1
|
Kong L, Qiu Z, Wang Y, Xie Y, Xiao Z. Double-layer carboxymethyl chitosan/sulfoethylated cellulose/cellulose nanofiber foams with a photothermally enhanced ionic concentration gradient for hydrovoltaic energy harvesting. Carbohydr Polym 2025; 347:122727. [PMID: 39486957 DOI: 10.1016/j.carbpol.2024.122727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 11/04/2024]
Abstract
The generation of electricity from water, which contains enormous amounts of energy, has attracted significant attention in recent years. However, the development of devices consisting of materials with the required mechanical stability, suitable structures, and wide ion concentration gradients for operation in direct contact with water remains challenging. Herein, we report the preparation of three-dimensional foam structures based on covalent cross-linking and freeze-drying using cellulose and chitosan derivatives as raw materials. Carbon nanotubes (CNTs), which served as the photothermal component, were uniformly dispersed among the cellulose nanofiber (CNF) to realize photothermally enhanced heterogeneous water-enabled electricity generation (HWEG). The output performance of the assembled HWEG was improved by tailoring the ion concentration gradient and widening the moisture gradient induced by photothermal conversion. Under solar irradiation of 1 sun, the HWEG delivered an open-circuit voltage and short-circuit current of 186 mV and 0.5 μA, respectively. Owing to the scalability and practicality of the device, the class of three-dimensional structural materials based on sustainable biomass developed in this study is suitable for use in hydrovoltaic energy harvesters.
Collapse
Affiliation(s)
- Lingyu Kong
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China
| | - Zhe Qiu
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China
| | - Yonggui Wang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China.
| | - Yanjun Xie
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China
| | - Zefang Xiao
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China.
| |
Collapse
|
2
|
Dai K, Wang Y, Li B, Li P, Wang X, Gao L. Advancements in Solid-Liquid Nanogenerators: A Comprehensive Review and Future Prospects. Molecules 2024; 29:5716. [PMID: 39683874 DOI: 10.3390/molecules29235716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
In recent years, the advent of the smart era has confronted a novel "energy crisis"-the challenge of distributed energy provision, necessitating an imperative for clean energy development. Encompassing 71% of the Earth's surface, water stands as the predominant conduit for energy transfer on our planet, effectively harnessing a fraction thereof to fulfill global energy demands. Modern hydropower technology primarily harnesses concentrated low-entropy water energy. However, the majority of natural water energy is widely dispersed in the environment as high-entropy distributed water energy, encompassing raindrop energy, stream energy, wave energy, evaporation energy, and other small-scale forms of water energy. While these energies are readily available, their collection poses significant challenges. Consequently, researchers initiated investigations into high-entropy water energy harvesting technology based on the electrodynamic effect, triboelectric effect, water volt effect, and other related phenomena. The present paper provides a comprehensive review of high-entropy water energy harvesting technologies, encompassing their underlying mechanisms, optimization strategies, and diverse applications. The current bottlenecks of these technologies are comprehensively analyzed, and their future development direction is prospectively discussed, thereby providing valuable guidance for future research on high-entropy water energy collection technology.
Collapse
Affiliation(s)
- Kejie Dai
- College of Electric and Mechanical Engineering, Pingdingshan University, Pingdingshan 467000, China
| | - Yan Wang
- College of Electric and Mechanical Engineering, Pingdingshan University, Pingdingshan 467000, China
| | - Baozeng Li
- College of Electric and Mechanical Engineering, Pingdingshan University, Pingdingshan 467000, China
| | - Pengfei Li
- College of Electric and Mechanical Engineering, Pingdingshan University, Pingdingshan 467000, China
| | - Xueqing Wang
- College of Electric and Mechanical Engineering, Pingdingshan University, Pingdingshan 467000, China
| | - Lingxiao Gao
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
3
|
Lin J, Dong H, Cui S, Dong W, Sun H. Fluid Classification via the Dual Functionality of Moisture-Enabled Electricity Generation Enhanced by Deep Learning. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63723-63734. [PMID: 39506898 DOI: 10.1021/acsami.4c13193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Classifications of fluids using miniaturized sensors are of substantial importance for various fields of application. Modified with functional nanomaterials, a moisture-enabled electricity generation (MEG) device can execute a dual-purpose operation as both a self-powered framework and a fluid detection platform. In this study, a novel intelligent self-sustained sensing approach was implemented by integrating MEG with deep learning in microfluidics. Following a multilayer design, the MEG device including three individual units for power generation/fluid classification was fabricated in this study by using nonwoven fabrics, hydroxylated carbon nanotubes, poly(vinyl alcohol)-mixed gels, and indium tin bismuth liquid alloy. A composite configuration utilizing hydrophobic microfluidic channels and hydrophilic porous substrates was conducive to self-regulation of the on-chip flow. As a generator, the MEG device was capable of maintaining a continuous and stable power output for at least 6 h. As a sensor, the on-chip units synchronously measured the voltage (V), current (C), and resistance (R) signals as functions of time, whose transitions were completed using relays. These signals can serve as straightforward indicators of a fluid presence, such as the distinctive "fingerprint". After normalization and Fourier transform of raw V/C/R signals, a lightweight deep learning model (wide-kernel deep convolutional neural network, WDCNN) was employed for classifying pure water, kiwifruit, clementine, and lemon juices. In particular, the accuracy of the sample distinction using the WDCNN model was 100% within 15 s. The proposed integration of MEG, microfluidics, and deep learning provides a novel paradigm for the development of sustainable intelligent environmental perception, as well as new prospects for innovations in analytical science and smart instruments.
Collapse
Affiliation(s)
- Jiawen Lin
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
| | - Hui Dong
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150006, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150006, China
| | - Shilong Cui
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
| | - Wei Dong
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150006, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150006, China
| | - Hao Sun
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150006, China
| |
Collapse
|
4
|
Ma H, Zhou Z, Chen F, Li L, Wang R, Ye Y, Li J, Zou G, Zhu J. MoS 2/porous carbon nanofiber heterostructures for efficient evaporation-driven generators. NANOTECHNOLOGY 2024; 36:055401. [PMID: 39467329 DOI: 10.1088/1361-6528/ad8bca] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
Evaporation power generators (EPGs) based on natural water evaporation can directly convert heat energy from the surrounding environment into electrical energy. Nevertheless, the commercialization of EPGs faces challenges due to the low charge generation and transport efficiency of single material systems, leading to unsatisfactory open-circuit voltages and short-circuit currents. Here, we systematically prepared molybdenum sulfide (MoS2)/porous carbon nanofiber (PCNF) heterogeneous systems by electrospinning and hydrothermal methods. Electron microscope measurements have confirmed the uniform coating of high-crystalline quality MoS2nanosheets on PCNF fabrics, and the uneven concave-convex surface increased the specific surface area. MoS2covered PCNF fabrics retained excellent hydrophilicity, which was suitable for absorbing water and keeping the surface wet during long-term evaporation. Moreover, layered MoS2with rich surface charge improved the charge transfer of the MoS2/PCNF fabrics. As a result, the open-circuit voltage and short-circuit current of the EPGs fabricated with MoS2/PCNF fabrics were enhanced to 0.25 V and 75μA, respectively, in comparison to those based on PCNF fabrics, which demonstrated that the MoS2coatings improved the interaction area with water and the charge transfer effect of the EPGs. This heterogeneous combination strategy provides ideas for the preparation of high-performance EPG materials.
Collapse
Affiliation(s)
- Haoyu Ma
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| | - Zhicheng Zhou
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| | - Fengnan Chen
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| | - Lutao Li
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| | - Ruonan Wang
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| | - Yaqi Ye
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| | - Jiating Li
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| | - Guifu Zou
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| | - Juntong Zhu
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| |
Collapse
|
5
|
Yuan R, Li H, Zhao Z, Li A, Xue L, Li K, Deng X, Yu X, Li R, Liu Q, Song Y. Hermetic hydrovoltaic cell sustained by internal water circulation. Nat Commun 2024; 15:9796. [PMID: 39532866 PMCID: PMC11557918 DOI: 10.1038/s41467-024-54216-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Numerous efforts have been devoted to harvesting sustainable energy from environment. Among the promising renewable resources, ambient heat exhibits attractive prospects due to its ubiquity and inexhaustibility, and has been converted into electricity through water evaporation-induced hydrovoltaic approaches. However, current hydrovoltaic approaches function only in low-humidity environments and continuously consume water. Herein, we fabricate a hermetic hydrovoltaic cell (HHC) to harvest ambient heat, and have fully addressed the limitations posed by environmental conditions. Meanwhile, for the first time we develop an internal circulation hydrovoltaic mechanism. Taking advantage of the heterogeneous wicking bilayer structure, we verify that inside the hermetic cell, the ambient temperature fluctuation-induced evaporation and further the water circulation can persist, which sustains the hydrovoltaic effect to convert ambient heat into electricity. More importantly, the hermetic design enables the cell to work continuously and reliably for 160 h with negligible water consumption, unaffected by external influences such as wind and light, making it an excellent candidate for extreme situations such as water-scarce deserts, highly humid tropical rain forests, rainy days, and dark underground engineering. These findings provide an easily accessible and widely applicable route for stably harnessing renewable energy, and more notably, offer a novel paradigm toward leveraging low-grade ambient heat energy via circulation design.
Collapse
Affiliation(s)
- Renxuan Yuan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Huizeng Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.
| | - Zhipeng Zhao
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - An Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Luanluan Xue
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Kaixuan Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Xiao Deng
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xinye Yu
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Rujun Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Quan Liu
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
6
|
Zhang J, Zhang X, Zhu Y, Chen H, Chen Z, Hu Z. Recent advances in moisture-induced electricity generation based on wood lignocellulose: Preparation, properties, and applications. Int J Biol Macromol 2024; 279:135258. [PMID: 39233166 DOI: 10.1016/j.ijbiomac.2024.135258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Moisture-induced electricity generation (MEG), which can directly harvest electricity from moisture, is considered as an effective strategy for alleviating the growing energy crisis. Recently, tremendous efforts have been devoted to developing MEG active materials from wood lignocellulose (WLC) due to its excellent properties including environmental friendliness, sustainability, and biodegradability. This review comprehensively summarizes the recent advances in MEG based on WLC (wood, cellulose, lignin, and woody biochar), covering its principles, preparation, performances, and applications. In detail, the basic working mechanisms of MEG are discussed, and the natural features of WLC and their significant advantages in the fabrication of MEG active materials are emphasized. Furthermore, the recent advances in WLC-based MEG for harvesting electrical energy from moisture are specifically discussed, together with their potential applications (sensors and power sources). Finally, the main challenges of current WLC-based MEG are presented, as well as the potential solutions or directions to develop highly efficient MEG from WLC.
Collapse
Affiliation(s)
- Jinchao Zhang
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China.
| | - Xuejin Zhang
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Yachong Zhu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Hua Chen
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Zhuo Chen
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Zhijun Hu
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China.
| |
Collapse
|
7
|
Wang H, Zhang F, Dong X, Yang Y, Ma Z, Wang T, Wang Y, Sui L, Gan Z, Dong L, Yu L. Solar-Driven Harvesting of Freshwater and Electricity Based on Three-Dimensional Hierarchical Cu 2-xO@Cu Foam. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54772-54781. [PMID: 39316710 DOI: 10.1021/acsami.4c07903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The integration of solar steam generation and the hydrovoltaic effect is a promising strategy for simultaneously solving water scarcity and energy crises. However, it is still a challenge to attain a high water evaporation rate and a strong output of electricity in a single device. Here, we report a three-dimensional (3D) hierarchical Cu2-xO@Cu foam for solar-driven harvesting of freshwater and electricity efficiently. The 3D Cu2-xO@Cu foam synthesized by chemical etching shows a rough surface and porous structure, making it have a hydrophilic surface, high light absorption performance, and excellent photothermal effect. For deionized water, the evaporation rate is as high as 3.03 kg m-2 h-1; meanwhile, the output voltage is 0.37 V under 1 solar irradiation. For real seawater, the evaporation rate decreases to about 2.48 kg m-2 h-1, the output voltage increases to 0.41 V, and the maximum output power density is 9.47 μW cm-2. Both the water evaporation and power generation performance are very competitive. Outdoor experiments demonstrate that the 3D hierarchical Cu2-xO@Cu foam can desalinate seawater, while generating electricity continuously.
Collapse
Affiliation(s)
- Haoyu Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Fan Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xingchen Dong
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yuanrong Yang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zunfei Ma
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Tianyu Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Ying Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Lina Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zhixing Gan
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, PR China
| | - Lifeng Dong
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Liyan Yu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
8
|
Wei T, Hu X, Zeng M, Zhang Q, Song Y, Zhao W, Li J, Yang Z, Fei M, Xu N, Zhu J. High-Current Water-Enabled Electricity Generation in Mushrooms via Synergistic Ion Sieving and Adsorption. NANO LETTERS 2024; 24:12036-12044. [PMID: 39311142 DOI: 10.1021/acs.nanolett.4c01761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Water-enabled electricity generation (WEG), which harvests energy from the natural water cycle, is a novel strategy for producing green electricity. Taking advantage of the ion sieving effect based on evaporation-induced water flows in charged nanopores, various WEG devices have been developed. Here, we report that a carbonized mushroom produces a record-high current output of up to 96.7 μA, which is attributed to a unique ion adsorption effect combined with an ion sieving effect. Specifically, the natural gradient potential from root to cap in a mushroom caused by tissue differentiation adsorbs different ions, enhancing the traditional ion sieving current. In synergy with the two effects, the mushroom can operate under a broad range of concentrations (0 to 0.6 mol L-1) and represents significant improvements in current, duration, and total charge transfer. These findings reveal the hidden talent of mushrooms as natural materials for WEG, providing inspiration for the development of high-performance WEG devices.
Collapse
Affiliation(s)
- Tianqi Wei
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, People's Republic of China
| | - Xiaozhen Hu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210093, People's Republic of China
| | - Mengyue Zeng
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, People's Republic of China
| | - Qi Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yan Song
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, People's Republic of China
| | - Wei Zhao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, People's Republic of China
| | - Jinlei Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, People's Republic of China
| | - Zhengwei Yang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, People's Republic of China
| | - Minfei Fei
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, People's Republic of China
| | - Ning Xu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, People's Republic of China
| | - Jia Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, People's Republic of China
- School of Sustainable Energy and Resources, Nanjing University, Suzhou 215163, People's Republic of China
| |
Collapse
|
9
|
Hu T, Zhang K, Deng W, Guo W. Hydrovoltaic Effects from Mechanical-Electric Coupling at the Water-Solid Interface. ACS NANO 2024; 18:23912-23940. [PMID: 39168863 DOI: 10.1021/acsnano.4c07900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The natural water cycle on the Earth carries an enormous amount of energy as thirty-five percent of solar energy reaching the Earth's surface goes into water. However, only a very marginal part of the contained energy, mostly kinetic energy of large volume bulk water, is harvested by hydroelectric power plants. Natural processes in the water cycle, such as rainfall, water evaporation, and moisture adsorption, are widespread but have remained underexploited in the past due to the lack of appropriate technologies. In the past decade, the emergence of hydrovoltaic technology has provided ever-increasing opportunities to extend the technical capability for energy harvesting from the water cycle. Featuring electricity generation from mechanical-electric coupling at the water-solid interface, hydrovoltaic technology embraces almost all dynamic processes associated with water, including raining, waving, flowing, evaporating, and moisture adsorbing. This versatility in dealing with various forms of water and associated energy renders hydrovoltaic technology a solution for fossil fuel-caused environmental problems. Here, we review the current progress of hydrovoltaic energy harvesting from water motion, evaporation, and ambient moisture. Device configuration, energy conversion mechanism mediated by mechanical-electric coupling at various water-solid interfaces, as well as materials selection and functionalization are discussed. Useful strategies guided by established mechanisms for device optimization are then covered. Finally, we provide an outlook on this emerging field and outline the challenges of improving output performance toward potential practical applications.
Collapse
Affiliation(s)
- Tao Hu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Kelan Zhang
- Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Wei Deng
- Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Wanlin Guo
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
- Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| |
Collapse
|
10
|
Liu H, Cui P, Zhang J, Wang J, Ge Y, Zhou Z, Meng Y, Huang Z, Yang K, Du Z, Cheng G. Harnessing Natural Evaporation for Electricity Generation using MOF-Based Nanochannels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400961. [PMID: 38534173 DOI: 10.1002/smll.202400961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/17/2024] [Indexed: 03/28/2024]
Abstract
Functionalized nanochannels can convert environmental thermal energy into electrical energy by driving water evaporation. This process involves the interaction between the solid-liquid interface and the natural water evaporation. The evaporation-driven water potential effect is a novel green environmental energy capture technology that has a wide range of applications and does not depend on geographical location or environmental conditions, it can generate power as long as there is water, light, and heat. However, suitable materials and structures are needed to harness this natural process for power generation. MOF materials are an emerging field for water evaporation power generation, but there are still many challenges to overcome. This work uses MOF-801, which has high porosity, charged surface, and hydrophilicity, to enhance the output performance of evaporation-driven power generation. It can produce an open circuit voltage of ≈2.2 V and a short circuit current of ≈1.9 µA. This work has a simple structure, easy preparation, low-cost and readily available materials, and good stability. It can operate stably in natural environments with high practical value.
Collapse
Affiliation(s)
- Huimin Liu
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Peng Cui
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Jingjing Zhang
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Jingjing Wang
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Ying Ge
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Zunkang Zhou
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Yao Meng
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Zanying Huang
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Ke Yang
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Zuliang Du
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Gang Cheng
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
11
|
Chen H, Xu J, Ren ZJ, Lin H, Zhang L, Reaihan E, Yuan Y, Wang Z, Liu Z. Renewable biomass reinvigorates sustainable water-energy nexus. Sci Bull (Beijing) 2024; 69:2543-2554. [PMID: 38880682 DOI: 10.1016/j.scib.2024.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/04/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024]
Abstract
The water-energy nexus has garnered worldwide interest. Current dual-functional research aimed at co-producing freshwater and electricity faces significant challenges, including sub-optimal capacities ("1 + 1 < 2"), poor inter-functional coordination, high carbon footprints, and large costs. Mainstream water-to-electricity conversions are often compromised owing to functionality separation and erratic gradients. Herein, we present a sustainable strategy based on renewable biomass that addresses these issues by jointly achieving competitive solar-evaporative desalination and robust clean electricity generation. Using hydrothermally activated basswood, our solar desalination exceeded the 100% efficiency bottleneck even under reduced solar illumination. Through simple size-tuning, we achieved a high evaporation rate of 3.56 kg h-1 m-2 and an efficiency of 149.1%, representing 128%-251% of recent values without sophisticated surface engineering. By incorporating an electron-ion nexus with interfacial Faradaic electron circulation and co-ion-predominated micro-tunnel hydrodynamic flow, we leveraged free energy from evaporation to generate long-term electricity (0.38 W m-3 for over 14d), approximately 322% of peer performance levels. This inter-functional nexus strengthened dual functionalities and validated general engineering practices. Our presented strategy holds significant promise for global human-society-environment sustainability.
Collapse
Affiliation(s)
- Hongxu Chen
- Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Department of Civil and Environmental Engineering, Princeton University, Princeton NJ 08544, USA; Andlinger Center for Energy and the Environment, Princeton University, Princeton NJ 08544, USA; Department of Earth and Environmental Engineering, Columbia University, New York NY 10027, USA
| | - Jiatao Xu
- Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering, Princeton University, Princeton NJ 08544, USA; Andlinger Center for Energy and the Environment, Princeton University, Princeton NJ 08544, USA
| | - Hailong Lin
- Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China
| | - Leli Zhang
- Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China
| | - E Reaihan
- Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China
| | - Yanhao Yuan
- Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China
| | - Zihan Wang
- Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Zhidan Liu
- Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China.
| |
Collapse
|
12
|
Tian Z, Chang Q, Liu Z, Xue C, Li N, Jia S, Fan X, Yang J, Hu S. Electricity Harvesting from Water Evaporation on Hierarchical Pore Gradient Silica Aerogel-Based Generators. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42468-42475. [PMID: 39080261 DOI: 10.1021/acsami.4c07729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
In this study, the electric energy harvesting capability of the hierarchical pore gradient silica aerogel (HPSA) is demonstrated due to its unique porous structure and inherent hydroxyl groups on the surface. Taking advantage of the positively charged surface of unwashed HPSA credited by the preparation strategy, poly(4-styrene sulfonic acid) (PSS) can be spontaneously adsorbed onto unwashed HPSA and shows gradient distribution due to the pore-gradient structure of HPSA. By virtue of the gradient distribution and the stronger ionization of PSS, PSS-modified HPSA (PSS-HPSA) shows enhanced electricity generation performance from natural water evaporation with an average output voltage of 0.77 V on an individual device. The water evaporation-induced electricity property of PSS-HPSA can be maintained in the presence of a low concentration of salt. The desirable salt resistance capability benefits from the unique 3D hierarchical porous structure of HPSA which ensures rapid water replenishment so as to effectively avoid the salt accumulation. The HPSA-based devices with the advantages of unique porous structure, easy functionalization, good physicochemical stability, good salt resistance capability, and eco-friendliness show great potential as water evaporation-induced electricity generators.
Collapse
Affiliation(s)
- Zheyu Tian
- Research Group of New Energy Materials and Devices, State Key Laboratory of Coal and CBM Co-Mining, North University of China, Taiyuan 030051, China
| | - Qing Chang
- Research Group of New Energy Materials and Devices, State Key Laboratory of Coal and CBM Co-Mining, North University of China, Taiyuan 030051, China
| | - Zhenghong Liu
- Research Group of New Energy Materials and Devices, State Key Laboratory of Coal and CBM Co-Mining, North University of China, Taiyuan 030051, China
| | - Chaorui Xue
- Research Group of New Energy Materials and Devices, State Key Laboratory of Coal and CBM Co-Mining, North University of China, Taiyuan 030051, China
| | - Ning Li
- Research Group of New Energy Materials and Devices, State Key Laboratory of Coal and CBM Co-Mining, North University of China, Taiyuan 030051, China
| | - Suping Jia
- Research Group of New Energy Materials and Devices, State Key Laboratory of Coal and CBM Co-Mining, North University of China, Taiyuan 030051, China
| | - Xiangqian Fan
- Research Group of New Energy Materials and Devices, State Key Laboratory of Coal and CBM Co-Mining, North University of China, Taiyuan 030051, China
| | - Jinlong Yang
- Research Group of New Energy Materials and Devices, State Key Laboratory of Coal and CBM Co-Mining, North University of China, Taiyuan 030051, China
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Shengliang Hu
- Research Group of New Energy Materials and Devices, State Key Laboratory of Coal and CBM Co-Mining, North University of China, Taiyuan 030051, China
| |
Collapse
|
13
|
Ren G, Ye J, Hu Q, Zhang D, Yuan Y, Zhou S. Growth of electroautotrophic microorganisms using hydrovoltaic energy through natural water evaporation. Nat Commun 2024; 15:4992. [PMID: 38862519 PMCID: PMC11166942 DOI: 10.1038/s41467-024-49429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
It has been previously shown that devices based on microbial biofilms can generate hydrovoltaic energy from water evaporation. However, the potential of hydrovoltaic energy as an energy source for microbial growth has remained unexplored. Here, we show that the electroautotrophic bacterium Rhodopseudomonas palustris can directly utilize evaporation-induced hydrovoltaic electrons for growth within biofilms through extracellular electron uptake, with a strong reliance on carbon fixation coupled with nitrate reduction. We obtained similar results with two other electroautotrophic bacterial species. Although the energy conversion efficiency for microbial growth based on hydrovoltaic energy is low compared to other processes such as photosynthesis, we hypothesize that hydrovoltaic energy may potentially contribute to microbial survival and growth in energy-limited environments, given the ubiquity of microbial biofilms and water evaporation conditions.
Collapse
Affiliation(s)
- Guoping Ren
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qichang Hu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dong Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yong Yuan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
14
|
Liu Y, Xiao B, Wei Q, Yuan Z, Song W, Zhou L, Ge W. A fabric-based hydrovoltaic electricity generator with multi-component carbon black for sustainable energy output. RSC Adv 2024; 14:18832-18837. [PMID: 38867739 PMCID: PMC11167618 DOI: 10.1039/d4ra02346c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
Water evaporation-induced electricity generators are considered a promising green energy-harvesting technology to alleviate the increasingly serious fossil energy crisis. Previous water evaporation-induced electricity generators mainly focused on single component carbon black, limiting the improvements in energy output. At present, there are relatively few studies on multi-component carbon black for improving electricity-generation performance. Herein, inspired by plant transpiration, we designed a fabric-based water evaporation-induced electricity generator (FWEG) based on multi-component carbon black, which can maintain a voltage of 0.65 V for more than 48 h. Through the synergistic effect of multi-component carbon black-enhanced oxygen-containing functional density, the FWEG can generate an enhanced output current of 61.61 μA without any additional energy input. Moreover, we show that the FWEG can be integrated readily to charge commercial capacitors or directly power LED lights and calculators for a long time. This work provides new insights for designing high-performance hydrovoltaic electricity generators for sustainable green energy harvesting.
Collapse
Affiliation(s)
- Yahua Liu
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology Dalian 116024 China
| | - Bingzhong Xiao
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology Dalian 116024 China
| | - Quanmao Wei
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology Dalian 116024 China
| | - Zichao Yuan
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology Dalian 116024 China
| | - Wenzhuo Song
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology Dalian 116024 China
| | - Ling Zhou
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology Dalian 116024 China
| | - Wenna Ge
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
15
|
Gao F, Tu J, Qu J, Ge J, Yin Q, Zang Y, Zhong W, Jiao Z. Dual mechanisms based on synergistic effects of evaporation potential and streaming potential for natural water evaporation. J Colloid Interface Sci 2024; 663:251-261. [PMID: 38401445 DOI: 10.1016/j.jcis.2024.02.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/26/2024]
Abstract
Electricity generation by natural water evaporation generators (NWEGs) using porous materials shows great potential for energy harvesting, but mechanistic investigations of NWEGs have mostly been limited to streaming potential studies. In this study, we propose the coexistence of an evaporation potential and streaming potential in a NWEG using ZSM-5 as the generation material. The iron probe method, salt concentration regulation, solution regulation, and side evaporation area regulation were used to analyze the NWEG mechanism. Our findings revealed that a streaming potential formed as water flowed inside the ZSM-5 nanochannels, driven by electrodynamic effects that increased from the bottom to the top of the generator. In addition, an evaporation potential existed at the surface interface between ZSM-5 and water, which decreased from the bottom to the top as the evaporation height of the generator increased. The resulting open-circuit voltage (Voc) depended on the balance between the evaporation and streaming potentials, both of which were influenced by the evaporation enthalpy (Ee) or vapor pressure. Generally, a higher Ee or lower vapor pressure led to a lower evaporation potential and subsequently a lower Voc. A dual mechanism involving synergistic evaporation potential and streaming potential is proposed to explain the mechanism of NWEGs.
Collapse
Affiliation(s)
- Feng Gao
- Dongguan Key Laboratory of Low-Carbon Recycling and Utilization, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Jingjing Tu
- Dongguan Key Laboratory of Low-Carbon Recycling and Utilization, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Jiangying Qu
- Dongguan Key Laboratory of Low-Carbon Recycling and Utilization, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, PR China.
| | - Jiawei Ge
- Dongguan Key Laboratory of Low-Carbon Recycling and Utilization, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Qian Yin
- Dongguan Key Laboratory of Low-Carbon Recycling and Utilization, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Yunhao Zang
- Dongguan Key Laboratory of Low-Carbon Recycling and Utilization, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, PR China.
| | - Weijun Zhong
- Dongguan Key Laboratory of Low-Carbon Recycling and Utilization, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Zhe Jiao
- Dongguan Key Laboratory of Low-Carbon Recycling and Utilization, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| |
Collapse
|
16
|
Zhang Z, Guo J, Zhao J, Tian Y, Gao Z, Song P, Song YY. Integrating Photoelectrochemical Feature on a Hydrovoltaic Chip with High-Salinity Adaption as a Self-Powered Device for Formaldehyde Monitoring. ACS Sens 2024; 9:2520-2528. [PMID: 38723023 DOI: 10.1021/acssensors.4c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Alternative energy sources are required due to the decline in fossil fuel resources. Therefore, devices that utilize hydrovoltaic technology and light energy have drawn widespread attention because they are emission-free and solar energy is inexhaustible. However, previous investigations mainly focused on accelerating the water evaporation rate at the electrode interface. Here, a cooperative photoelectrochemical effect on a hydrovoltaic chip is achieved using NH2-MIL-125-modified TiO2 nanotube arrays (NTs). This device demonstrated significantly improved evaporation-triggered electricity generation. Under LED illumination, the open-circuit voltage (VOC) of the NH2-MIL-125/TiO2NTs active layer of the hydrovoltaic chip was enhanced by 90.3% (up to 400.2 mV). Furthermore, the prepared hydrovoltaic chip showed good high-salinity tolerance, maintaining 74.6% of its performance even in 5 M NaCl. By introducing a Schiff-based reaction between the active layer and formaldehyde, a fully integrated flexible sensor was successfully fabricated for formaldehyde monitoring, and a low limit of detection of 5.2 × 10-9 M was achieved. This novel strategy for improving the performance of hydrovoltaic devices offers a completely new general approach to construct self-powered devices for point-of-care sensing.
Collapse
Affiliation(s)
- Zhechen Zhang
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Junli Guo
- College of Sciences, Northeastern University, Shenyang 110819, China
- Foshan Graduate School of Innovation, Northeastern University, Foshan 528311, China
| | - Junjian Zhao
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yuetong Tian
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Zhida Gao
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Pei Song
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Yan-Yan Song
- College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
17
|
Li SM, Qiu Y, Xie YM, Wang XT, Wang K, Cheng H, Zhang D, Zheng QN, Wang YH, Li JF. Synergistic Effects of TiO 2 and Carbon Black for Water Evaporation-Induced Electricity Generation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38706443 DOI: 10.1021/acsami.4c01026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Water evaporation-induced electricity generators (WEGs) have drawn widespread attention in the field of hydrovoltaic technology, which can convert atmospheric thermal energy into sustainable electric power. However, it is restricted in the wide application of WEGs due to the low power output, complex fabrication process, and high cost. Herein, we present a simple and effective approach to fabricate TiO2-carbon black film-based WEGs (TC-WEGs). A single TC-WEG device can sustainably output an open-circuit voltage of 1.9 V and a maximum power density of 40.9 μW/cm2. Moreover, it has been shown that TC-WEGs exhibit stable electrical energy output when operating in seawater, which can yield a short-circuit current of 1.2 μA. The superior electricity generation performance can be attributed to the intrinsic characteristics of the TC-WEGs, including hydrophilicity, porous structure, and electrical conductivity. This work provides an important reference for the constant harvesting of clean energy.
Collapse
Affiliation(s)
- Shu-Min Li
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Energy, Xiamen University, Xiamen 361005, China
| | - Yingru Qiu
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Energy, Xiamen University, Xiamen 361005, China
| | - Yi-Meng Xie
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Energy, Xiamen University, Xiamen 361005, China
| | - Xiao-Ting Wang
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Energy, Xiamen University, Xiamen 361005, China
| | - Kun Wang
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Energy, Xiamen University, Xiamen 361005, China
| | - Huan Cheng
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Dongao Zhang
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Energy, Xiamen University, Xiamen 361005, China
| | - Qing-Na Zheng
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Energy, Xiamen University, Xiamen 361005, China
| | - Yao-Hui Wang
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Energy, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Energy, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
18
|
Kwon Y, Bui-Vinh D, Lee SH, Baek SH, Lee S, Yun J, Baek M, Lee HW, Park J, Kim M, Yoo M, Kim BS, Song Y, Lee H, Lee DH, Jeong DW. Evaporation-Driven Energy Generation Using an Electrospun Polyacrylonitrile Nanofiber Mat with Different Support Substrates. Polymers (Basel) 2024; 16:1180. [PMID: 38732649 PMCID: PMC11085565 DOI: 10.3390/polym16091180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
Water evaporation-driven energy harvesting is an emerging mechanism for contributing to green energy production with low cost. Herein, we developed polyacrylonitrile (PAN) nanofiber-based evaporation-driven electricity generators (PEEGs) to confirm the feasibility of utilizing electrospun PAN nanofiber mats in an evaporation-driven energy harvesting system. However, PAN nanofiber mats require a support substrate to enhance its durability and stability when it is applied to an evaporation-driven energy generator, which could have additional effects on generation performance. Accordingly, various support substrates, including fiberglass, copper, stainless mesh, and fabric screen, were applied to PEEGs and examined to understand their potential impacts on electrical generation outputs. As a result, the PAN nanofiber mats were successfully converted to a hydrophilic material for an evaporation-driven generator by dip-coating them in nanocarbon black (NCB) solution. Furthermore, specific electrokinetic performance trends were investigated and the peak electricity outputs of Voc were recorded to be 150.8, 6.5, 2.4, and 215.9 mV, and Isc outputs were recorded to be 143.8, 60.5, 103.8, and 121.4 μA, from PEEGs with fiberglass, copper, stainless mesh, and fabric screen substrates, respectively. Therefore, the implications of this study would provide further perspectives on the developing evaporation-induced electricity devices based on nanofiber materials.
Collapse
Affiliation(s)
- Yongbum Kwon
- Korea National Institute of Rare Metals, Korea Institute of Industrial Technology, Incheon 21655, Republic of Korea; (Y.K.); (S.-H.L.); (S.H.B.); (J.Y.); (H.-W.L.); (B.S.K.); (Y.S.)
- Department of Environmental Engineering, Inha University, Incheon 22212, Republic of Korea; (D.B.-V.); (J.P.); (H.L.)
| | - Dai Bui-Vinh
- Department of Environmental Engineering, Inha University, Incheon 22212, Republic of Korea; (D.B.-V.); (J.P.); (H.L.)
| | - Seung-Hwan Lee
- Korea National Institute of Rare Metals, Korea Institute of Industrial Technology, Incheon 21655, Republic of Korea; (Y.K.); (S.-H.L.); (S.H.B.); (J.Y.); (H.-W.L.); (B.S.K.); (Y.S.)
| | - So Hyun Baek
- Korea National Institute of Rare Metals, Korea Institute of Industrial Technology, Incheon 21655, Republic of Korea; (Y.K.); (S.-H.L.); (S.H.B.); (J.Y.); (H.-W.L.); (B.S.K.); (Y.S.)
| | - Songhui Lee
- Program in Environmental and Polymer Engineering, Graduate School of Inha University, Incheon 22212, Republic of Korea; (S.L.); (M.B.); (M.K.); (M.Y.)
| | - Jeungjai Yun
- Korea National Institute of Rare Metals, Korea Institute of Industrial Technology, Incheon 21655, Republic of Korea; (Y.K.); (S.-H.L.); (S.H.B.); (J.Y.); (H.-W.L.); (B.S.K.); (Y.S.)
| | - Minwoo Baek
- Program in Environmental and Polymer Engineering, Graduate School of Inha University, Incheon 22212, Republic of Korea; (S.L.); (M.B.); (M.K.); (M.Y.)
| | - Hyun-Woo Lee
- Korea National Institute of Rare Metals, Korea Institute of Industrial Technology, Incheon 21655, Republic of Korea; (Y.K.); (S.-H.L.); (S.H.B.); (J.Y.); (H.-W.L.); (B.S.K.); (Y.S.)
| | - Jaebeom Park
- Department of Environmental Engineering, Inha University, Incheon 22212, Republic of Korea; (D.B.-V.); (J.P.); (H.L.)
| | - Miri Kim
- Program in Environmental and Polymer Engineering, Graduate School of Inha University, Incheon 22212, Republic of Korea; (S.L.); (M.B.); (M.K.); (M.Y.)
| | - Minsang Yoo
- Program in Environmental and Polymer Engineering, Graduate School of Inha University, Incheon 22212, Republic of Korea; (S.L.); (M.B.); (M.K.); (M.Y.)
| | - Bum Sung Kim
- Korea National Institute of Rare Metals, Korea Institute of Industrial Technology, Incheon 21655, Republic of Korea; (Y.K.); (S.-H.L.); (S.H.B.); (J.Y.); (H.-W.L.); (B.S.K.); (Y.S.)
| | - Yoseb Song
- Korea National Institute of Rare Metals, Korea Institute of Industrial Technology, Incheon 21655, Republic of Korea; (Y.K.); (S.-H.L.); (S.H.B.); (J.Y.); (H.-W.L.); (B.S.K.); (Y.S.)
| | - Handol Lee
- Department of Environmental Engineering, Inha University, Incheon 22212, Republic of Korea; (D.B.-V.); (J.P.); (H.L.)
- Program in Environmental and Polymer Engineering, Graduate School of Inha University, Incheon 22212, Republic of Korea; (S.L.); (M.B.); (M.K.); (M.Y.)
- Particle Pollution Research and Management Center, Incheon 21999, Republic of Korea
| | - Do-Hyun Lee
- Korea Dyeing & Finishing Technology Institute (DYETEC Institute), Daegu 41706, Republic of Korea
| | - Da-Woon Jeong
- Korea National Institute of Rare Metals, Korea Institute of Industrial Technology, Incheon 21655, Republic of Korea; (Y.K.); (S.-H.L.); (S.H.B.); (J.Y.); (H.-W.L.); (B.S.K.); (Y.S.)
| |
Collapse
|
19
|
Zhang K, Li X, Yan C, Shi R, Fang Z, Zhou S, Cao R, Tian J. All-Wood-Based Ionic Power Generator with Dual Functions for Alkaline Wastewater Reuse and Energy Harvesting. ACS NANO 2024; 18:10259-10269. [PMID: 38551447 DOI: 10.1021/acsnano.4c00990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Water-induced electricity harvesting has gained much significance for energy sustainability. Bio-based hydrovoltaic materials increase the attractiveness of this strategy. Although promising, it faces a challenge due to its reliance on fresh water and its inherently low power output. Herein, the energy from alkalinity-gradient power generation demonstrated the feasibility of reuse of alkaline wastewater to develop an all-wood-based water-induced electric generator (WEG) based on ion concentration gradients. The intermittent water droplets bring about uneven distribution of electrolyte and endow delignified wood with the difference of ion concentration along aligned cellulose nanochannels, thus supplying electrical power. The practice of using alkali reservoirs, including industrial wastewater, further contributes to electricity generation. The cubic WEG with a side length of 2 cm can produce an ultrahigh open-circuit voltage of about 1.1 V and a short-circuit current of up to 320 μA. A power output of 6.75 μW cm-2 is correspondingly realized. Series-connected WEGs can be used as an energy source for commercial electronics and self-powered systems. Our design provides a double value proposition, allowing for sustainable energy generation and wastewater reuse.
Collapse
Affiliation(s)
- Kun Zhang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xin Li
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chenyang Yan
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Rongxiang Shi
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhiqiang Fang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Songlin Zhou
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Rong Cao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Junfei Tian
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| |
Collapse
|
20
|
Zhang R, Zheng R, Zheng Z, Chen Q, Jiang N, Tang P, Wang H, Bin Y. Bacterial cellulose/multi-walled carbon nanotube composite films for moist-electric energy harvesting. Int J Biol Macromol 2024; 263:130022. [PMID: 38331064 DOI: 10.1016/j.ijbiomac.2024.130022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Generation of renewable and clean electricity energy from ubiquitous moisture for the power supply of portable electronic devices has become one of the most promising energy collection methods. However, the modest electrical output and transient power supply characteristics of existing moist-electric generator (MEG) severely limit its commercial application, leading to an urgent demand of developing a MEG with high electrical output and continuous power generation capacity. In this work, it is demonstrated that a flexible bacterial cellulose (BC)/Multi-walled carbon nanotube (MWCNT) double-layer (BM-dl) film prepared by vacuum filtration can maintain the moisture concentration difference in the film MEG. Unlike previous studies on cellulose based MEG, BM-dl film has a heterogeneous structure, resulting in a maximum output power density of 0.163 μW/cm2, an extreme voltage of 0.84 V, and current of 2.21 μA at RH = 90 %. BM-dl MEG can generate a voltage of 0.55 V continuously for 45 h in a natural environment (RH = 63-77 %, T = 26-27 °C), which is in a leading level among existing reported cellulose-based MEGs. In summary, this study provides new ideas for innovative design of MEG, which is highly competitive in terms of energy supply for the Internet of Things and wearable devices.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Ruitong Zheng
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Zhiyi Zheng
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Qingyi Chen
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Nan Jiang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Ping Tang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Hai Wang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China.
| | - Yuezhen Bin
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China.
| |
Collapse
|
21
|
Jiang Y, Wu Y, Xu G, Wang S, Mei T, Liu N, Wang T, Wang Y, Xiao K. Charges Transfer in Interfaces for Energy Generating. SMALL METHODS 2024; 8:e2300261. [PMID: 37256272 DOI: 10.1002/smtd.202300261] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/24/2023] [Indexed: 06/01/2023]
Abstract
Under the threat of energy crisis and environmental pollution, the technology for sustainable and clean energy extraction has received considerable attention. Owing to the intensive exploration of energy conversion strategies, expanded energy sources are successfully converted into electric energy, including mechanical energy from human motion, kinetic energy of falling raindrops, and thermal energy in the ambient. Among these energy conversion processes, charge transfer at different interfaces, such as solid-solid, solid-liquid, liquid-liquid, and gas-contained interfaces, dominates the power-generating efficiency. In this review, the mechanisms and applications of interfacial energy generators (IEGs) with different interface types are systematically summarized. Challenges and prospects are also highlighted. Due to the abundant interfacial interactions in nature, the development of IEGs offers a promising avenue of inexhaustible and environmental-friendly power generation to solve the energy crisis.
Collapse
Affiliation(s)
- Yisha Jiang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325027, P. R. China
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China
| | - Yitian Wu
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China
| | - Guoheng Xu
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China
| | - Senyao Wang
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China
| | - Tingting Mei
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China
| | - Nannan Liu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325027, P. R. China
| | - Tao Wang
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China
| | - Yude Wang
- School of Materials and Energy, Yunnan University, Kunming, 650091, P. R. China
| | - Kai Xiao
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China
| |
Collapse
|
22
|
Lim H, Kim MS, Cho Y, Ahn J, Ahn S, Nam JS, Bae J, Yun TG, Kim ID. Hydrovoltaic Electricity Generator with Hygroscopic Materials: A Review and New Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301080. [PMID: 37084408 DOI: 10.1002/adma.202301080] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/13/2023] [Indexed: 05/03/2023]
Abstract
The global energy crisis caused by the overconsumption of nonrenewable fuels has prompted researchers to develop alternative strategies for producing electrical energy. In this review, a fascinating strategy that simply utilizes water, an abundant natural substance throughout the globe and even in air as moisture, as a power source is introduced. The concept of the hydrovoltaic electricity generator (HEG) proposed herein involves generating an electrical potential gradient by exposing the two ends of the HEG device to dissimilar physicochemical environments, which leads to the production of an electrical current through the active material. HEGs, with a large variety of viable active materials, have much potential for expansion toward diverse applications including permanent and/or emergency power sources. In this review, representative HEGs that generate electricity by the mechanisms of diffusion, streaming, and capacitance as case studies for building a fundamental understanding of the electricity generation process are discussed. In particular, by comparing the use and absence of hygroscopic materials, HEG mechanism studies to establish active material design principles are meticulously elucidated. The review with future perspectives on electrode design using conducting nanomaterials, considerations for high performance device construction, and potential impacts of the HEG technology in improving the livelihoods are reviewed.
Collapse
Affiliation(s)
- Haeseong Lim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Min Soo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yujang Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jaewan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seongcheol Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jong Seok Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jaehyeong Bae
- Department of Chemical Engineering, College of Engineering Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Tae Gwang Yun
- Department of Materials Science and Engineering, Myongji University, Yongin, Gyeonggi, 17058, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
23
|
Zhang Z, Liu C, Fan S. Power Generation by Thermal Evaporation Based on a Button Supercapacitor. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9980-9988. [PMID: 38358294 DOI: 10.1021/acsami.3c14433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Thermal evaporation generators exhibit remarkable output performance, sustainability, and economy and, as a result, have attracted considerable interest as a prospective energy-converting technology for harvesting renewable energy. Here, we investigate power generation induced by water evaporation within a button supercapacitor with a simple sandwich structure. For conventional water evaporation devices, the thermodiffusion direction of hydrated ions driven by the Soret effect is opposite to the migration direction of hydrated ions driven by the streaming potential effect during thermal evaporation, which could reduce the output performance of the device. By tuning the thermodiffusion direction to be consistent with the thermal evaporation direction, our button supercapacitor achieves enhanced output performance as high as 674.4 mV, 70.7 mA, and 4.68 mW cm-2 due to the synergistic mechanism of the streaming potential effect and the Soret effect. Moreover, the system could effectively achieve in situ energy generation and storage owing to the device's ability to act as a supercapacitor. Our findings supply a feasible strategy for the synergistic integration of waste energy sources (low-grade waste heat, etc.) to generate electricity.
Collapse
Affiliation(s)
- Zhiyu Zhang
- Tsinghua-Foxconn Nanotechnology Research Center and Department of Physics, Tsinghua University, 1Qinghua Garden, Beijing 100084, China
| | - Changhong Liu
- Tsinghua-Foxconn Nanotechnology Research Center and Department of Physics, Tsinghua University, 1Qinghua Garden, Beijing 100084, China
| | - Shoushan Fan
- Tsinghua-Foxconn Nanotechnology Research Center and Department of Physics, Tsinghua University, 1Qinghua Garden, Beijing 100084, China
| |
Collapse
|
24
|
Xue W, Zhao Z, Zhang S, Li Y, Wang X, Qiu J. Power Generation from the Interaction of a Carbon Foam and Water. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2825-2835. [PMID: 38176096 DOI: 10.1021/acsami.3c04726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Understanding the interaction mechanisms between the surface of carbon-based materials and water is of great significance for the development of water-based energy storage and energy conversion devices. Herein, a self-supporting electric generator is demonstrated based on water adsorption on the surface of the carbon foam (CF) that works with various water resources, including deionized (DI) water, tap water, wastewater, and seawater. It is revealed that the dissociation of oxygen-containing groups on the surface of CF after water molecule adsorption leads to a reduction of the surface potential of the CF. Through surface modulation techniques such as reduction and oxidation, a balance has been uncovered between the oxygen content and conductivity for the high-performance CFs. The generator can generate an open-circuit voltage of approximately 0.6 V in natural seawater with a power density of up to 0.77 mW g-1. A high voltage of more than 2 V can be achieved easily by assembling components connected in series to drive electronic devices, such as a light-emitting diode (LED). This work demonstrates a simple and low-cost method for electricity harvesting, offering an additional option for self-powered devices.
Collapse
Affiliation(s)
- Wan Xue
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zongbin Zhao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Su Zhang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yong Li
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Xuzhen Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jieshan Qiu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
25
|
Sheng X, Li X, Jia Y, Chen P, Liu Y, Ru G, Xu M, Liu L, Zhu X, Jin X, Liu Y, Zhao H, Li H. Electrochemical Biosensor for Protein Concentration Monitoring Using Natural Wood Evaporation for Power Generation. Anal Chem 2024; 96:917-925. [PMID: 38171538 DOI: 10.1021/acs.analchem.3c05041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A high-sensitivity, low-cost, self-powered biomass electrochemical biosensor based on the "evaporating potential" theory is developed for protein detection. The feasibility of experimental evaluation methods was verified with a probe protein of bovine serum albumin. The sensor was then used to detect lung cancer marker CYFRA21-1, and the potential of our sensor for clinical diagnosis was demonstrated by serum analysis. This work innovatively exploits the osmotic power generation capability of natural wood to construct a promising electrochemical biosensor that was driven by kinetics during testing. The detection methods used for this sensor, chronoamperometry and AC impedance, showed potential for quantitative analysis and specific detection, respectively. Furthermore, the sensor could facilitate new insights into the development of high-sensitivity, low-cost, and easy-to-use electrochemical biosensors.
Collapse
Affiliation(s)
- Xia Sheng
- College of Science, Henan Agricultural University, Nongye Road 63, Zhengzhou 450002, China
| | - Xu Li
- College of Science, Henan Agricultural University, Nongye Road 63, Zhengzhou 450002, China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, China
- Henan Key Laboratory of Energy Storage Materials and Processes, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450003, China
| | - Yanfang Jia
- Department of Clinical Laboratory, People's Hospital of Henan University of Chinese Medicine, No. 33, Huanghe Road, Zhengzhou 450053, Henan, China
| | - Pengxun Chen
- Department of Clinical Laboratory, People's Hospital of Henan University of Chinese Medicine, No. 33, Huanghe Road, Zhengzhou 450053, Henan, China
| | - Yawei Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Guangxin Ru
- College of Forestry, Henan Agricultural University, Nongye Road 63, Zhengzhou 450002, China
| | - Mengyi Xu
- College of Science, Henan Agricultural University, Nongye Road 63, Zhengzhou 450002, China
| | - Lijie Liu
- College of Science, Henan Agricultural University, Nongye Road 63, Zhengzhou 450002, China
| | - Xiuhong Zhu
- College of Forestry, Henan Agricultural University, Nongye Road 63, Zhengzhou 450002, China
| | - Xianchun Jin
- College of Science, Henan Agricultural University, Nongye Road 63, Zhengzhou 450002, China
| | - Yanyan Liu
- College of Science, Henan Agricultural University, Nongye Road 63, Zhengzhou 450002, China
| | - Hailiang Zhao
- College of Science, Henan Agricultural University, Nongye Road 63, Zhengzhou 450002, China
- School of Environmental Engineering, Henan University of Technology, Lianhua Street 100, Zhengzhou 450001, China
| | - Hongjuan Li
- Department of Clinical Laboratory, People's Hospital of Henan University of Chinese Medicine, No. 33, Huanghe Road, Zhengzhou 450053, Henan, China
| |
Collapse
|
26
|
Suzuki Y, Matsunami A, Morito H, Kanaoka Y, Satoh K, Matsumoto A. Fabrication of a BOC-Protected 2-Hydroxyethyl Methacrylate Brush and Deprotection of the BOC Group to Control the Surface Hydrophilicity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17216-17221. [PMID: 37984531 DOI: 10.1021/acs.langmuir.3c02259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Fabrication of functional surfaces with designed patterns of different hydrophilicity has potential applications in active control of water droplets and water harvesting. For practical applications, the fabrication process needs to be applied to a large area in a cost-effective manner. Herein, we report the fabrication of a polymer brush of 2-(tert-butoxycarbonyloxy)ethyl methacrylate having a BOC-protected hydroxy group. The deprotection of the BOC group converts poly(2-(tert-butoxycarbonyloxy)ethyl methacrylate) (PBHEMA) into poly(2-hydroxyethyl methacrylate) (PHEMA) and hence changes the hydrophilicity. The chemical transformation changes the refractive index and thickness of the brush. This simple chemistry enables easy formation of the boundary of different hydrophilicity. Last, we demonstrate that the shape of the water droplet can be manipulated on the designed surface having different hydrophilicity.
Collapse
Affiliation(s)
- Yasuhito Suzuki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai599-8531, Osaka, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai599-8531, Osaka, Japan
| | - Ayuka Matsunami
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai599-8531, Osaka, Japan
| | - Hina Morito
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai599-8531, Osaka, Japan
| | - Yusuke Kanaoka
- Osaka Research Institute of Industrial Science and Technology, 2-7-1 Ayumino, Izumi 594-1157, Osaka, Japan
| | - Kazuo Satoh
- Osaka Research Institute of Industrial Science and Technology, 2-7-1 Ayumino, Izumi 594-1157, Osaka, Japan
| | - Akikazu Matsumoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai599-8531, Osaka, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai599-8531, Osaka, Japan
| |
Collapse
|
27
|
Zhang J, Cui P, Wang J, Meng H, Ge Y, Feng C, Liu H, Meng Y, Zhou Z, Xuan N, Zhang B, Cheng G, Du Z. Paper-Based Hydroelectric Generators for Water Evaporation-Induced Electricity Generation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304482. [PMID: 37740700 PMCID: PMC10625126 DOI: 10.1002/advs.202304482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/05/2023] [Indexed: 09/25/2023]
Abstract
The research presented in this paper introduces a novel environmental energy-harvesting technology that harnesses electricity from the evaporation of water using porous structural materials. Specifically, a strategy employing paper-based hydroelectric generators (p-HEGs) is proposed to capture the energy produced during water evaporation and convert it into usable electricity. The p-HEGs offer several advantages, including simplicity in fabrication, low cost, and reusability. To evaluate their effectiveness, the water evaporation-induced electrical output performance of four different p-HEGs are compared. Among the variants tested, the p-HEG combining wood pulp and polyester fiber exhibits the best output performance. At room temperature, this particular p-HEG generates a short-circuit current and open-circuit voltage of ≈0.4 µA and 0.3 V, respectively, thereby demonstrating excellent electrical stability. Furthermore, the electrical current and voltage generated by the p-HEG through water evaporation are able to power an LED light, both individually and in series and parallel connections. This study delves into the potential of electricity harvesting from water evaporation and establishes it as a viable method for renewable energy applications.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Materials Science and EngineeringKey Lab for Special Functional Materials of Ministry of EducationNational & Local Joint Engineering Research Center for High‐efficiency Display and Lighting TechnologyCollaborative Innovation Center of Nano Functional Materials and ApplicationsHenan UniversityKaifeng475004China
| | - Peng Cui
- School of Materials Science and EngineeringKey Lab for Special Functional Materials of Ministry of EducationNational & Local Joint Engineering Research Center for High‐efficiency Display and Lighting TechnologyCollaborative Innovation Center of Nano Functional Materials and ApplicationsHenan UniversityKaifeng475004China
| | - Jingjing Wang
- School of Materials Science and EngineeringKey Lab for Special Functional Materials of Ministry of EducationNational & Local Joint Engineering Research Center for High‐efficiency Display and Lighting TechnologyCollaborative Innovation Center of Nano Functional Materials and ApplicationsHenan UniversityKaifeng475004China
| | - Huan Meng
- School of Materials Science and EngineeringKey Lab for Special Functional Materials of Ministry of EducationNational & Local Joint Engineering Research Center for High‐efficiency Display and Lighting TechnologyCollaborative Innovation Center of Nano Functional Materials and ApplicationsHenan UniversityKaifeng475004China
| | - Ying Ge
- School of Materials Science and EngineeringKey Lab for Special Functional Materials of Ministry of EducationNational & Local Joint Engineering Research Center for High‐efficiency Display and Lighting TechnologyCollaborative Innovation Center of Nano Functional Materials and ApplicationsHenan UniversityKaifeng475004China
| | - Can Feng
- School of Materials Science and EngineeringKey Lab for Special Functional Materials of Ministry of EducationNational & Local Joint Engineering Research Center for High‐efficiency Display and Lighting TechnologyCollaborative Innovation Center of Nano Functional Materials and ApplicationsHenan UniversityKaifeng475004China
| | - Huimin Liu
- School of Materials Science and EngineeringKey Lab for Special Functional Materials of Ministry of EducationNational & Local Joint Engineering Research Center for High‐efficiency Display and Lighting TechnologyCollaborative Innovation Center of Nano Functional Materials and ApplicationsHenan UniversityKaifeng475004China
| | - Yao Meng
- School of Materials Science and EngineeringKey Lab for Special Functional Materials of Ministry of EducationNational & Local Joint Engineering Research Center for High‐efficiency Display and Lighting TechnologyCollaborative Innovation Center of Nano Functional Materials and ApplicationsHenan UniversityKaifeng475004China
| | - Zunkang Zhou
- School of Materials Science and EngineeringKey Lab for Special Functional Materials of Ministry of EducationNational & Local Joint Engineering Research Center for High‐efficiency Display and Lighting TechnologyCollaborative Innovation Center of Nano Functional Materials and ApplicationsHenan UniversityKaifeng475004China
| | - Ningning Xuan
- School of Materials Science and EngineeringKey Lab for Special Functional Materials of Ministry of EducationNational & Local Joint Engineering Research Center for High‐efficiency Display and Lighting TechnologyCollaborative Innovation Center of Nano Functional Materials and ApplicationsHenan UniversityKaifeng475004China
| | - Bao Zhang
- School of Materials Science and EngineeringKey Lab for Special Functional Materials of Ministry of EducationNational & Local Joint Engineering Research Center for High‐efficiency Display and Lighting TechnologyCollaborative Innovation Center of Nano Functional Materials and ApplicationsHenan UniversityKaifeng475004China
| | - Gang Cheng
- School of Materials Science and EngineeringKey Lab for Special Functional Materials of Ministry of EducationNational & Local Joint Engineering Research Center for High‐efficiency Display and Lighting TechnologyCollaborative Innovation Center of Nano Functional Materials and ApplicationsHenan UniversityKaifeng475004China
| | - Zuliang Du
- School of Materials Science and EngineeringKey Lab for Special Functional Materials of Ministry of EducationNational & Local Joint Engineering Research Center for High‐efficiency Display and Lighting TechnologyCollaborative Innovation Center of Nano Functional Materials and ApplicationsHenan UniversityKaifeng475004China
| |
Collapse
|
28
|
Yu F, Li J, Jiang Y, Wang L, Yang X, Yang Y, Li X, Jiang K, Lü W, Sun X. High Hydrovoltaic Power Density Achieved by Universal Evaporating Potential Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302941. [PMID: 37712146 PMCID: PMC10602524 DOI: 10.1002/advs.202302941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/11/2023] [Indexed: 09/16/2023]
Abstract
While hydrovoltaic electrical energy generation developments in very recent years have provided an alternative strategy to generate electricity from the direct interaction of materials with water, the two main issues still need to be addressed: achieving satisfactory output power density and understanding the reliable mechanism. In the present work, the integration of capacitors and water evaporation devices is proposed to provide a stable power supply. The feasible device structure consuming only water and air is green and environmentally sustainable, achieving a recorded power density of 142.72 µW cm-2 . The output power of the series of devices is sufficient to drive portable electronic products with different voltage and current requirements, enabling self-driving systems for portable appliances. It has been shown that the working behavior originates from evaporating potential other than streaming potential. The present work provides both theoretical support and an experimental design for realizing practical application of hydrovoltaic electrical energy generation devices.
Collapse
Affiliation(s)
- Fei Yu
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials ScienceChangchun University of TechnologyChangchun130012P.R. China
| | - Jialun Li
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials ScienceChangchun University of TechnologyChangchun130012P.R. China
| | - Yi Jiang
- School of ScienceChangchun Institute of TechnologyChangchun130012P. R. China
| | - Liying Wang
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials ScienceChangchun University of TechnologyChangchun130012P.R. China
| | - Xijia Yang
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials ScienceChangchun University of TechnologyChangchun130012P.R. China
| | - Yue Yang
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials ScienceChangchun University of TechnologyChangchun130012P.R. China
| | - Xuesong Li
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials ScienceChangchun University of TechnologyChangchun130012P.R. China
| | - Ke Jiang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and PhysicsChinese Academy of SciencesChangchun130033P. R. China
| | - Wei Lü
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials ScienceChangchun University of TechnologyChangchun130012P.R. China
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and PhysicsChinese Academy of SciencesChangchun130033P. R. China
| | - Xiaojuan Sun
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and PhysicsChinese Academy of SciencesChangchun130033P. R. China
| |
Collapse
|
29
|
Gao Y, Yang X, Garemark J, Olsson RT, Dai H, Ram F, Li Y. Gradience Free Nanoinsertion of Fe 3O 4 into Wood for Enhanced Hydrovoltaic Energy Harvesting. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:11099-11109. [PMID: 37538295 PMCID: PMC10394687 DOI: 10.1021/acssuschemeng.3c01649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/21/2023] [Indexed: 08/05/2023]
Abstract
Hydrovoltaic energy harvesting offers the potential to utilize enormous water energy for sustainable energy systems. Here, we report the utilization and tailoring of an intrinsic anisotropic 3D continuous microchannel structure from native wood for efficient hydrovoltaic energy harvesting by Fe3O4 nanoparticle insertion. Acetone-assisted precursor infiltration ensures the homogenous distribution of Fe ions for gradience-free Fe3O4 nanoparticle formation in wood. The Fe3O4/wood nanocomposites result in an open-circuit voltage of 63 mV and a power density of ∼52 μW/m2 (∼165 times higher than the original wood) under ambient conditions. The output voltage and power density are further increased to 1 V and ∼743 μW/m2 under 3 suns solar irradiation. The enhancement could be attributed to the increase of surface charge, nanoporosity, and photothermal effect from Fe3O4. The device exhibits a stable voltage of ∼1 V for 30 h (3 cycles of 10 h) showing good long-term stability. The methodology offers the potential for hierarchical organic-inorganic nanocomposite design for scalable and efficient ambient energy harvesting.
Collapse
Affiliation(s)
- Ying Gao
- Co-Innovation
Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- Wallenberg
Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm SE-10044, Sweden
| | - Xuan Yang
- Wallenberg
Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm SE-10044, Sweden
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute
of Zhejiang University—Quzhou, Quzhou 324000, P. R. China
| | - Jonas Garemark
- Wallenberg
Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm SE-10044, Sweden
| | - Richard T. Olsson
- Wallenberg
Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm SE-10044, Sweden
| | - Hongqi Dai
- Co-Innovation
Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Farsa Ram
- Wallenberg
Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm SE-10044, Sweden
| | - Yuanyuan Li
- Wallenberg
Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm SE-10044, Sweden
| |
Collapse
|
30
|
Wang L, Zhang W, Deng Y. Advances and Challenges for Hydrovoltaic Intelligence. ACS NANO 2023. [PMID: 37506225 DOI: 10.1021/acsnano.3c02043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
In recent years, excessive exploitation and rapid population growth have posed numerous challenges. The climate crisis is deepening because of the unabated use of fossil fuels and the ascendance of greenhouse gas levels, so there is still an urgent need to seek different clean energy sources and electricity generating methods with the purpose of adjusting energy structures and solving environmental problems. In the ubiquitous hydrologic cycle, at least 60 petawatts (1015 W) energy can be supplied, but little of it has yet been utilized. Nowadays, hydrovoltaic intelligence has emerged and exhibited an ecofriendly concept of electricity generation compared with traditional methods with the rise of nanoscience and nanomaterials. Hence, it provides the prospect of upgrading the mode of water energy use, constructing a renewable energy industry, and alleviating environmental issues. In this review, starting by introducing different types of hydrovoltaic effect mechanisms─energy harvesting based on drawing potential of liquids; energy harvesting based on water evaporation, and energy harvesting based on moisture adsorption─we summarize the fabrication processes, material classifications, intelligent applications, and representative advances in detail. Moreover, the future development trends of hydrovoltaic intelligence and the challenges for improvement in electrical output are further discussed.
Collapse
Affiliation(s)
- Luomin Wang
- Research Institute for Frontier Science, Beihang University, Beijing 100191, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
| | - Weifeng Zhang
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
| | - Yuan Deng
- Research Institute for Frontier Science, Beihang University, Beijing 100191, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
| |
Collapse
|
31
|
Liu Y, Yu Z, Liu X, Cheng P, Zhao Y, Ma Y, Yang P, Liu K. Negative Pressure in Water for Efficient Heat Utilization and Transfer. NANO LETTERS 2023; 23:6651-6657. [PMID: 37459201 DOI: 10.1021/acs.nanolett.3c01855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Thermodynamic metastable water in negative pressure provides a possible solution to elevate the upper limit of evaporative heat transfer capacity and the efficiency of low-grade heat utilization, but practical implementations are challenging due to the difficulty in generating and maintaining large negative pressure. Herein, we report a novel structure with a hydrogel film as the evaporation surface and a permeable substrate as the functional layer to suppress cavitation. Based on the structure, we achieve an evaporation-driven flow system with negative pressure as low as -1.67 MPa. Molecular dynamics simulations elucidate the importance of strong water-polymer interactions in negative pressure generation. With the large negative pressure, we demonstrate a streaming potential generator that spontaneously converts environmental energy into electricity and outputs a voltage of 1.06 V. Moreover, we propose a "negative pressure heat pipe", which achieves a high heat transfer density of 9.6 kW cm-2 with a flow length of 1 m.
Collapse
Affiliation(s)
- Yuxi Liu
- MOE Key Laboratory of Hydrodynamic Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Zehua Yu
- MOE Key Laboratory of Hydrodynamic Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaowei Liu
- MOE Key Laboratory of Hydrodynamic Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Peng Cheng
- MOE Key Laboratory of Hydrodynamic Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Yifan Zhao
- MOE Key Laboratory of Hydrodynamic Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Yanni Ma
- MOE Key Laboratory of Hydrodynamic Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Peihua Yang
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Kang Liu
- MOE Key Laboratory of Hydrodynamic Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| |
Collapse
|
32
|
Hu X, Bao X, Zhang M, Fang S, Liu K, Wang J, Liu R, Kim SH, Baughman RH, Ding J. Recent Advances in Carbon Nanotube-Based Energy Harvesting Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2303035. [PMID: 37209369 DOI: 10.1002/adma.202303035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/14/2023] [Indexed: 05/22/2023]
Abstract
There has been enormous interest in technologies that generate electricity from ambient energy such as solar, thermal, and mechanical energy, due to their potential for providing sustainable solutions to the energy crisis. One driving force behind the search for new energy-harvesting technologies is the desire to power sensor networks and portable devices without batteries, such as self-powered wearable electronics, human health monitoring systems, and implantable wireless sensors. Various energy harvesting technologies have been demonstrated in recent years. Among them, electrochemical, hydroelectric, triboelectric, piezoelectric, and thermoelectric nanogenerators have been extensively studied because of their special physical properties, ease of application, and sometimes high obtainable efficiency. Multifunctional carbon nanotubes (CNTs) have attracted much interest in energy harvesting because of their exceptionally high gravimetric power outputs and recently obtained high energy conversion efficiencies. Further development of this field, however, still requires an in-depth understanding of harvesting mechanisms and boosting of the electrical outputs for wider applications. Here, various CNT-based energy harvesting technologies are comprehensively reviewed, focusing on working principles, typical examples, and future improvements. The last section discusses the existing challenges and future directions of CNT-based energy harvesters.
Collapse
Affiliation(s)
- Xinghao Hu
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Xianfu Bao
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Mengmeng Zhang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Shaoli Fang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Kangyu Liu
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Jian Wang
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Runmin Liu
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Shi Hyeong Kim
- Department of Advanced Textile R&D, Korea Institute of Industrial Technology, Ansan-si, Gyeonggi-do, 15588, Republic of Korea
| | - Ray H Baughman
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Jianning Ding
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| |
Collapse
|
33
|
Zhang Z, He H, Guo J, Zhao C, Gao Z, Song YY. Water Evaporation-Driven Arginine Enantiomer Recognition on a Self-Powered Flexible Chip with High Specificity. Anal Chem 2023; 95:8128-8136. [PMID: 37163772 DOI: 10.1021/acs.analchem.3c01378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Chiral recognition is a crucial issue in the biomedical and pharmaceutical research communities. Due to the need for expensive equipment, reagents, and external energy, enantiomer identification is difficult to perform outside of a laboratory. Based on water evaporation-induced hydrovoltaic effect, a power-free sensing platform with sensitive chiral recognition capability is proposed for the discrimination of enantiomers. The chiral recognizer was bovine serum albumin (BSA), a naturally occurring protein. Using arginine (Arg) enantiomers as the sensing targets, the difference in enantioselectivity between l-Arg and d-Arg on a BSA-modified porous carbon substrate can be measured directly from the output voltage. By combining the cyclization reaction between NO and O-phenylenediamine (OPD), it has been discovered that the sensitivity and specificity of enantioselective identification can be significantly enhanced based on the surface charges. The limit of detection (LOD) could be as low as 76.0 nM. In addition, the proposed chips are extremely flexible and can function under deformation without sacrificing output performance. This self-powered chiral recognition chip paves a new path for the detection of chiral molecules at any time, any place, and it also has excellent potential for use in flexible wearable technology.
Collapse
Affiliation(s)
- Zhechen Zhang
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Haoxuan He
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Junli Guo
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Chenxi Zhao
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Zhida Gao
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Yan-Yan Song
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| |
Collapse
|
34
|
Liu Z, Liu C, Chen Z, Huang H, Liu Y, Xue L, Sun J, Wang X, Xiong P, Zhu J. Recent advances in two-dimensional materials for hydrovoltaic energy technology. EXPLORATION (BEIJING, CHINA) 2023; 3:20220061. [PMID: 37324031 PMCID: PMC10191061 DOI: 10.1002/exp.20220061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/01/2022] [Indexed: 06/17/2023]
Abstract
Hydrovoltaic energy technology that generates electricity directly from the interaction of materials with water has been regarded as a promising renewable energy harvesting method. With the advantages of high specific surface area, good conductivity, and easily tunable porous nanochannels, two-dimensional (2D) nanomaterials have promising potential in high-performance hydrovoltaic electricity generation applications. Herein, this review summarizes the most recent advances of 2D materials for hydrovoltaic electricity generation, including carbon nanosheets, layered double hydroxide (LDH), and layered transition metal oxides and sulfides. Some strategies were introduced to improve the energy conversion efficiency and the output power of hydrovoltaic electricity generation devices based on 2D materials. The applications of these devices in self-powered electronics, sensors, and low-consumption devices are also discussed. Finally, the challenges and perspectives on this emerging technology are outlined.
Collapse
Affiliation(s)
- Zhihang Liu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Chao Liu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Zhaotian Chen
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Honglan Huang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Yifan Liu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Liang Xue
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Jingwen Sun
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Xin Wang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Pan Xiong
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Junwu Zhu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
| |
Collapse
|
35
|
Huangfu X, Guo Y, Mugo SM, Zhang Q. Hydrovoltaic Nanogenerators for Self-Powered Sweat Electrolyte Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207134. [PMID: 36627268 DOI: 10.1002/smll.202207134] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Human sweat comprises various electrolytes that are health status indicators. Conventional potentiometric electrolyte sensors require an electrical power source, which is expensive, bulky, and requires a complex architecture. Herein, this work demonstrates an electric nanogenerator fabricated using silicon nanowire (SiNW) arrays comprising modified carbon nanoparticles. The SiNW arrays platform is demonstrated as an effective self-powered sensor for sweat electrolyte analysis. It has been shown that an evaporation-induced water flow in nanochannels can yield an open-circuit voltage (Voc ) of 0.45 V and a short-circuit current of 10.2 µA at room temperature as a result of overlapped electric double layers. The electrolyte in the water flow results in a Voc decrease due to the charge shielding effect. The Voc is inversely proportional to the electrolyte concentration. The fabricated hydrovoltaic device shows the capability for sensing electrolytes in human sweat, which is useful in evaluating the hydration status of volunteers following intense physical exercise. The device depicts a novel response mechanism compared to conventional electrochemical sensors. Furthermore, the hydrovoltaic device shows a maximum output power of 1.42 µW, and as such has been successfully shown to drive various electronic devices including light-emitting diodes, a calculator, and an electronic timer.
Collapse
Affiliation(s)
- Xueqing Huangfu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yang Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Samuel M Mugo
- Department of Physical Sciences, MacEwan University, Edmonton, ABT5J4S2, Canada
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
36
|
Shen H, Xu K, Duan Y, Wu P, Qian Z, Chen Y, Luo Y, Liu C, Li Y, Cui J, Liu D. All-Printed Flexible Hygro-Thermoelectric Paper Generator. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206483. [PMID: 36683182 PMCID: PMC10037691 DOI: 10.1002/advs.202206483] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The conversion of ubiquitous hygrothermal resources into renewable energy offers significant potential for cable-free, self-powered systems that can operate worldwide without regard to climatic or geographic limitations. Here, an all-printed flexible hygro-thermoelectric paper generator is demonstrated that uses bifunctional mobile ions and electrons to make the moist-diffusion effect, the Soret effect, and the Seebeck effect work synergistically. In the ordinary hygrothermal settings, it generates an unconventional hygro-thermoelectric output pattern and shows almost a dozen-fold increase in positive hygro-thermopower of 26.70 mV K-1 and also another negative hygro-thermopower of -15.71 mV K-1 compared to pure thermopower. A single paper generator can produce a giant 680 mV displaying typical cyclic sinusoidal waveform characters with volt-sized amplitudes. The ion-electron conductive ink is easily printable and consists primarily of a Bi2 Te3 /PEDOT:PSS thermoelectric matrix modulated with a hygroscopic glycerol that releases ion charges for moist-diffusion effect and Soret effect, as well as electron charges for Seebeck effect. The emerged hygro-thermoelectric harvesting strategy from surrounding hygrothermal resources offers a revolutionary approach to the next generation of hybrid energy with cost-efficiency, flexibility, and sustainability, and also enables large-scale roll-to-roll production.
Collapse
Affiliation(s)
- Haoyu Shen
- School of Light Industry and EngineeringState Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyWushan Rd., 381#, Tianhe DistrictGuangzhouGuangdong510640China
| | - Ke Xu
- School of Light Industry and EngineeringState Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyWushan Rd., 381#, Tianhe DistrictGuangzhouGuangdong510640China
| | - Yulong Duan
- School of Light Industry and EngineeringState Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyWushan Rd., 381#, Tianhe DistrictGuangzhouGuangdong510640China
| | - Peilin Wu
- School of Light Industry and EngineeringState Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyWushan Rd., 381#, Tianhe DistrictGuangzhouGuangdong510640China
| | - Zhiyun Qian
- School of Light Industry and EngineeringState Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyWushan Rd., 381#, Tianhe DistrictGuangzhouGuangdong510640China
| | - Yonghao Chen
- School of Light Industry and EngineeringState Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyWushan Rd., 381#, Tianhe DistrictGuangzhouGuangdong510640China
| | - Yao Luo
- School of Light Industry and EngineeringState Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyWushan Rd., 381#, Tianhe DistrictGuangzhouGuangdong510640China
| | - Chaocheng Liu
- School of Light Industry and EngineeringState Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyWushan Rd., 381#, Tianhe DistrictGuangzhouGuangdong510640China
| | - Yang Li
- School of Light Industry and EngineeringState Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyWushan Rd., 381#, Tianhe DistrictGuangzhouGuangdong510640China
| | - Jiedong Cui
- School of Light Industry and EngineeringState Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyWushan Rd., 381#, Tianhe DistrictGuangzhouGuangdong510640China
| | - Detao Liu
- School of Light Industry and EngineeringState Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyWushan Rd., 381#, Tianhe DistrictGuangzhouGuangdong510640China
| |
Collapse
|
37
|
Composite GO@Silk membrane for capillary-driven energy conversion. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
38
|
Moist-electric films based on asymmetric distribution of sodium alginate oxygen-containing functional groups. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Yang C, Wang H, Bai J, He T, Cheng H, Guang T, Yao H, Qu L. Transfer learning enhanced water-enabled electricity generation in highly oriented graphene oxide nanochannels. Nat Commun 2022; 13:6819. [PMID: 36357386 PMCID: PMC9649687 DOI: 10.1038/s41467-022-34496-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 10/27/2022] [Indexed: 11/12/2022] Open
Abstract
Harvesting energy from spontaneous water flow within artificial nanochannels is a promising route to meet sustainable power requirements of the fast-growing human society. However, large-scale nanochannel integration and the multi-parameter coupling restrictive influence on electric generation are still big challenges for macroscale applications. In this regard, long-range (1 to 20 cm) ordered graphene oxide assembled framework with integrated 2D nanochannels have been fabricated by a rotational freeze-casting method. The structure can promote spontaneous absorption and directional transmission of water inside the channels to generate considerable electric energy. A transfer learning strategy is implemented to address the complicated multi-parameters coupling problem under limited experimental data, which provides highly accurate performance optimization and efficiently guides the design of 2D water flow enabled generators. A generator unit can produce ~2.9 V voltage or ~16.8 μA current in a controllable manner. High electric output of ~12 V or ~83 μA is realized by connecting several devices in series or parallel. Different water enabled electricity generation systems have been developed to directly power commercial electronics like LED arrays and display screens, demonstrating the material's potential for development of water enabled clean energy.
Collapse
Affiliation(s)
- Ce Yang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, 100084, Beijing, P. R. China
| | - Haiyan Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, 100084, Beijing, P. R. China
| | - Jiaxin Bai
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, 100084, Beijing, P. R. China
| | - Tiancheng He
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, 100084, Beijing, P. R. China
| | - Huhu Cheng
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, 100084, Beijing, P. R. China.
| | - Tianlei Guang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, 100084, Beijing, P. R. China
| | - Houze Yao
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, 100084, Beijing, P. R. China
| | - Liangti Qu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, 100084, Beijing, P. R. China.
| |
Collapse
|
40
|
Guan P, Zhu R, Hu G, Patterson R, Chen F, Liu C, Zhang S, Feng Z, Jiang Y, Wan T, Hu L, Li M, Xu Z, Xu H, Han Z, Chu D. Recent Development of Moisture-Enabled-Electric Nanogenerators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204603. [PMID: 36135971 DOI: 10.1002/smll.202204603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Power generation by converting energy from the ambient environment has been considered a promising strategy for developing decentralized electrification systems to complement the electricity supply for daily use. Wet gases, such as water evaporation or moisture in the atmosphere, can be utilized as a tremendous source of electricity by emerging power generation devices, that is, moisture-enabled-electric nanogenerators (MEENGs). As a promising technology, MEENGs provided a novel manner to generate electricity by harvesting energy from moisture, originating from the interactions between water molecules and hydrophilic functional groups. Though the remarkable progress of MEENGs has been achieved, a systematic review in this specific area is urgently needed to summarize previous works and provide sharp points to further develop low-cost and high-performing MEENGs through overcoming current limitations. Herein, the working mechanisms of MEENGs reported so far are comprehensively compared. Subsequently, a systematic summary of the materials selection and fabrication methods for currently reported MEENG construction is presented. Then, the improvement strategies and development directions of MEENG are provided. At last, the demonstrations of the applications assembled with MEENGs are extracted. This work aims to pave the way for the further MEENGs to break through the performance limitations and promote the popularization of future micron electronic self-powered equipment.
Collapse
Affiliation(s)
- Peiyuan Guan
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Renbo Zhu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Guangyu Hu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Robert Patterson
- Australian Centre for Advanced Photovoltaics, School of Photovoltaics and Renewable Energy Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Fandi Chen
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Chao Liu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Shuo Zhang
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Ziheng Feng
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Yue Jiang
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Tao Wan
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Mengyao Li
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Zhemi Xu
- Chemistry and Material Engineering College, Beijing Technology and Business University, Beijing, 100048, China
| | - Haolan Xu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, South Australia, 5095, Australia
| | - Zhaojun Han
- School of Chemical Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Dewei Chu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
41
|
Wang Y, Zhang L, Xie B, Zhao Z, Zhou X, Yang C, Chen H. Sandwich-structured ion exchange membrane/cotton fabric based flexible high-efficient and constant electricity generator. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
42
|
Feng JC, Xia H. Application of nanoarchitectonics in moist-electric generation. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1185-1200. [PMID: 36348936 PMCID: PMC9623139 DOI: 10.3762/bjnano.13.99] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/30/2022] [Indexed: 05/09/2023]
Abstract
The consumption of energy is an important resource that cannot be ignored in modern society. Non-renewable forms of energy, such as coal, natural gas, and oil, have always been important strategic resources and are always facing a crisis of shortage. Therefore, there is an urgent need for green renewable forms of energy. As an emerging green energy source, the moist-electric generator (MEG) has been studied in recent years and may become an energy source that can be utilized in daily life. Along with the advancement of technological means, nanoarchitectonics play an important role in MEG devices. This review aims to provide a comprehensive summary of the fundamentals of the MEG from the perspective of different material classifications and to provide guidance for future work in the field of MEGs. The effects of various parameters and structural designs on the output power, recent important literature and works, the mechanism of liquid-solid interactions at the nanoscale, and the application status and further potential of MEG devices are discussed in this review. It is expected that this review may provide valuable knowledge for future MEG research.
Collapse
Affiliation(s)
- Jia-Cheng Feng
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun130012, China
| | - Hong Xia
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun130012, China
| |
Collapse
|
43
|
A pressure driven electric energy generator exploiting a micro- to nano-scale glass porous filter with ion flow originating from water. Sci Rep 2022; 12:16827. [PMID: 36266310 PMCID: PMC9585039 DOI: 10.1038/s41598-022-21069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
We demonstrated a pressure driven energy harvesting device using water and that features a glass filter with porous channels. We employed powder sintering to fabricate the glass filter (2 cm diameter, 3 mm thickness) by packing a powder of borosilicate glass particles into a carbon mold and then thermally fusing this at 700°C under pressure. In constant flow rate experiment, the optimum average pore radius of the filter for power generation was 12 μm. Using this filter, power of 3.8 mW (27 V, 0.14 mA, 0.021% energy efficiency) was generated at a water flow speed of 50 mm/s. In constant pressure experiment, a power generator was equipped with a foot press unit with a 60 kg weight (830 kPa) and 50 mL of water. The optimum average pore radius for power generation in this experiment was 12 μm and power of 4.8 mW (18 V, 0.26 mA, 0.017% energy efficiency) was generated with 1.7 s duration. This was enough power for direct LED lighting and the capacitors could store enough energy to rotate a fan and operate a wireless communicator. Our pressure driven device is suitable for energy harvesting from slow movements like certain human physiological functions, e.g. walking.
Collapse
|
44
|
Zhang J, Hou Y, Lei L, Hu S. Moist-electric generators based on electrospun cellulose acetate nanofiber membranes with tree-like structure. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
45
|
Yu F, Liu G, Chen Z, Zhang L, Liu X, Zhang Q, Wu L, Wang X. All-Weather Freshwater and Electricity Simultaneous Generation by Coupled Solar Energy and Convection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40082-40092. [PMID: 35976351 DOI: 10.1021/acsami.2c12198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Integrating solar evaporation-driven desalination and electricity production has emerged as a promising approach to alleviate energy crisis and freshwater scarcity. However, there remain huge challenges to achieve high water productivity and steady power generation efficiency. Herein, a compact evaporation-induced water-electricity co-generation device was proposed using a bio-waste squid ink sphere-based cellulose fabric as an evaporator and a silicon nanowires array-based evaporation-driven moist-electric generator. The efficient localized solar thermal heating of the photothermal component leads to significant enhancement in freshwater yield, and the latent heat of vapor condensation is recycled to promote the electricity generation. More notably, the device is capable of harvesting wind energy toward all-weather water and power generation. The fabricated device demonstrated a high evaporation rate of 2.17 kg m-2 h-1 with a collection rate of 66.7% and a maximum output voltage of 1.48 V under one sun illumination with a wind speed of 4 m s-1. The outdoor experiments display a maximum water evaporation rate of 1.84 kg m-2 h-1 with a maximum output voltage of 1.35 V even on cloudy days. Such superior performance of a comprehensive device has great potential for sustainable and practical application in freshwater and electricity generation.
Collapse
Affiliation(s)
- Fang Yu
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials (Hubei University), School of Materials Science and Engineering, Hubei University, Wuhan 430062, P.R. China
| | - Gang Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials (Hubei University), School of Materials Science and Engineering, Hubei University, Wuhan 430062, P.R. China
| | - Zihe Chen
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Liu Zhang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China
| | - Xinghang Liu
- State Key Laboratory of Superhard Materials, Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun 130012, P.R. China
| | - Qinfang Zhang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China
| | - Liping Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials (Hubei University), School of Materials Science and Engineering, Hubei University, Wuhan 430062, P.R. China
| | - Xianbao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials (Hubei University), School of Materials Science and Engineering, Hubei University, Wuhan 430062, P.R. China
| |
Collapse
|
46
|
Achieving efficient power generation by designing bioinspired and multi-layered interfacial evaporator. Nat Commun 2022; 13:5077. [PMID: 36038582 PMCID: PMC9424234 DOI: 10.1038/s41467-022-32820-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/18/2022] [Indexed: 11/19/2022] Open
Abstract
Water evaporation is a natural phase change phenomenon occurring any time and everywhere. Enormous efforts have been made to harvest energy from this ubiquitous process by leveraging on the interaction between water and materials with tailored structural, chemical and thermal properties. Here, we develop a multi-layered interfacial evaporation-driven nanogenerator (IENG) that further amplifies the interaction by introducing additional bionic light-trapping structure for efficient light to heat and electric generation on the top and middle of the device. Notable, we also rationally design the bottom layer for sufficient water transport and storage. We demonstrate the IENG performs a spectacular continuous power output as high as 11.8 μW cm−2 under optimal conditions, more than 6.8 times higher than the currently reported average value. We hope this work can provide a new bionic strategy using multiple natural energy sources for effective power generation. The energy harvesting from ubiquitous natural water evaporation offers a great green energy source. Here, the authors report a bioinspired and multi-layered interfacial evaporation-driven nanogeneration strategy for efficient light-to-heat and electricity generation with continuous power output.
Collapse
|
47
|
Li J, Dai Y, Jiao S, Liu X. MOFs/Ketjen Black-Coated Filter Paper for Spontaneous Electricity Generation from Water Evaporation. Polymers (Basel) 2022; 14:3509. [PMID: 36080584 PMCID: PMC9459984 DOI: 10.3390/polym14173509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022] Open
Abstract
Metal-organic frameworks (MOFs) have the advantages of tunable pore sizes and porosity and have demonstrated unique advantages for various applications. This study synthesized composite MOF nanomaterials by modifying MOF801 or AlOOH with UIO66. The composite nanomaterials, UIO66/MOF801 and UIO66/AlOOH showed increased Zeta potential than their pristine form, AlOOH, UIO66 and MOF801. For the first time, the composite MOFs were used to fabricate filter paper-based evaporation-driven power generators for spontaneous electricity generation. The MOFs-KBF membrane was constructed by coating filter paper (10 × 50 mm) with composite MOFs and conductive Ketjen Black. The UIO66/MOF801 decorated device achieved a maximum open circuit voltage of 0.329 ± 0.005 V and maximum output power of 2.253 μW. The influence of salt concentration (0.1-0.5 M) on power generation was also analyzed and discussed. Finally, as a proof-of-concept application, the device was employed as a salinity sensor to realize remote monitoring of salinity. This work demonstrated the potential of flexible MOF composites for spontaneous power generation from water evaporation and provides a potential way to enhance the performance of evaporation-driven power generators.
Collapse
Affiliation(s)
| | | | | | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| |
Collapse
|
48
|
Cai T, Lan L, Peng B, Zhang C, Dai S, Zhang C, Ping J, Ying Y. Bilayer Wood Membrane with Aligned Ion Nanochannels for Spontaneous Moist-Electric Generation. NANO LETTERS 2022; 22:6476-6483. [PMID: 35929970 DOI: 10.1021/acs.nanolett.2c00919] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Water-enabled electricity generation (WEG) technologies are considered to be an attractive and renewable approach to meet energy crisis and environmental pollution globally. However, the existing WEG technologies still face tremendous challenges including high material cost, harmful components, and specific environmental requirements. Herein, a high-performance wood-based moisture-enabled electric generator (WMEG) is fabricated. Natural wood is cut perpendicular to the tree growth direction and engineered by simple chemical modification. The obtained bilayer wood membrane has robust mechanical framework with aligned ion nanochannels, abundant dissociated functional groups, and spontaneous water adsorption in the air. At the relative humidity of 85%, one WMEG can generate a voltage of 0.57 V. The device can also effectively sense biological water information as a self-powered sensor. The biophile design contributes a practical moist-electric generation strategy that offers clean energy, especially for undeveloped and disaster-relief regions where electricity is limited by high cost or crippled power facilities.
Collapse
Affiliation(s)
- Tailong Cai
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, P.R. China
| | - Lingyi Lan
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Bo Peng
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Chao Zhang
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Shufen Dai
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Chi Zhang
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, P.R. China
| |
Collapse
|
49
|
Wang S, Liu M, Yang X, Lu Q, Xiong Z, Li L, Zheng H, Feng S, Zhang T. An unconventional vertical fluidic-controlled wearable platform for synchronously detecting sweat rate and electrolyte concentration. Biosens Bioelectron 2022; 210:114351. [PMID: 35569269 DOI: 10.1016/j.bios.2022.114351] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/25/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
Epidermal microfluidic devices with long microchannels have been developed for continuous sweat analysis, which are crucial to assess personal hydration status and underlying health conditions. However, the flow resistance in long channels and the ionic concentration variation significantly affect the accuracy of both the sweat rate and electrolyte concentration measurements. Herein, we present a novel fluidic-controlled wearable platform for synchronously dropwise-detecting the sweat rate and total electrolyte concentration. The unconventional platform consisting of a vertically shortened channel, a pair of embedded electrodes and an absorption layer, is designed to minimize the flow resistance and transform sweat fluidics into uniform micro-droplets for chronological and dropwise detection. Real-time sweat conductance is decoupled from a square-wave-like curve, where the sweat rate and electrolyte concentration can be derived from the interval time and peak value, respectively. Flexible and wearable band devices are demonstrated to show their potential application for hydration status assessment during exercises.
Collapse
Affiliation(s)
- Shuqi Wang
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Mengyuan Liu
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China
| | - Xianqing Yang
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China
| | - Qifeng Lu
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China; School of Chips, XJTLU Entrepreneur College (Taicang), Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, Jiangsu, 215123, PR China
| | - Zuoping Xiong
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Lianhui Li
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Hui Zheng
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Simin Feng
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Ting Zhang
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 385 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China; Gusu Laboratory of Materials, 388 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, PR China.
| |
Collapse
|
50
|
Liu X, Ueki T, Gao H, Woodard TL, Nevin KP, Fu T, Fu S, Sun L, Lovley DR, Yao J. Microbial biofilms for electricity generation from water evaporation and power to wearables. Nat Commun 2022; 13:4369. [PMID: 35902587 PMCID: PMC9334603 DOI: 10.1038/s41467-022-32105-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Employing renewable materials for fabricating clean energy harvesting devices can further improve sustainability. Microorganisms can be mass produced with renewable feedstocks. Here, we demonstrate that it is possible to engineer microbial biofilms as a cohesive, flexible material for long-term continuous electricity production from evaporating water. Single biofilm sheet (~40 µm thick) serving as the functional component in an electronic device continuously produces power density (~1 μW/cm2) higher than that achieved with thicker engineered materials. The energy output is comparable to that achieved with similar sized biofilms catalyzing current production in microbial fuel cells, without the need for an organic feedstock or maintaining cell viability. The biofilm can be sandwiched between a pair of mesh electrodes for scalable device integration and current production. The devices maintain the energy production in ionic solutions and can be used as skin-patch devices to harvest electricity from sweat and moisture on skin to continuously power wearable devices. Biofilms made from different microbial species show generic current production from water evaporation. These results suggest that we can harness the ubiquity of biofilms in nature as additional sources of biomaterial for evaporation-based electricity generation in diverse aqueous environments. Though water evaporation-driven electricity generation is an attractive sustainable energy production strategy, existing electronic devices suffer from poor performance or is costly. Here, the authors report sustainable biofilms for efficient, low-cost evaporation-based electricity production
Collapse
Affiliation(s)
- Xiaomeng Liu
- Department of Electrical Computer and Engineering, University of Massachusetts, Amherst, MA, USA
| | - Toshiyuki Ueki
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - Hongyan Gao
- Department of Electrical Computer and Engineering, University of Massachusetts, Amherst, MA, USA
| | - Trevor L Woodard
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - Kelly P Nevin
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - Tianda Fu
- Department of Electrical Computer and Engineering, University of Massachusetts, Amherst, MA, USA
| | - Shuai Fu
- Department of Electrical Computer and Engineering, University of Massachusetts, Amherst, MA, USA
| | - Lu Sun
- Department of Electrical Computer and Engineering, University of Massachusetts, Amherst, MA, USA
| | - Derek R Lovley
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA. .,Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA.
| | - Jun Yao
- Department of Electrical Computer and Engineering, University of Massachusetts, Amherst, MA, USA. .,Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA. .,Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|