1
|
Sotthewes K, Jimidar ISM. Navigating the Landscape of Dry Assembling Ordered Particle Structures: Can Solvents Become Obsolete? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405410. [PMID: 39282807 PMCID: PMC11618747 DOI: 10.1002/smll.202405410] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/02/2024] [Indexed: 12/06/2024]
Abstract
A spur on miniaturized devices led scientists to unravel the fundamental aspects of micro- and nanoparticle assembly to engineer large structures. Primarily, attention is given to wet assembly methods, whereas assembly approaches in which solvents are avoided are scarce. The "dry assembly" strategies can overcome the intrinsic disadvantages that are associated with wet assembly, e.g., the lack of versatility and scalability. This review uniquely summarizes the recent progress made to create highly ordered particle arrays without using a wet environment. Before delving into these methods, the surface interactions (e.g., van der Waals, contact mechanics, capillary, and electrostatics) are elaborated, as a profound understanding and balancing these are a critical aspect of dry assembly. To manipulate these interactions, strategies involving different forces, e.g., mechanical-based, electrical-based, or laser-induced, sometimes in conjunction with pre-templated substrates, are employed to attain ordered colloidal structures. The utilization of the ordered structures obtained without solvents is accompanied by specific examples. Dry assembly methods can aid us in achieving more sustainable assembly processes. Overall, this Review aims to provide an easily accessible resource and inspire researchers, including novices, to broaden dry assembly horizons significantly and close the remaining knowledge gap in the physical phenomena involved in this area.
Collapse
Affiliation(s)
- Kai Sotthewes
- Physics of Interfaces and NanomaterialsMESA+ InstituteUniversity of TwenteP.O. Box 217Enschede7500AEThe Netherlands
| | - Ignaas S. M. Jimidar
- Department of Chemical Engineering CHISVrije Universiteit BrusselBrussels1050Belgium
- Mesoscale Chemical SystemsMESA+ InstituteUniversity of TwenteP.O. Box 217Enschede7500AEThe Netherlands
| |
Collapse
|
2
|
Sant S, Kaur K, Klok HA. Swelling and Degrafting of Poly(3-sulfopropyl methacrylate) Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21656-21662. [PMID: 39348193 PMCID: PMC11483762 DOI: 10.1021/acs.langmuir.4c02714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Upon exposure to a good solvent, polymer brushes prepared via surface-initiated polymerization can undergo degrafting via cleavage of bonds that anchor the polymer tethers to the underlying substrate. As polymer brushes are often used in a solvent swollen state, this has implications for the longevity of these polymer coatings. Improving the fundamental understanding of this process is thus also of practical importance. It is believed that degrafting is the consequence of tension amplification at the bonds that anchor the polymer grafts, which is driven by swelling of the polymer brush film. Taking advantage of the sensitivity of the swelling behavior of poly(3-sulfopropyl methacrylate) (PSPMA) brushes toward changes in ionic strength, this study has investigated the degrafting behavior of these brushes in aqueous media at different LiCl and NaCl concentrations. The aim of these experiments was to investigate whether the rate constant of the degrafting process was correlated with the swelling ratio of the PSPMA brushes. The experiments show that in aqueous LiCl solutions, the initial rate constant of the degrafting process is correlated with the swelling ratio of the PSPMA brush. This observation represents a first example of the correlation between these two parameters for hydrophilic polymer brushes in aqueous media and supports the idea that degrafting is a mechanochemical process driven by a swelling-induced tension at the polymer-substrate interface.
Collapse
Affiliation(s)
- Sabrina Sant
- Institut
des Matériaux and Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
- National
Center of Competence in Research Bio-inspired Materials, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Kuljeet Kaur
- Institut
des Matériaux and Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
- National
Center of Competence in Research Bio-inspired Materials, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Harm-Anton Klok
- Institut
des Matériaux and Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
- National
Center of Competence in Research Bio-inspired Materials, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| |
Collapse
|
3
|
Swain Z, Derkaloustian M, Hepler KA, Nolin A, Damani VS, Bhattacharyya P, Shrestha T, Medina J, Kayser LV, Dhong CB. Self-assembled thin films as alternative surface textures in assistive aids with users who are blind. J Mater Chem B 2024; 12:10068-10081. [PMID: 39264329 PMCID: PMC11406215 DOI: 10.1039/d4tb01646g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Current tactile graphics primarily render tactile information for blind users through physical features, such as raised bumps or lines. However, the variety of distinctive physical features that can be created is effectively saturated, and alternatives to these physical features are not currently available for static tactile aids. Here, we explored the use of chemical modification through self-assembled thin films to generate distinctive textures in tactile aids. We used two silane precursors, n-butylaminopropyltrimethoxysilane and n-pentyltrichlorosilane, to coat playing card surfaces and investigated their efficacy as a tactile coating. We verified the surface coating process and examined their durability to repeated use by traditional materials characterization and custom mesoscale friction testing. Finally, we asked participants who were both congenitally blind and braille-literate to sort the cards based on touch. We found that participants were able to identify the correct coated card with 82% accuracy, which was significantly above chance, and two participants achieved 100% accuracy. This success with study participants demonstrates that surface coatings and surface modifications might augment or complement physical textures in next-generation tactile aids.
Collapse
Affiliation(s)
- Zachary Swain
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA.
| | - Maryanne Derkaloustian
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA.
| | - Kayla A Hepler
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA.
| | - Abigail Nolin
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA.
| | - Vidhika S Damani
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA.
| | - Pushpita Bhattacharyya
- Department of Psychological & Brain Sciences, University of Delaware, Newark, DE, USA
- Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA
| | - Tulaja Shrestha
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Jared Medina
- Department of Psychological & Brain Sciences, University of Delaware, Newark, DE, USA
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Laure V Kayser
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA.
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Charles B Dhong
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA.
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| |
Collapse
|
4
|
Brió Pérez M, Wurm FR, de Beer S. On the Road to Circular Polymer Brushes: Challenges and Prospects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7249-7256. [PMID: 38556745 PMCID: PMC11008239 DOI: 10.1021/acs.langmuir.3c03683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
Polymer brushes are unique surface coatings that have been of high interest in research for the past decades due to their covalent tethering to surfaces and the broad spectrum of polymers that can be grafted to or grafted from various surfaces. Modification of surfaces with brushes may provide lubricious and/or antifouling properties, and they can also potentially be used in many application fields due to their high responsiveness toward certain stimuli. Generally, polymer brushes are long-lasting coatings, while their end-of-life has to date largely been neglected. Therefore, it is important to consider additional design methodologies to produce circular brushes, which will degrade after a certain period of time such that surfaces can be reused, and the potentially obtained monomers may be used again to synthesize new brushes. In this Perspective, we aim to tackle and understand the challenges to translate the knowledge on degradation and chemical recycling of bulk polymers toward circular polymer brushes. We summarized the recent developments on (bio)degradable polymer brushes and the challenges that are to be tackled toward their potential implementation as circular coatings.
Collapse
Affiliation(s)
- Maria Brió Pérez
- Department of Molecules &
Materials, MESA+ Institute, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Frederik R. Wurm
- Department of Molecules &
Materials, MESA+ Institute, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Sissi de Beer
- Department of Molecules &
Materials, MESA+ Institute, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
5
|
Smook LA, de Beer S. Electrical Chain Rearrangement: What Happens When Polymers in Brushes Have a Charge Gradient? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4142-4151. [PMID: 38355408 PMCID: PMC10906002 DOI: 10.1021/acs.langmuir.3c03127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Under the influence of electric fields, the chains in polyelectrolyte brushes can stretch and collapse, which changes the structure of the brush. Copolymer brushes with charged and uncharged monomers display a similar behavior. For pure polyelectrolyte and random copolymer brushes, the field-induced structure changes only the density of the brush and not its local composition, while the latter could be affected if charges are distributed inhomogeneously along the polymer backbone. Therefore, we systematically study the switching behavior of gradient polyelectrolyte brushes in electric fields for different solvent qualities, grafting densities, and charges per chain via coarse-grained molecular dynamics simulations. Similar to random copolymers and pure polyelectrolytes, these brushes show a mixed-phase transition: intermediate states between fully stretched and collapsed are characterized by a bimodal chain-end distribution. Additionally, we find that the total charge of the brush plays a key role in the critical field required for a complete transition. Finally, we find that gradient polyelectrolyte brushes are charge-enriched at the brush-solvent interface under stretched conditions and charge-depleted under collapsed conditions, allowing for control over the local composition and thus the surface charge of the brush due to the inhomogeneous charge along the grafted chains.
Collapse
Affiliation(s)
- Leon A. Smook
- Department of Molecules and Materials,
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| | - Sissi de Beer
- Department of Molecules and Materials,
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| |
Collapse
|
6
|
Diepenbroek E, Pérez MB, de Beer S. PNIPAM Brushes in Colloidal Photonic Crystals Enable Ex Situ Ethanol Vapor Sensing. ACS APPLIED POLYMER MATERIALS 2024; 6:870-878. [PMID: 38230366 PMCID: PMC10788857 DOI: 10.1021/acsapm.3c02397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/19/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
Structural colors are formed by the periodic repetition of nanostructures in a material. Upon reversibly tuning the size or optical properties of the repetitive unit inside a nanostructured material, responsive materials can be made that change color due to external stimuli. This paper presents a simple method to obtain films of ethanol vapor-responsive structural colors based on stacked poly(N-isopropylacrylamide) (PNIPAM)-grafted silica nanoparticles. Our materials show clear, reversible color transitions in the presence of near-saturated ethanol vapor. Moreover, due to the absorption of ethanol in the PNIPAM brushes, relatively long recovery times are observed (∼30 s). Materials based on bare or poly(methyl methacrylate) (PMMA) brush-grafted silica nanoparticles also change color in the presence of ethanol vapor but possess significantly shorter recovery times (∼1 s). Atomic force microscopy reveals that the delayed recovery originates from the ability of PNIPAM brushes to swell in ethanol vapor. This renders the films highly suitable for ex situ ethanol vapor sensing.
Collapse
Affiliation(s)
- Esli Diepenbroek
- Department of Molecules & Materials,
MESA+ Institute, University of Twente, 7522 NB Enschede, The Netherlands
| | - Maria Brió Pérez
- Department of Molecules & Materials,
MESA+ Institute, University of Twente, 7522 NB Enschede, The Netherlands
| | - Sissi de Beer
- Department of Molecules & Materials,
MESA+ Institute, University of Twente, 7522 NB Enschede, The Netherlands
| |
Collapse
|
7
|
Brió Pérez M, Hempenius MA, de Beer S, Wurm FR. Polyester Brush Coatings for Circularity: Grafting, Degradation, and Repeated Growth. Macromolecules 2023; 56:8856-8865. [PMID: 38024158 PMCID: PMC10653273 DOI: 10.1021/acs.macromol.3c01601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/04/2023] [Indexed: 12/01/2023]
Abstract
Polymer brushes are widely used as versatile surface modifications. However, most of them are designed to be long-lasting by using nonbiodegradable materials. This generates additional plastic waste and hinders the reusability of substrates. To address this, we present a synthetic strategy for grafting degradable polymer brushes via organocatalytic surface-initiated ring-opening polymerization (SI-ROP) from stable PGMA-based macroinitiators. This yields polyester brush coatings (up to 50 nm in thickness) that hydrolyze with controlled patterns and can be regrown on the same substrate after degradation. We chose polyesters of different hydrolytic stability and degradation mechanism, i.e., poly(lactic acid) (PLA), polycaprolactone (PCL), and polyhydroxybutyrate (PHB), which are grown from poly(glycidyl methacrylate) (PGMA)-based macroinitiators for strong surface binding and initiating site reuse. Brush degradation is monitored via thickness changes in pH-varied buffer solutions and seawater with PHB brushes showing rapid degradation in all solutions. PLA and PCL brushes show higher stability in solutions of up to pH 8, while all coatings fully degrade after 14 days in seawater. These brushes offer surface modifications with well-defined degradation patterns that can be regrown after degradation, making them an interesting alternative to (meth)acrylate-based, nondegradable polymers brushes.
Collapse
Affiliation(s)
- Maria Brió Pérez
- Sustainable Polymer Chemistry Group,
Department of Molecules & Materials, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Mark A. Hempenius
- Sustainable Polymer Chemistry Group,
Department of Molecules & Materials, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Sissi de Beer
- Sustainable Polymer Chemistry Group,
Department of Molecules & Materials, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Frederik R. Wurm
- Sustainable Polymer Chemistry Group,
Department of Molecules & Materials, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
8
|
Kap Ö, Hartmann S, Hoek H, de Beer S, Siretanu I, Thiele U, Mugele F. Nonequilibrium configurations of swelling polymer brush layers induced by spreading drops of weakly volatile oil. J Chem Phys 2023; 158:2888849. [PMID: 37144718 DOI: 10.1063/5.0146779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023] Open
Abstract
Polymer brush layers are responsive materials that swell in contact with good solvents and their vapors. We deposit drops of an almost completely wetting volatile oil onto an oleophilic polymer brush layer and follow the response of the system upon simultaneous exposure to both liquid and vapor. Interferometric imaging shows that a halo of partly swollen polymer brush layer forms ahead of the moving contact line. The swelling dynamics of this halo is controlled by a subtle balance of direct imbibition from the drop into the brush layer and vapor phase transport and can lead to very long-lived transient swelling profiles as well as nonequilibrium configurations involving thickness gradients in a stationary state. A gradient dynamics model based on a free energy functional with three coupled fields is developed and numerically solved. It describes experimental observations and reveals how local evaporation and condensation conspire to stabilize the inhomogeneous nonequilibrium stationary swelling profiles. A quantitative comparison of experiments and calculations provides access to the solvent diffusion coefficient within the brush layer. Overall, the results highlight the-presumably generally applicable-crucial role of vapor phase transport in dynamic wetting phenomena involving volatile liquids on swelling functional surfaces.
Collapse
Affiliation(s)
- Özlem Kap
- Physics of Complex Fluids Group and MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Simon Hartmann
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany
- Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, Corrensstr. 2, 48149 Münster, Germany
| | - Harmen Hoek
- Physics of Complex Fluids Group and MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Sissi de Beer
- Sustainable Polymer Chemistry Group, Department of Molecules & Materials MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Igor Siretanu
- Physics of Complex Fluids Group and MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Uwe Thiele
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany
- Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, Corrensstr. 2, 48149 Münster, Germany
| | - Frieder Mugele
- Physics of Complex Fluids Group and MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
9
|
Ma Z, Zhang H, Song Y, Mei Q, Shi P, Park JW, Zhang W. Increasing the Mechanical Stability of Polymer-Gold Interfacial Connection: A Parallel Covalent Strategy. ACS Macro Lett 2023; 12:421-427. [PMID: 36924462 DOI: 10.1021/acsmacrolett.3c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Thiol-gold (S-Au) chemistry has been widely used in coating and functionalizing gold surfaces because it is robust and highly efficient. However, recent studies have shown that the S-Au-based self-assembled monolayers can lead to significant instability under external mechanical loading (e.g., in a swelled polymer film). Such instability limits further applications of S-Au chemistry-based functional materials. Here, we report a surface-modifying procedure based on a parallel covalent strategy. By employing dendritic macromolecules as a "middle layer" between the gold surface and polymer, the interfacial connecting strength increased by at least 350% as revealed by atomic force microscopy-based single molecule force spectroscopy (AFM-SMFS). The ultimate cleavage structure is confirmed to be an amide bond by control SMFS experiments, fluorescent microscopy, and dynamic force spectroscopy. This study/concept paves the way to prepare stable stimuli-responsive polymer brushes on solid surfaces and study mechanophores with high force stability.
Collapse
Affiliation(s)
- Ziwen Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Honglin Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yu Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiuping Mei
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Pengju Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Joon Won Park
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
10
|
Metze F, Sant S, Meng Z, Klok HA, Kaur K. Swelling-Activated, Soft Mechanochemistry in Polymer Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3546-3557. [PMID: 36848262 PMCID: PMC10018775 DOI: 10.1021/acs.langmuir.2c02801] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/26/2023] [Indexed: 06/12/2023]
Abstract
Swelling in polymer materials is a ubiquitous phenomenon. At a molecular level, swelling is dictated by solvent-polymer interactions, and has been thoroughly studied both theoretically and experimentally. Favorable solvent-polymer interactions result in the solvation of polymer chains. For polymers in confined geometries, such as those that are tethered to surfaces, or for polymer networks, solvation can lead to swelling-induced tensions. These tensions act on polymer chains and can lead to stretching, bending, or deformation of the material both at the micro- and macroscopic scale. This Invited Feature Article sheds light on such swelling-induced mechanochemical phenomena in polymer materials across dimensions, and discusses approaches to visualize and characterize these effects.
Collapse
|
11
|
Smook LA, de Beer S. Electrostatic Fields Stimulate Absorption of Small Neutral Molecules in Gradient Polyelectrolyte Brushes. Chemphyschem 2023; 24:e202300003. [PMID: 36811215 DOI: 10.1002/cphc.202300003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/27/2023] [Indexed: 02/24/2023]
Abstract
Molecules can partition from a solution into a polymer coating, leading to a local enrichment. If one can control this enrichment via external stimuli, one can implement such coatings in novel separation technologies. Unfortunately, these coatings are often resource intensive as they require stimuli in the form changes of bulk solvent conditions such as acidity, temperature, or ionic strength. Electrically driven separation technology may provide an appealing alternative, as this will allow local, surface-bound stimuli instead of system-wide bulk stimuli to induce responsiveness. Therefore, we investigate via coarse grained molecular dynamics simulations the possibility of using coatings with charged moieties, specifically gradient polyelectrolyte brushes, to control the enrichment of the neutral target molecules near the surface with applied electric fields. We find that targets which interact more strongly with the brush show both more absorption and a larger modulation by electric fields. For the strongest interactions evaluated in this work, we obtained absorption changes of over 300 % between the collapsed and extended state of the coating.
Collapse
Affiliation(s)
- Leon A Smook
- Sustainable Polymer Chemistry, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands
| | - Sissi de Beer
- Sustainable Polymer Chemistry, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands
| |
Collapse
|
12
|
UV- and thermally-active small bi-functional gelator for creating gradient polymer network coatings. Biointerphases 2023; 18:011001. [PMID: 36627232 DOI: 10.1116/6.0002268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We present a versatile one-pot synthesis method for creating surface-anchored orthogonal gradient networks using a small bi-functional gelator, 4-azidosulfonylphenethyltrimethoxysilane (4-ASPTMS). The sulfonyl azide (SAz) group of 4-ASPTMS is UV (≤254 nm) and thermally active (≥100 °C) and, thus, enables us to vary the cross-link density in orthogonal directions by controlling the activation of SAz groups via UV and temperature means. We deposit a thin layer (∼200 nm) of a mixture comprising ∼90% precursor polymer and ∼10% 4-ASPTMS in a silicon wafer. Upon UV irradiation or annealing the layers, SAz releases nitrogen by forming singlet and triplet nitrenes that concurrently react with any C-H bond in the vicinity leading to sulfonamide cross-links. Condensation among trimethoxy groups in the bulk connects 4-ASPTMS units and completes the cross-linking. Simultaneously, 4-ASPTMS near the substrate reacts with surface-bound -OH motifs that anchor the cross-linked polymer chains to the substrate. We demonstrate the generation of orthogonal gradient network coatings exhibiting cross-link density (or stiffness) gradients in orthogonal directions using such a simple process.
Collapse
|
13
|
Glišić I, Ritsema van Eck GC, Smook LA, de Beer S. Enhanced vapor sorption in block and random copolymer brushes. SOFT MATTER 2022; 18:8398-8405. [PMID: 36259991 PMCID: PMC9667471 DOI: 10.1039/d2sm00868h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Polymer brushes in gaseous environments absorb and adsorb vapors of favorable solvents, which makes them potentially relevant for sensing applications and separation technologies. Though significant amounts of vapor are sorbed in homopolymer brushes at high vapor pressures, at low vapor pressures sorption remains limited. In this work, we vary the structure of two-component polymer brushes and investigate the enhancement in vapor sorption at different relative vapor pressures compared to homopolymer brushes. We perform molecular dynamics simulations on two-component block and random copolymer brushes and investigate the influence of monomer miscibility and formation of high-energy interfaces between immiscible monomers on vapor sorption. Additionally, we present absorption isotherms of pure homopolymer, mixed binary brush and 2-block, 4-block, and random copolymer brushes. Based on these isotherms, we finally show that random copolymer brushes absorb more vapor than any other architecture investigated thus far. Random brushes display enhanced sorption at both high and low vapor pressures, with the largest enhancement in sorption at low vapor pressures.
Collapse
Affiliation(s)
- Ivona Glišić
- Sustainable Polymer Chemistry Group, Department of Molecules & Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Guido C Ritsema van Eck
- Sustainable Polymer Chemistry Group, Department of Molecules & Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Leon A Smook
- Sustainable Polymer Chemistry Group, Department of Molecules & Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Sissi de Beer
- Sustainable Polymer Chemistry Group, Department of Molecules & Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
14
|
Ritsema van Eck G, Kiens EM, Veldscholte LB, Brió Pérez M, de Beer S. Vapor Swelling of Polymer Brushes Compared to Nongrafted Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13763-13770. [PMID: 36331903 PMCID: PMC9671043 DOI: 10.1021/acs.langmuir.2c01889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/25/2022] [Indexed: 05/28/2023]
Abstract
Polymer brushes, coatings of polymers covalently end-grafted to a surface, have been proposed as a more stable alternative to traditional physisorbed coatings. However, when such coatings are applied in settings such as vapor sensing and gas separation technologies, their responsiveness to solvent vapors becomes an important consideration. It can be anticipated that the end-anchoring in polymer brushes reduces the translational entropy of the polymers and instead introduces an entropic penalty against stretching when vapor is absorbed. Therefore, swelling can be expected to be diminished in brushes compared to nongrafted films. Here, we study the effect of the anchoring-constraint on vapor sorption in polymer coatings using coarse-grained molecular dynamics simulations as well as humidity-controlled ellipsometry on chemically identical polymer brushes and nongrafted films. We find a qualitative agreement between simulations and experiments, with both indicating that brushes certainly swell less than physisorbed films, although this effect is minor for common grafting densities. Our results imply that polymer brushes indeed hold great potential for the intended applications.
Collapse
|
15
|
Etha SA, Pial TH, Das S. Extensive Stable Physical Contacts between a Nanoparticle and a Highly Repulsive Polymeric Layer. J Phys Chem B 2022; 126:5715-5725. [PMID: 35867556 DOI: 10.1021/acs.jpcb.2c04010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interaction between nanoparticles (NPs) and a layer of grafted and solvated polymer molecules has been widely explored for a variety of applications ranging from fabrication of nanocomposites and sensors to developing nanocoating for virus deactivation. In all of these applications, the solvated polymer molecules are necessarily philic to the NPs, and consequently, driven by the favorable NP-polymer interactions, there is the formation of numerous stable direct (i.e., without any intervening solvent molecule) NP-monomer (monomer of the polymer) contact pairs. In this paper, we propose a paradigm shift in this problem: we employ molecular dynamics (MD) simulations and establish that under appropriate conditions, it is possible to develop numerous stable direct contacts between a NP and a solvated polymer layer even when the polymer molecules are extremely phobic to the NP. