing. Int J Biol Macromol 2022; 209:2142-2150. [PMID: 35500777 DOI: 10.1016/j.ijbiomac.2022.04.194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 02/08/2023]
Abstract
The development of multifunctional wound dressings has always been considered as a promising strategy to promote blood coagulation, inhibit bacterial infection, and accelerate wound healing. Herein, an antibacterial and hemostatic dressing (SA-PHMG) was developed based on sodium alginate (SA) nonwoven and polyhexamethylene guanidine hydrochloride (PHMG) through a completely green industrial route, including dipping, padding, and drying. According to studies, SA-PHMG dressings exhibited excellent liquid absorption capacity and water vapor permeability. Moreover, bactericidal assays have demonstrated that SA-PHMG dressings have ideal antibacterial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and mixed bacteria, maintaining potent antibacterial activity even after 10 cycles of antibacterial trials or 50 times of washing or soaping. The in vitro evaluation of the hemostatic effect indicated that the SA-PHMG could significantly promote blood clotting by activating platelets, and in vitro and in vivo hemolysis, cytotoxicity and skin irritation studies demonstrated the ideal biocompatibility of the dressings. In addition, better wound closure and tissue regeneration were recorded using SA-PHMG nonwoven as the dressing based on an infected full-thickness wound model. In conclusion, this antibacterial, hemostatic, biocompatible, and environmentally friendly SA-PHMG nonwoven exhibit the potential for infected wound healing.
Collapse
Affiliation(s)
- Jie Zhang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University, Research Center for Fiber Science and Engineering Technology, Yibin Park, Yibin 64460, China
| | - Liwei Hu
- West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Zhang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Chuan Guo
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University, Research Center for Fiber Science and Engineering Technology, Yibin Park, Yibin 64460, China
| | - Chenyi Wu
- West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yidong Shi
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University, Research Center for Fiber Science and Engineering Technology, Yibin Park, Yibin 64460, China
| | - Rui Shu
- West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China.
| | - Lin Tan
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University, Research Center for Fiber Science and Engineering Technology, Yibin Park, Yibin 64460, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
23
|
Hamada T, Sugimoto T, Maeda T, Katsura D, Mineoi S, Ohshita J. Robust and Transparent Antifogging Polysilsesquioxane Film Containing a Hydroxy Group. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5829-5837. [PMID: 35451850 DOI: 10.1021/acs.langmuir.2c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Poly(glycidyloxypropyl)silsesquioxane (PGPS) was successfully synthesized by hydrolysis and polycondensation using the nitrogen flow method. A poly(3-(2,3-dihydroxypropoxypropyl)silsesquioxane) (PSQ-OH) film was prepared via two routes. In route A, PSQ-OH was prepared by the hydrolysis of the epoxy group of PGPS in an aqueous hydrochloric acid (HCl)/tetrahydrofuran solution, affording a diol group; then, PSQ-OH was coated on a glass substrate and heated. The antifogging performance of the PSQ-OH film was evaluated in terms of water uptake (WU) and scratch resistance. The obtained PSQ-OH film exhibited a low WU of 5% and a scratch resistance of 1.6. In route B, PGPS was coated on a glass substrate and immersed in a 0.5 mol/L aqueous sulfuric acid solution for 1-15 h at room temperature, producing a diol group. The solid-state 13C nuclear magnetic resonance spectrum indicated that the epoxy group was completely hydrolyzed after immersion for 15 h. The WU of the PSQ-OH film prepared via route B increased from 5 to 19% with the increase in the immersion time and was higher than that of the PSQ-OH film prepared via route A. The PSQ-OH film on a glass substrate retained transparency under water vapor exposure at 60 °C. The PSQ-OH film prepared via route B exhibited a high scratch resistance of 2.7-3.6, similar to that of a poly(3-(2-aminoethylaminopropyl)silsesquioxane) film. The scratch resistance of the PSQ-OH film was 5-7 times higher than that of the poly(vinyl alcohol) film. The PSQ-OH film was uniform with no pinholes and cracks. The PSQ-OH film was transparent and colorless and exhibited a high transmittance of >90% in the wavelength range of 400-800 nm. Overall, the prepared PSQ-OH film exhibits good antifogging, transparency, and mechanical properties.
