1
|
D'Agosta P, Achilli S, Tumino F, Orbelli Biroli A, Di Santo G, Petaccia L, Onida G, Li Bassi A, Lobo-Checa J, Casari CS. Unraveling the Band Structure and Orbital Character of a π-Conjugated 2D Graphdiyne-Based Organometallic Network. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406533. [PMID: 39544162 DOI: 10.1002/smll.202406533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/10/2024] [Indexed: 11/17/2024]
Abstract
Graphdiyne-based carbon systems generate intriguing layered sp-sp2 organometallic lattices, characterized by flexible acetylenic groups connecting planar carbon units through metal centers. At their thinnest limit, they can result in 2D organometallic networks exhibiting unique quantum properties and even confining the surface states of the substrate, which is of great importance for fundamental studies. In this work, the on-surface synthesis of a highly crystalline 2D organometallic network grown on Ag(111) is presented. The electronic structure of this mixed honeycomb-kagome arrangement - investigated by angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy - reveals a strong electronic conjugation within the network, leading to the formation of two intense electronic band-manifolds. In comparison to theoretical density functional theory calculations, it is observed that these bands exhibit a well-defined orbital character that can be associated with distinct regions of the sp-sp2 monomers. Moreover, it is found that the halogen by-products resulting from the network formation locally affect the pore-confined states, causing a significant energy shift. This work contributes to the understanding of the growth and electronic structure of graphdiyne-like 2D networks, providing insights into the development of novel carbon materials beyond graphene with tailored properties.
Collapse
Affiliation(s)
- Paolo D'Agosta
- Department of Energy, Politecnico di Milano, via G. Ponzio 34/3, Milano, I-20133, Italy
| | - Simona Achilli
- Department of Physics "Aldo Pontremoli", Università degli Studi di Milano, Via G. Celoria 16, Milano, I-20133, Italy
- INFN, Sezione di Milano, Milano, I-20133, Italy
| | - Francesco Tumino
- Department of Energy, Politecnico di Milano, via G. Ponzio 34/3, Milano, I-20133, Italy
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON, K7L3N6, Canada
| | | | - Giovanni Di Santo
- Elettra Sincrotrone Trieste, Strada Statale 14 km 163.5, Trieste, I-34149, Italy
| | - Luca Petaccia
- Elettra Sincrotrone Trieste, Strada Statale 14 km 163.5, Trieste, I-34149, Italy
| | - Giovanni Onida
- Department of Physics "Aldo Pontremoli", Università degli Studi di Milano, Via G. Celoria 16, Milano, I-20133, Italy
- INFN, Sezione di Milano, Milano, I-20133, Italy
| | - Andrea Li Bassi
- Department of Energy, Politecnico di Milano, via G. Ponzio 34/3, Milano, I-20133, Italy
| | - Jorge Lobo-Checa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, E-50009, Spain
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza, E-50009, Spain
| | - Carlo S Casari
- Department of Energy, Politecnico di Milano, via G. Ponzio 34/3, Milano, I-20133, Italy
| |
Collapse
|
2
|
Zhang W, Xu J, Wang T, Lin X, Wang F. Graphdiyne as an emerging sensor platform: Principles, synthesis and application. J Adv Res 2024:S2090-1232(24)00468-5. [PMID: 39414227 DOI: 10.1016/j.jare.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/20/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Graphdiyne (GDY) is a kind of carbon material, which has highly delocalized π-conjugated system and feasible green synthesis. Nowadays, the use of GDY substrate as a sensing platform has become a new research hotspot and is rapidly developing. However, its application as a sensor is still relatively overlook compared to other fields. AIM OF REVIEW This study is for the purpose of making researchers have a complete comprehensive understanding of GDY and its associated sensing platforms. KEY SCIENTIFIC CONCEPTS OF REVIEW This study introduces the structure, unique characteristics, and synthesis progress of GDY material. Moreover, the article systematically summarizes the improvement of GDY-based sensors in life, health and environmental detection. It also discusses the opportunities and challenges of designing high-performance GDY-based sensing platforms with the assistance of machine learning and theoretical calculate. It has essential scientific and practical meaning for accelerating the development of sensing platforms which base on GDY, triggering unknown phenomena and knowledge of material research, and initiating unlimited space for scientific innovation.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Jing Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; College of Life Science, Xinyang Normal University, Xinyang 464000, China.