Collapse
Affiliation(s)
- Takashi Hamada
- Collaborative Research Laboratory, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Tetsuya Sugimoto
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Tetsuya Maeda
- Collaborative Research Laboratory, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
- Technical Research Center, Mazda Motor Corporation, 3-1 Shinchi, Fuchu-cho, Aki-gun, Hiroshima 730-8670, Japan
| | - Daiji Katsura
- Collaborative Research Laboratory, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
- Technical Research Center, Mazda Motor Corporation, 3-1 Shinchi, Fuchu-cho, Aki-gun, Hiroshima 730-8670, Japan
- Division of Materials Model-Based Research, Digital Monozukuri (Manufacturing) Education and Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Susumu Mineoi
- Collaborative Research Laboratory, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
- Technical Research Center, Mazda Motor Corporation, 3-1 Shinchi, Fuchu-cho, Aki-gun, Hiroshima 730-8670, Japan
| | - Joji Ohshita
- Collaborative Research Laboratory, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
- Division of Materials Model-Based Research, Digital Monozukuri (Manufacturing) Education and Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| |
Collapse
|
24
|
Shi J, Xu L, Qiu D. Effective Antifogging Coating from Hydrophilic/Hydrophobic Polymer Heteronetwork. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200072. [PMID: 35285176 PMCID: PMC9109053 DOI: 10.1002/advs.202200072] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Indexed: 05/20/2023]
Abstract
Fogging on optical devices may severely impair vision, resulting in unacceptable adverse consequences. Hydrophilic coatings can prevent surface fogging by instantly facilitating pseudo-film water condensation but suffer from short antifogging duration due to water film thickening with further condensation. Here, an innovative strategy is reported to achieve longer antifogging duration via thickening the robust bonded hydrophilic/hydrophobic polymer heteronetwork coating to enhance its water absorption capacity. The combination of strong interfacial adhesion and hydrophilic/hydrophobic heteronetwork structure is key to this approach, which avoids interfacial failure and swelling-induced wrinkles under typical fogging conditions. The developed antifogging coating exhibits prolonged antifogging durations over a wide temperature range for repetitious usages. Eyeglasses coated with this coating successfully maintained fog-free vision in two typical scenarios. Besides, the coating recipes developed in this study also have potential as underwater glues as they demonstrate strong adhesions to both glass and polymer substrates in wet conditions.
Collapse
Affiliation(s)
- Junhe Shi
- Beijing National Laboratory for Molecular SciencesCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Liju Xu
- Beijing National Laboratory for Molecular SciencesCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Dong Qiu
- Beijing National Laboratory for Molecular SciencesCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
25
|
Huang S, Yang J, Hao N, Ishaq MW, Wang J, Jiang N, Li L. Conformational Transition and Interchain Association of Hypergraft HB-PS- g-P tBA Copolymer Chains with Varied Copolymer Compositions and Block Lengths in a Selective Solvent. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c01971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Siqi Huang
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jinxian Yang
- College of Chemistry and Environmental Engineering, Shenzhen Key Laboratory of Food Macromolecules Science and Processing, Shenzhen University, Shenzhen 518060, China
| | - Nairong Hao
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Muhammad Waqas Ishaq
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jun Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Naisheng Jiang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lianwei Li
- College of Chemistry and Environmental Engineering, Shenzhen Key Laboratory of Food Macromolecules Science and Processing, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
26
|
Shen J, Chen R, Wang J, Zhao Z, Gu R, Brash JL, Chen H. One-step surface modification strategy with composition-tunable microgels: From bactericidal surface to cell-friendly surface. Colloids Surf B Biointerfaces 2022; 212:112372. [PMID: 35114438 DOI: 10.1016/j.colsurfb.2022.112372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/30/2022]
Abstract
As modifiers for biomaterial surfaces, soft colloidal particles not only have good film-forming properties, but can also contribute to the function of the biomaterial via their chemical and biological properties. This general approach has proven effective for surface modification, but little is known about methods to control the properties of the colloidal particles to regulate film formation and biological function. In this work, we prepared poly (N-isopropylacrylamide) microgels (ZQP) containing both a zwitterionic component (Z) to provide anti-fouling functionality, and a quaternary ammonium salt (Q) to give bactericidal functionality. Fine-tuning of the Z and Q contents allowed the preparation of microgels over a range of particle size, size distribution, charge, and film-forming capability. The films showed anti-adhesion and contact-killing properties versus Escherichia coli (E. Coli), depending on the chemical composition. They also showed excellent cytocompatibility relative to L929 cells. A variety of microgel-coated substrates (silicon wafer, PDMS, PU, PVC) showed long-term anti-bacterial activity and resistance to chemical and mechanical treatments. It is concluded that this approach allows the preparation of effective bactericidal, cytocompatible surfaces. The properties can be fine-tuned by regulation of the microgel composition, and the method is applicable universally, i.e., independent of substrate.
Collapse
Affiliation(s)
- Jie Shen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Rui Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Jinghong Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Ziqing Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Rong Gu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - John L Brash
- Department of Chemical Engineering and School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
27
|
Pigareva VA, Senchikhin IN, Bolshakova AV, Sybachin AV. Modification of Polydiallyldimethylammonium Chloride with Sodium Polystyrenesulfonate Dramatically Changes the Resistance of Polymer-Based Coatings towards Wash-Off from Both Hydrophilic and Hydrophobic Surfaces. Polymers (Basel) 2022; 14:polym14061247. [PMID: 35335577 PMCID: PMC8955630 DOI: 10.3390/polym14061247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 12/10/2022] Open
Abstract
Polymer coatings based on polycations represent a perspective class of protective antimicrobial coatings. Polydiallyldimethylammonium chloride (PDADMAC) and its water-soluble complexes with sodium polystyrenesulfonate (PSS) were studied by means of dynamic light-scattering, laser microelectrophoresis and turbidimetry. It was shown that addition of six mol.% of polyanion to polycation results in formation of interpolyelectrolyte complex (IPEC) that was stable towards phase separation in water-salt media with a concentration of salts (NaCl, CaCl2, Na2SO4, MgSO4) up to 0.5 M. Most of the polyelectrolyte coatings are made by layer-by-layer deposition. The utilization of water-soluble IPEC for the direct deposition on the surface was studied. The coatings from the PDADMAC and the PSS/PDADMAC complex were formed on the surfaces of hydrophilic glass and hydrophobic polyvinylchloride. It was found that formation IPEC allows one to increase the stability of the coating towards wash-off with water in comparison to individual PDADMAC coating on both types of substrates. The visualization of the coatings was performed by atomic force microscopy and scanning electron microscopy.
Collapse
Affiliation(s)
- Vladislava A. Pigareva
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.P.); (A.V.B.)
| | - Ivan N. Senchikhin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia;
| | - Anastasia V. Bolshakova
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.P.); (A.V.B.)
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia;
| | - Andrey V. Sybachin
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.P.); (A.V.B.)
- Correspondence: ; Tel.: +7-4959393114
| |
Collapse
|
28
|
Biocompatible mechano-bactericidal nanopatterned surfaces with salt-responsive bacterial release. Acta Biomater 2022; 141:198-208. [PMID: 35066170 DOI: 10.1016/j.actbio.2022.01.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 12/15/2022]
Abstract
Bio-inspired nanostructures have demonstrated highly efficient mechano-bactericidal performances with no risk of bacterial resistance; however, they are prone to become contaminated with the killed bacterial debris. Herein, a biocompatible mechano-bactericidal nanopatterned surface with salt-responsive bacterial releasing behavior is developed by grafting salt-responsive polyzwitterionic (polyDVBAPS) brushes on a bio-inspired nanopattern surface. Benefiting from the salt-triggered configuration change of the grafted polymer brushes, this dual-functional surface shows high mechano-bactericidal efficiency in water (low ionic strength condition), while the dead bacterial residuals can be easily lifted by the extended polymer chains and removed from the surface in 1 M NaCl solution (high ionic strength conditions). Notably, this functionalized nanopatterned surface shows selective biocidal activity between bacterial cells sand eukaryotic cells. The biocompatibility with red blood cells (RBCs) and mammalian cells was tested in vitro. The histocompatibility and prevention of perioperative contamination activity were verified by in vivo evaluation in a rat subcutaneous implant model. This nanopatterned surface with bacterial killing and releasing activities may open new avenues for designing bio-inspired mechano-bactericidal platforms with long-term efficacy, thus presenting a facile alternative in combating perioperative-related bacterial infection. STATEMENT OF SIGNIFICANCE: Bioinspired nanostructured surfaces with noticeable mechano-bactericidal activity showed great potential in moderating drug-resistance. However, the nanopatterned surfaces are prone to be contaminated by the killed bacterial debris and compromised the bactericidal performance. In this study, we provide a dual-functional antibacterial conception with both mechano-bactericidal and bacterial releasing performances not requiring external chemical bactericidal agents. Additionally, this functionalized antibacterial surface also shows selective biocidal activity between bacteria and eukaryotic cells, and the excellent biocompatibility was tested in vitro and in vivo. The new concept for the functionalized mechano-bactericidal surface here illustrated presents a facile antibiotic-free alternative in combating perioperative related bacterial infection in practical application.
Collapse
|
29
|
Zeng L, Xu JF, Zhang X. Degradable Bactericide Constructed Using a Charge-Reversal Surfactant against Plant Pathogenic Bacteria. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10134-10141. [PMID: 35167248 DOI: 10.1021/acsami.1c24588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plant bacterial diseases are serious problems in agriculture, posing threats to global food security and the agricultural economy. Here, a degradable agricultural bactericide AMC-10 constructed using a charge-reversal surfactant, from being positively charged to negatively charged, was designed and synthesized. AMC-10 possessed high bactericidal activity toward plant pathogenic bacteria, consequently being able to inhibit the corresponding plant bacterial diseases. After degradation by water, the hydrolyzed products were nontoxic to bacteria and human cells. Such a degradable bactericide provides new ideas for the design of environmentally friendly agricultural bactericides. It is anticipated that degradable bactericides such as AMC-10 can be applied in the prevention and control of plant bacterial diseases, being less likely to produce toxicity or drug resistance.
Collapse
Affiliation(s)
- Lingda Zeng
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiang-Fei Xu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xi Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
30
|
Kim Y, Thuy LT, Kim Y, Seong M, Cho WK, Choi JS, Kang SM. Coordination-Driven Surface Zwitteration for Antibacterial and Antifog Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1550-1559. [PMID: 35057617 DOI: 10.1021/acs.langmuir.1c03009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The enhancement of surface wettability by hydrophilic polymer coatings has been of great interest because it has been used to address several technical challenges such as biofouling and surface fogging. Among the hydrophilic polymers, zwitterionic polymers have been extensively utilized to coat solid surfaces due to their excellent capability to bind water molecules, thereby forming dense hydration layers on the solid surfaces. For these zwitterionic polymers to function appropriately on the solid surfaces, techniques for fixing polymers onto the solid surface with high efficiency are required. Herein, we report a new approach to graft zwitterionic polymers onto solid substrates. The approach is based on the mussel-inspired surface chemistry and metal coordination. It consists of polydopamine coating and the coordination-driven grafting of the zwitterionic polymers. Polydopamine coating enables the versatile surface immobilization of catechols. Zwitterionic polymers are then easily fixed onto the catechol-immobilized surface by metal-mediated crosslinking reactions. Using this approach, nanometer-thick zwitterionic polymer layers that are highly resistant to bacterial adhesion and fog generation could be successfully fabricated on solid substrates in a substrate-independent manner.
Collapse
Affiliation(s)
- Yohan Kim
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Le Thi Thuy
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yejin Kim
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Minjin Seong
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Woo Kyung Cho
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Joon Sig Choi
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sung Min Kang
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
31
|
Jann J, Drevelle O, Chen XG, Auclair-Gilbert M, Soucy G, Faucheux N, Fortier LC. Rapid antibacterial activity of anodized aluminum-based materials impregnated with quaternary ammonium compounds for high-touch surfaces to limit transmission of pathogenic bacteria. RSC Adv 2021; 11:38172-38188. [PMID: 35498065 PMCID: PMC9044312 DOI: 10.1039/d1ra07159a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023] Open
Abstract
Infections caused by multidrug-resistant bacteria are a major public health problem. Their transmission is strongly linked to cross contamination via inert surfaces, which can serve as reservoirs for pathogenic microorganisms. To address this problem, antibacterial materials applied to high-touch surfaces have been developed. However, reaching a rapid and lasting effectiveness under real life conditions of use remains challenging. In the present paper, hard-anodized aluminum (AA) materials impregnated with antibacterial agents (quaternary ammonium compounds (QACs) and/or nitrate silver (AgNO3)) were prepared and characterized. The thickness of the anodized layer was about 50 μm with pore diameter of 70 nm. AA with QACs and/or AgNO3 had a water contact angle varying between 45 and 70°. The antibacterial activity of the materials was determined under different experimental settings to better mimic their use, and included liquid, humid, and dry conditions. AA-QAC surfaces demonstrated excellent efficiency, killing >99.9% of bacteria in 5 min on a wide range of Gram-positive (Staphylococcus aureus, Clostridioides difficile, vancomycin-resistant Enterococcus faecium) and Gram-negative (streptomycin-resistant Salmonella typhimurium and encapsulated Klebsiella pneumoniae) pathogens. AA-QACs showed a faster antibacterial activity (from 0.25 to 5 min) compared with antibacterial copper used as a reference (from 15 min to more than 1 h). We show that to maintain their high performance, AA-QACs should be used in low humidity environments and should be cleaned with solutions composed of QACs. Altogether, AA-QAC materials constitute promising candidates to prevent the transmission of pathogenic bacteria on high-touch surfaces.
Collapse
Affiliation(s)
- Jessica Jann
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke 2500 boul. de l'Université Sherbrooke Québec J1K 2R1 Canada .,Clinical Research Center of Centre Hospitalier Universitaire de Sherbrooke 12e Avenue N Sherbrooke Québec J1H 5N4 Canada.,Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke 3201 rue Jean Mignault Sherbrooke Québec J1E 4K8 Canada
| | - Olivier Drevelle
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke 2500 boul. de l'Université Sherbrooke Québec J1K 2R1 Canada
| | - X Grant Chen
- Department of Applied Science, University of Quebec in Chicoutimi Saguenay Quebec G7H 2B1 Canada
| | | | - Gervais Soucy
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke 2500 boul. de l'Université Sherbrooke Québec J1K 2R1 Canada
| | - Nathalie Faucheux
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke 2500 boul. de l'Université Sherbrooke Québec J1K 2R1 Canada .,Clinical Research Center of Centre Hospitalier Universitaire de Sherbrooke 12e Avenue N Sherbrooke Québec J1H 5N4 Canada
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke 3201 rue Jean Mignault Sherbrooke Québec J1E 4K8 Canada
| |
Collapse
|
32
|
Dong Y, Liu L, Sun J, Peng W, Dong X, Gu Y, Ma Z, Gan D, Liu P. Phosphonate/quaternary ammonium copolymers as high-efficiency antibacterial coating for metallic substrates. J Mater Chem B 2021; 9:8321-8329. [PMID: 34522945 DOI: 10.1039/d1tb01676h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Designing a coating material with efficient bactericidal property to cope with bacterial associated infections is highly desirable for metallic implants and devices. Here, we report phosphonate/quaternary ammonium copolymers, p(DEMMP-co-TMAEMA), as the new type of metal anchorable high-efficiency antibacterial coating. Seven p(DEMMP-co-TMAEMA) polymers with varied cationic components were precisely prepared via random radical polymerization. Copolymers were constructed on titanium alloy (TC4) substrates based on strong covalent bonding between the phosphonate group and metallic substrates through a one-step process as evidenced by XPS and water contact angle tests. A robust relationship between the composition of the copolymers and the bactericidal ability endowed to TC4 substrates was established. Results showed that the copolymer, with the pDEMMP content even as low as 6.3%, was able to anchor onto TC4 substrates. With the increase of cationic pTMAEMA content from 4.0 to 93.7% in the coating copolymer, the bactericidal ability endowed to the TC4 substrates was steadily increased from 39.4 to 98.8% for S. aureus and from 70.0 to 99.4% for E. coli after 8 h's of contacting. All p(DEMMP-co-TMAEMA) coating on TC4 substrates showed limited cytotoxicity to C2C12 cells. Notably, the phosphonate/quaternary amine copolymers can be easily constructed on diverse biomedical metals such as titanium (Ti), stainless steel (SS), and Ni/Cr alloys with significantly increased antibacterial performance, demonstrating the potency of the copolymer as the general high-efficiency antibacterial coating for diverse bio-metals.
Collapse
Affiliation(s)
- Yaning Dong
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Li Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Jin Sun
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Wan Peng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Xiaohan Dong
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Yahui Gu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Zhuangzhuang Ma
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Donglin Gan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Pingsheng Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| |
Collapse
|
33
|
Xiang J, Liu X, Liu Y, Wang L, He Y, Luo L, Yang G, Zhang X, Huang C, Zhang Y. Synthesis of a novel anti-fog and high-transparent coating with high wear resistance inspired by dry rice fields. Chem Eng Sci 2021; 242:116749. [DOI: 10.1016/j.ces.2021.116749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
|
34
|
Vereshchagin AN, Frolov NA, Egorova KS, Seitkalieva MM, Ananikov VP. Quaternary Ammonium Compounds (QACs) and Ionic Liquids (ILs) as Biocides: From Simple Antiseptics to Tunable Antimicrobials. Int J Mol Sci 2021; 22:6793. [PMID: 34202677 PMCID: PMC8268321 DOI: 10.3390/ijms22136793] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
Quaternary ammonium compounds (QACs) belong to a well-known class of cationic biocides with a broad spectrum of antimicrobial activity. They are used as essential components in surfactants, personal hygiene products, cosmetics, softeners, dyes, biological dyes, antiseptics, and disinfectants. Simple but varied in their structure, QACs are divided into several subclasses: Mono-, bis-, multi-, and poly-derivatives. Since the beginning of the 20th century, a significant amount of work has been dedicated to the advancement of this class of biocides. Thus, more than 700 articles on QACs were published only in 2020, according to the modern literature. The structural variability and diverse biological activity of ionic liquids (ILs) make them highly prospective for developing new types of biocides. QACs and ILs bear a common key element in the molecular structure-quaternary positively charged nitrogen atoms within a cyclic or acyclic structural framework. The state-of-the-art research level and paramount demand in modern society recall the rapid development of a new generation of tunable antimicrobials. This review focuses on the main QACs exhibiting antimicrobial and antifungal properties, commercial products based on QACs, and the latest discoveries in QACs and ILs connected with biocide development.
Collapse
Affiliation(s)
- Anatoly N. Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia; (N.A.F.); (K.S.E.); (M.M.S.)
| | | | | | | | - Valentine P. Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia; (N.A.F.); (K.S.E.); (M.M.S.)
| |
Collapse
|
35
|
Dual functional coatings with antifogging and antimicrobial performances for endoscope lens, via facile adsorption-cross-linking strategy. Colloids Surf B Biointerfaces 2021; 206:111933. [PMID: 34175741 DOI: 10.1016/j.colsurfb.2021.111933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022]
Abstract
Surface fogging causes various inconvenience for human daily life, especially for clinic inspection and medical diagnosis, hence the surfaces with reliable antifogging performances have received tremendous interests. Herein, through a facile adsorption-cross-linking strategy, a dual functional coating with both excellent antifogging/frost-resisting properties and reliable antibacterial activity has been steadily integrated onto varied substrates. A series of copolymers poly(HEAA-co-QAC-co-BP) with UV-initiable BP groups are synthesized, and then are covalently fixed on the substrate surfaces via UV triggered cross-linking reaction. The hydrophilic HEAA units endow the surface with excellent antifogging performance, while the introduced QAC groups bring essential antibacterial activity. ZOI results prove that the antibacterial activity stems from the surface contact-killing of bacteria, without releasing any bactericidal agents. Moreover, the functional surface exhibits remarkable resistance toward non-specific protein adsorption as well as no obvious effect on the hemolysis. The coating with the unique merits of both antifogging and antibacterial properties could find broad applications in antifogging fields, in particular for medical diagnosis, health monitoring, etc.
Collapse
|
36
|
Ren J, Kong R, Gao Y, Zhang L, Zhu J. Bioinspired adhesive coatings from polyethylenimine and tannic acid complexes exhibiting antifogging, self-cleaning, and antibacterial capabilities. J Colloid Interface Sci 2021; 602:406-414. [PMID: 34139538 DOI: 10.1016/j.jcis.2021.06.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
In this work, we develop a simple yet robust method to fabricate a bioinspired adhesive coating based on polyethyleneimine (PEI) and tannic acid (TA) complexes, exhibiting excellent antifogging, self-cleaning, and antibacterial properties. The polyethyleneimine-tannic acid (PEI-TA) complexes coating combined with the bioinspired adhesive property from TA can be effectively and stably coated onto various substrates through a one-step deposition process, and the hydrophilicity of the coated substrates can be significantly enhanced with their water contact angle less than 10°. The bioinspired adhesive coating endows the coated substrates with outstanding antifogging and self-cleaning performance. Moreover, it is found that the PEI-TA coated safety goggles display excellent durability and antifogging capability compared to the commercial antifogging safety goggles and commercial antifogging agents coated safety goggles under 65 ℃ vapor condition for 2 h. Furthermore, the PEI-TA coatings show superior antibacterial activities for Gram-negative Escherichiak coli and Gram-positive Staphylococcus aureus. The antifogging, self-cleaning, and antibacterial coating provides widely potential application prospects in optical and medical devices.
Collapse
Affiliation(s)
- Jingli Ren
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Ruixia Kong
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yujie Gao
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Lianbin Zhang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
37
|
Peng J, Liu P, Peng W, Sun J, Dong X, Ma Z, Gan D, Liu P, Shen J. Poly(hexamethylene biguanide) (PHMB) as high-efficiency antibacterial coating for titanium substrates. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125110. [PMID: 33858091 DOI: 10.1016/j.jhazmat.2021.125110] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Bacterial associated infection is a remaining urgent challenge in clinic application of metallic implants and devices. Here, we developed a new strategy to combat the bacterial associated infection of titanium alloy (TC4). Novel phosphonate/active ester block polymers (pDEMMP-b-pNHSMA) with identical phosphonate segments (DP = 29) as the metal anchorable ligand but varied active ester segments (DPs = 7, 29, and 64) as the conjugation site for poly(hexamethylene biguanide) (PHMB) were precisely prepared. Through a facile two-step process, the polymeric coating were successfully constructed on TC4 substrates as evidenced by water contact angle and XPS measurements. Through systematical in vitro antibacterial evaluations, robust relationship between the chemical structure of coating polymer and the antibacterial property endowed to the TC4 substrates has been established. Results showed that the block polymer, bearing an active ester segment of 64 repeat units, enabled dense packing of PHMB coating on the TC4 surface, which is able to kill 100% of both S. aureus and E. coli. that seeded without compromising the cytocompatibility of TC4 substrates. Furthermore, PHMB coating could significantly inhibit the colony of the bacteria and consequently reduce the bacterial associated inflammatory reaction as verified by a subcutaneous infection model on rat.
Collapse
Affiliation(s)
- Jiangmei Peng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Peiming Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Wan Peng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Jin Sun
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Xiaohan Dong
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Zhuangzhuang Ma
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Donglin Gan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Pingsheng Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China; Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
38
|
Jeon Y, Nagappan S, Li XH, Lee JH, Shi L, Yuan S, Lee WK, Ha CS. Highly Transparent, Robust Hydrophobic, and Amphiphilic Organic-Inorganic Hybrid Coatings for Antifogging and Antibacterial Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6615-6630. [PMID: 33507059 DOI: 10.1021/acsami.0c20401] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The control of surface wettability through a combination of surface roughness, chemical composition, and structural modification has attracted significant attention for antifogging and antibacterial applications. Herein, a two-step spin-coating method for amphiphilic organic-inorganic hybrid materials with incorporated transition metal ions is presented. The coating solution was prepared via photochemical thiol-ene click reaction between the mercapto functional group in trimethylolpropane tris(3-mercaptopropionate) and the vinyl functionalized silica precursor 3-(trimethoxysilyl)propyl methacrylate. In the first step of coating, a glass substrate was coated using a solution of metal nitrate hydrates and subsequently showed hydrophobic properties. As the second step, the spin-coated glass substrate was further coated with silica nanoparticles (SiO2 NPs) and polycaprolactone triol (PCT) suspension, where the contents of SiO2 NPs were fixed at 0.1 wt %, unless otherwise noted. The coated substrate exhibited hydrophilic properties. For comparison, the coating was also formulated with the SiO2 NPs/PCT suspension without SiO2 NPs and with 0.5 wt % SiO2 NPs as well as by adjusting different coating layer thicknesses. The surface morphology and chemical compositions of the obtained coating materials were analyzed by field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The transparency and static contact angle of coated samples were measured by UV-visible spectrophotometry and drop shape analysis, respectively. It was concluded that our novel hybrid coating materials exhibited excellent antibacterial and antifogging properties with extremely high scratch resistance and transparency.
Collapse
Affiliation(s)
- Yubin Jeon
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Saravanan Nagappan
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Xi-Hui Li
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Joon-Hee Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Liyi Shi
- Research Center of Nanoscience and Nanotechnology, Shanghai University, Shanghai 200444, China
- Emerging Industries Institute, Shanghai University, Jiaxing, Zhejiang 314006, China
| | - Shuai Yuan
- Research Center of Nanoscience and Nanotechnology, Shanghai University, Shanghai 200444, China
- Emerging Industries Institute, Shanghai University, Jiaxing, Zhejiang 314006, China
| | - Won-Ki Lee
- Department of Polymer Engineering, Pukyong National University, Busan 48547, Korea
| | - Chang-Sik Ha
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea
| |
Collapse
|