| | - Tian Wang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Xi Lin
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China.
| | - Fu Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China; Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi University of International Trade & Commerce, Xianyang 712046, China.
| |
Collapse
|
3
|
Li H, Wang Y, Yang B, Zhang H, Xie M, Chi L. Theoretical Investigation on the Initial Reaction Mechanism of Hexaethynylbenzene on Au(111) Surface. J Phys Chem A 2024; 128:7536-7545. [PMID: 39194318 DOI: 10.1021/acs.jpca.4c02312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Graphyne has attracted considerable interest and attention since its successful synthesis, due to its enormous potential for applications in the fields of electronics, energy, catalysis, information technology, etc. Although various methods for synthesizing graphyne have been explored, single-layer graphynes have not been successfully developed. Hexaethynylbenzene (HEB) is considered an ideal precursor molecule because it can undergo Glaser coupling reactions between molecules to synthesize single layer graphdiyne on single crystal metal surfaces via on-surface reactions. Unfortunately, this method fails to achieve the expected results, and the underlying mechanism is not clear. In this work, we employed a combination of ab initio molecular dynamics (AIMD) and quantum mechanics (QM) methods to investigate the initial reaction mechanism of HEB molecules on a Au(111) surface. We revealed that HEB molecules undergo both intermolecular coupling and intramolecular cyclization on the Au(111) surface. The favorable pathways of these two types of reactions were then distinguished, confirming that the distance between the terminal carbon atoms of the ethynyl groups plays an important role in C-C coupling. The insights revealed from this work could facilitate the rational design of precursor molecules and deepen the understanding of the reaction processes.
Collapse
Affiliation(s)
- Hailong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Yuying Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Biao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Haiming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Miao Xie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| |
Collapse
|
4
|
Zhao W, Haag F, Piquero-Zulaica I, Abd El-Fattah ZM, Pendem P, Vezzoni Vicente P, Zhang YQ, Cao N, Seitsonen AP, Allegretti F, Yang B, Barth JV. Transmetalation in Surface-Confined Single-Layer Organometallic Networks with Alkynyl-Metal-Alkynyl Linkages. ACS NANO 2024; 18:20157-20166. [PMID: 39042431 PMCID: PMC11308921 DOI: 10.1021/acsnano.4c02263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Transmetalation represents an appealing strategy toward fabricating and tuning functional metal-organic polymers and frameworks for diverse applications. In particular, building two-dimensional metal-organic and organometallic networks affords versatile nanoarchitectures of potential interest for nanodevices and quantum technology. The controlled replacement of embedded metal centers holds promise for exploring versatile material varieties by serial modification and different functionalization. Herein, we introduce a protocol for the modification of a single-layer carbon-metal-based organometallic network via transmetalation. By integrating external Cu atoms into the alkynyl-Ag organometallic network constructed with 1,3,5-triethynylbenzene precursors, we successfully realized in situ its highly regular alkynyl-Cu counterpart on the Ag(111) surface. While maintaining a similar lattice periodicity and pore morphology to the original alkynyl-Ag sheet, the Cu-based network exhibits increased thermal stability, guaranteeing improved robustness for practical implementation.
Collapse
Affiliation(s)
- Wenchao Zhao
- Physics
Department E20, TUM School of Natural Sciences, Technical University of Munich, James Franck Straße 1, Garching 85748, Germany
| | - Felix Haag
- Physics
Department E20, TUM School of Natural Sciences, Technical University of Munich, James Franck Straße 1, Garching 85748, Germany
| | - Ignacio Piquero-Zulaica
- Physics
Department E20, TUM School of Natural Sciences, Technical University of Munich, James Franck Straße 1, Garching 85748, Germany
| | - Zakaria M. Abd El-Fattah
- Physics
Department, Faculty of Science, Al-Azhar
University, Nasr City, Cairo 11884, Egypt
- Physics
Department, Faculty of Science, Galala University, New Galala City, Suez 43511, Egypt
| | - Prashanth Pendem
- Physics
Department E20, TUM School of Natural Sciences, Technical University of Munich, James Franck Straße 1, Garching 85748, Germany
| | - Pablo Vezzoni Vicente
- Physics
Department E20, TUM School of Natural Sciences, Technical University of Munich, James Franck Straße 1, Garching 85748, Germany
| | - Yi-Qi Zhang
- Physics
Department E20, TUM School of Natural Sciences, Technical University of Munich, James Franck Straße 1, Garching 85748, Germany
- Institute
of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Nan Cao
- Physics
Department E20, TUM School of Natural Sciences, Technical University of Munich, James Franck Straße 1, Garching 85748, Germany
| | - Ari Paavo Seitsonen
- Département
de Chemie, École Normale Supérieure, 24 rue Lhomond, Paris F-75005, France
| | - Francesco Allegretti
- Physics
Department E20, TUM School of Natural Sciences, Technical University of Munich, James Franck Straße 1, Garching 85748, Germany
| | - Biao Yang
- Physics
Department E20, TUM School of Natural Sciences, Technical University of Munich, James Franck Straße 1, Garching 85748, Germany
- Institute
of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials and
Devices, Soochow University, 199 Ren’ai Road, Suzhou, Jiangsu 215123, China
| | - Johannes V. Barth
- Physics
Department E20, TUM School of Natural Sciences, Technical University of Munich, James Franck Straße 1, Garching 85748, Germany
| |
Collapse
|
5
|
Kang LX, Wang BX, Zhang XY, Zhu YC, Li DY, Liu PN. Construction of Two-Dimensional Organometallic Coordination Networks with Both Organic Kagome and Semiregular Metal Lattices on Au(111). J Phys Chem Lett 2024; 15:6108-6114. [PMID: 38829304 DOI: 10.1021/acs.jpclett.4c01192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Two-dimensional metal-organic networks (2D MONs) having heterogeneous coordination nodes (HCNs) could exhibit excellent performance in catalysis and optoelectronics because of the unbalanced electron distribution of the coordinating metals. Therefore, the design and construction of 2D MONs with HCNs are highly desirable but remain challenging. Here, we report the construction of 2D organometallic coordination networks with an organic Kagome lattice and a semiregular metal lattice on Au(111) via the in situ formation of HCNs. Using a bifunctional precursor 1,4-dibromo-2,5-diisocyanobenzene, the coordination of isocyano with Au adatom on a room-temperature Au(111) yielded metal-organic coordination chains with isocyano-Au-isocyano nodes. In contrast, on a high-temperature Au(111), a selective debromination/coordination cascade reaction occurred, affording 2D organometallic coordination networks with phenyl-Au-isocyano nodes. By combining scanning tunneling microscopy and density functional theory calculations, we determined the structures of coordination products and the nature of coordination nodes, demonstrating a thermodynamically favorable pathway for forming the phenyl-Au-isocyano nodes.
Collapse
Affiliation(s)
- Li-Xia Kang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Bing-Xin Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Xin-Yu Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Ya-Cheng Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Deng-Yuan Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
- Key Laboratory of Natural Medicines Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
- Key Laboratory of Natural Medicines Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
6
|
De Boni F, Pilot R, Milani A, Ivanovskaya VV, Abraham RJ, Casalini S, Pedron D, Casari CS, Sambi M, Sedona F. Structure and vibrational properties of 1D molecular wires: from graphene to graphdiyne. NANOSCALE 2024; 16:11211-11222. [PMID: 38775497 DOI: 10.1039/d4nr00943f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Graphyne- and graphdiyne-like model systems have attracted much attention from many structural, theoretical, and synthetic scientists because of their promising electronic, optical, and mechanical properties, which are crucially affected by the presence, abundance and distribution of triple bonds within the nanostructures. In this work, we performed the two-step bottom-up on-surface synthesis of graphyne- and graphdiyne-based molecular wires on the Au(111). We characterized their structural and chemical properties both in situ (UHV conditions) through STM and XPS and ex situ (in air) through Raman spectroscopy. By comparing the results with the well-known growth of poly(p-phenylene) wires (namely the narrowest armchair graphene nanoribbon), we were able to show how to discriminate different numbers of triple bonds within a molecule or a nanowire also containing phenyl rings. Even if the number of triple bonds can be effectively determined from the main features of STM images and confirmed by fitting the C1s peak in XPS spectra, we obtained the most relevant results from ex situ Raman spectroscopy, despite the sub-monolayer amount of molecular wires. The detailed analysis of Raman spectra, combined with density functional theory (DFT) simulations, allowed us to identify the main features related to the presence of isolated (graphyne-like systems) or at least two conjugated triple bonds (graphdiyne-like systems). Moreover, other spectral features can be exploited to understand if the chemical structure of graphyne- and graphdiyne-based nanostructures suffered unwanted reactions. As in the case of sub-monolayer graphene nanoribbons obtained by on-surface synthesis, we demonstrate that Raman spectroscopy can be used for a fast, highly sensitive and non-destructive determination of the properties, the quality and the stability of the graphyine- and graphdiyne-based nanostructures obtained by this highly promising approach.
Collapse
Affiliation(s)
- Francesco De Boni
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Roberto Pilot
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy.
- Consorzio INSTM, Unità di Ricerca di Padova, Padova, Italy
| | - Alberto Milani
- Department of Energy, Politecnico di Milano, via Ponzio 34/3, I-20133 Milano, Italy
| | - Viktoria V Ivanovskaya
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Raichel J Abraham
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Stefano Casalini
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Danilo Pedron
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Carlo S Casari
- Department of Energy, Politecnico di Milano, via Ponzio 34/3, I-20133 Milano, Italy
| | - Mauro Sambi
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy.
- Consorzio INSTM, Unità di Ricerca di Padova, Padova, Italy
| | - Francesco Sedona
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
7
|
Li X, Ge H, Gao Y, Yang F, Kang F, Xue R, Yan L, Du S, Xu W, Zhang H, Chi L. Scanning Tunneling Spectroscopy Investigation of Au- bis-acetylide Networks on Au(111): The Influence of Metal-Organic Hybridization. J Phys Chem Lett 2024; 15:4593-4601. [PMID: 38639727 DOI: 10.1021/acs.jpclett.4c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Graphdiyne (GDY) is an appealing two-dimensional carbon material, but the on-surface synthesis of a single layer remains challenging. Demetalation of well-crystalline metal acetylide networks, though in its infancy, provides a new avenue to on-surface synthesized GDY substructures. In spite of the synthetic efforts and theoretical concerns, there are few reports steeped in elaborate characterization of the electronic influence of metalation. In this context, we focused on the surface supported Au-bis-acetylide network, which underwent demetalation after further annealing to form hydrogen-substituted GDY. We made a comprehensive study on the geometric structure and electronic structure and the corresponding demetalized structure on Au(111) through STM, noncontact atomic force microscopy (nc-AFM), scanning tunneling spectroscopy (STS), and density functional theory (DFT) simulations. The bandgap of the Au-bis-acetylide network on Au(111) is measured to be 2.7 eV, while the bandgap of a fully demetalized Au-bis-acetylide network is estimated to be about 4.1 eV. Our findings reveal that the intercalated Au adatoms are positioned closer to the metal surface compared with the organic skeletons, facilitating electronic hybridization between the surface state and unoccupied frontier molecular orbitals of organic components. This leads to an extended conjugation through Au-bis-acetylene bonds, resulting in a reduced bandgap.
Collapse
Affiliation(s)
- Xuechao Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Haitao Ge
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yixuan Gao
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Fangyu Yang
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Faming Kang
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Renjie Xue
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Linghao Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Shixuan Du
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Xu
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Haiming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- Department of Materials Science and Engineering, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
8
|
Liu Q, Wang X, Yu J, Wang J. Graphyne and graphdiyne nanoribbons: from their structures and properties to potential applications. Phys Chem Chem Phys 2024; 26:1541-1563. [PMID: 38165768 DOI: 10.1039/d3cp04393b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Graphyne (GY) and graphdiyne (GDY) have properties including unique sp- and sp2-hybrid carbon atomic structures, natural non-zero band gaps, and highly conjugated π electrons. GY and GDY have good application prospects in many fields, including catalysis, solar cells, sensors, and modulators. Under the influence of the boundary effect and quantum size effect, quasi-one-dimensional graphyne nanoribbons (GYNRs) and graphdiyne nanoribbons (GDYNRs) show novel physical properties. The various structures available give GYNRs and GDYNRs greater band structure and electronic properties, and their excellent physical and chemical properties differ from those of two-dimensional GY and GDY. However, the development of GYNRs and GDYNRs still faces problems, including issues with accurate synthesis, advanced structural characterization, the structure-performance correlation of materials, and potential applications. In this review, the structures and physical properties of quasi-one-dimensional GYNRs and GDYNRs are reviewed, their advantages and disadvantages are summarized, and their potential applications are highlighted. This review provides a meaningful basis and research foundation for the design and development of high-performance materials and devices based on GYNRs and GDYNRs in the field of energy.
Collapse
Affiliation(s)
- Qiaohan Liu
- College of Science, Liaoning Petrochemical University, Fushun 113001, P. R. China.
| | - Xiaorong Wang
- School of petrochemical engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Jing Yu
- College of Science, Liaoning Petrochemical University, Fushun 113001, P. R. China.
| | - Jingang Wang
- College of Science, Liaoning Petrochemical University, Fushun 113001, P. R. China.
| |
Collapse
|
9
|
Giovanelli L, Pawlak R, Hussein F, MacLean O, Rosei F, Song W, Pigot C, Dumur F, Gigmes D, Ksari Y, Bondino F, Magnano E, Meyer E, Clair S. On-Surface Synthesis of Unsaturated Hydrocarbon Chains through C-S Activation. Chemistry 2022; 28:e202200809. [PMID: 35657383 PMCID: PMC9540368 DOI: 10.1002/chem.202200809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Indexed: 11/05/2022]
Abstract
We use an on-surface synthesis approach to drive the homocoupling reaction of a simple dithiophenyl-functionalized precursor on Cu(111). The C-S activation reaction is initiated at low annealing temperature and yields unsaturated hydrocarbon chains interconnected in a fully conjugated reticulated network. High-resolution atomic force microscopy imaging reveals the opening of the thiophenyl rings and the presence of trans- and cis-oligoacetylene chains as well as pentalene units. The chemical transformations were studied by C 1s and S 2p core level photoemission spectroscopy and supported by theoretical calculations. At higher annealing temperature, additional cyclization reactions take place, leading to the formation of small graphene flakes.
Collapse
Affiliation(s)
| | - Rémy Pawlak
- University of BaselDepartment of PhysicsBaselCH4056Switzerland
| | | | - Oliver MacLean
- Key Laboratory of Functional Materials Physics andChemistry of the Ministry of EducationJilin Normal UniversityChangchun130103China
- Institut National de la Recherche ScientifiqueVarennesQuébecJ3X 1S2Canada
| | - Federico Rosei
- Institut National de la Recherche ScientifiqueVarennesQuébecJ3X 1S2Canada
| | - Wentao Song
- Aix-Marseille Univ, CNRS, IM2NPMarseilleFrance
| | | | | | | | | | - Federica Bondino
- IOM-CNR Laboratorio TASC AREA Science Park, Basovizza34149TriesteItaly
| | - Elena Magnano
- IOM-CNR Laboratorio TASC AREA Science Park, Basovizza34149TriesteItaly
- Department of PhysicsUniversity of JohannesburgPO Box 524Auckland Park2006South Africa
| | - Ernst Meyer
- University of BaselDepartment of PhysicsBaselCH4056Switzerland
| | | |
Collapse
|
10
|
Achilli S, Tumino F, Rabia A, Orbelli Biroli A, Li Bassi A, Bossi A, Manini N, Onida G, Fratesi G, Casari CS. Steric hindrance in the on-surface synthesis of diethynyl-linked anthracene polymers. Phys Chem Chem Phys 2022; 24:13616-13624. [PMID: 35616431 DOI: 10.1039/d2cp00730d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hybrid sp-sp2 structures can be efficiently obtained on metal substrates via on-surface synthesis. The choice of both the precursor and the substrate impacts on the effectiveness of the process and the stability of the formed structures. Here we demonstrate that using anthracene-based precursor molecules on Au(111) the formation of polymers hosting sp carbon chains is affected by the steric hindrance between aromatic groups. In particular, by scanning tunneling microscopy experiments and density functional theory simulations we show that the de-metalation of organometallic structures induces a lateral separation of adjacent polymers that prevents the formation of ordered domains. This study contributes to the understanding of the mechanisms driving the on-surface synthesis processes, a fundamental step toward the realization of novel carbon-based nanostructures with perspective applications in nanocatalysis, photoconversion, and nano-electronics.
Collapse
Affiliation(s)
- Simona Achilli
- ETSF and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, via Celoria 16, Milano, Italy.
| | - Francesco Tumino
- Department of Energy, Politecnico di Milano, via Ponzio 34, Milano, Italy.
| | - Andi Rabia
- Department of Energy, Politecnico di Milano, via Ponzio 34, Milano, Italy.
| | - Alessio Orbelli Biroli
- Dipartimento di Chimica, Università di Pavia, via Taramelli 12 - 27100, Pavia, Italy.,Istituto di Scienze e Tecnologie Chimiche "G. Natta", Consiglio Nazionale delle Ricerche (CNR-SCITEC), via Golgi 19 - 20133 Milano; PST via G. Fantoli 16/15 - 20138 Milano; SmartMatLab Centre, via Golgi 19 - 20133, Milano, Italy
| | - Andrea Li Bassi
- Department of Energy, Politecnico di Milano, via Ponzio 34, Milano, Italy.
| | - Alberto Bossi
- Istituto di Scienze e Tecnologie Chimiche "G. Natta", Consiglio Nazionale delle Ricerche (CNR-SCITEC), via Golgi 19 - 20133 Milano; PST via G. Fantoli 16/15 - 20138 Milano; SmartMatLab Centre, via Golgi 19 - 20133, Milano, Italy
| | - Nicola Manini
- ETSF and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, via Celoria 16, Milano, Italy.
| | - Giovanni Onida
- ETSF and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, via Celoria 16, Milano, Italy.
| | - Guido Fratesi
- ETSF and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, via Celoria 16, Milano, Italy.
| | | |
Collapse
|
11
|
Serafini P, Milani A, Tommasini M, Castiglioni C, Proserpio DM, Bottani CE, Casari CS. Vibrational properties of graphdiynes as 2D carbon materials beyond graphene. Phys Chem Chem Phys 2022; 24:10524-10536. [PMID: 35442257 PMCID: PMC9425158 DOI: 10.1039/d2cp00980c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Two-dimensional (2D) hybrid sp–sp2 carbon systems are an appealing subject for science and technology. For these materials, topology and structure significantly affect electronic and vibrational properties. We investigate here by periodic density-functional theory (DFT) calculations the Raman and IR spectra of 2D carbon crystals belonging to the family of graphdiynes (GDYs) and having different structures and topologies. By joining DFT calculations with symmetry analysis, we assign the IR and Raman modes in the spectra of all the investigated systems. On this basis, we discuss how the modulation of the Raman and IR active bands depends on the different interactions between sp and sp2 domains. The symmetry-based classification allows identifying the marker bands sensitive to the different peculiar topologies. These results show the effectiveness of vibrational spectroscopy for the characterization of new nanostructures, deepening the knowledge of the subtle interactions that take place in these 2D materials. Raman and IR spectra investigation of 2D carbon crystals belonging to the family of graphdiynes (GDYs) and having different structures is performed in this paper, focusing on how these spectra are affected by different topological features.![]()
Collapse
Affiliation(s)
- P Serafini
- Department of Energy, Politecnico di Milano, Via Ponzio 23/3, 20133 Milan, Italy.
| | - A Milani
- Department of Energy, Politecnico di Milano, Via Ponzio 23/3, 20133 Milan, Italy.
| | - M Tommasini
- Department of Chemistry, Materials and Chem. Eng. 'G.Natta', Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - C Castiglioni
- Department of Chemistry, Materials and Chem. Eng. 'G.Natta', Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - D M Proserpio
- Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milano, Italy
| | - C E Bottani
- Department of Energy, Politecnico di Milano, Via Ponzio 23/3, 20133 Milan, Italy.
| | - C S Casari
- Department of Energy, Politecnico di Milano, Via Ponzio 23/3, 20133 Milan, Italy.
| |
Collapse
|
12
|
Li SW, Zhang RX, Kang LX, Li DY, Xie YL, Wang CX, Liu PN. Steering Metal-Organic Network Structures through Conformations and Configurations on Surfaces. ACS NANO 2021; 15:18014-18022. [PMID: 34677047 DOI: 10.1021/acsnano.1c06615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular adsorption conformations and arrangement configurations on surfaces are important structural aspects of surface stereochemistry, but their roles in steering the structures of metal-organic networks (MONs) remain vague and unexplored. In this study, we constructed MONs by the coordination self-assembly of isocyanides on Cu(111) and Ag(111) surfaces and demonstrated that the MON structures can be steered by surface stereochemistry, including the adsorption conformations of the isocyanide molecules and the arrangement configurations of the coordination nodes and subunits. The coordination self-assembly of 1,4-phenylene diisocyanobenzene afforded a honeycomb MON consisting of 3-fold (isocyano)3-Cu motifs on a Cu(111) surface. In contrast, geometrically different chevron-shaped 1,3-phenylene diisocyanobenzene (m-DICB) failed to generate a MON, which is ascribable to its standing conformation on the Cu(111) surface. However, m-DICB was adsorbed in a flat conformation on a Ag(111) surface, which has a larger lattice constant than a Cu(111) surface, and smoothly underwent coordination self-assembly to form a MON consisting of (isocyano)3-Ag motifs. Interestingly, only C3-Ag nodes with heterotactic configurations could grow into larger subunits; those subunits with heterotactic configurations further grew into Sierpiński triangle fractals (up to fourth order), while subunits with homotactic configurations afforded a triangular MON.
Collapse
Affiliation(s)
- Shi-Wen Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ruo-Xi Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Li-Xia Kang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Deng-Yuan Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yu-Li Xie
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Cheng-Xin Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
13
|
Serafini P, Milani A, Proserpio DM, Casari CS. Designing All Graphdiyne Materials as Graphene Derivatives: Topologically Driven Modulation of Electronic Properties. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:18456-18466. [PMID: 34476043 PMCID: PMC8404194 DOI: 10.1021/acs.jpcc.1c04238] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/02/2021] [Indexed: 05/24/2023]
Abstract
Designing new 2D systems with tunable properties is an important subject for science and technology. Starting from graphene, we developed an algorithm to systematically generate 2D carbon crystals belonging to the family of graphdiynes (GDYs) and having different structures and sp/sp2 carbon ratios. We analyze how structural and topological effects can tune the relative stability and the electronic behavior, to propose a rationale for the development of new systems with tailored properties. A total of 26 structures have been generated, including the already known polymorphs such as α-, β-, and γ-GDY. Periodic density functional theory calculations have been employed to optimize the 2D crystal structures and to compute the total energy, the band structure, and the density of states. Relative energies with respect to graphene have been found to increase when the values of the carbon sp/sp2 ratio increase, following however different trends based on the peculiar topologies present in the crystals. These topologies also influence the band structure, giving rise to semiconductors with a finite band gap, zero-gap semiconductors displaying Dirac cones, or metallic systems. The different trends allow identifying some topological effects as possible guidelines in the design of new 2D carbon materials beyond graphene.
Collapse
Affiliation(s)
- Patrick Serafini
- Dipartimento
di Energia, Politecnico di Milano, via Ponzio 34/3, 20133 Milano, Italy
| | - Alberto Milani
- Dipartimento
di Energia, Politecnico di Milano, via Ponzio 34/3, 20133 Milano, Italy
| | - Davide M. Proserpio
- Dipartimento
di Chimica, Università degli Studi
di Milano, 20133 Milano, Italy
- Samara
Center for Theoretical Materials Science (SCTMS), Samara State Technical University, 443100 Samara, Russia
| | - Carlo S. Casari
- Dipartimento
di Energia, Politecnico di Milano, via Ponzio 34/3, 20133 Milano, Italy
| |
Collapse
|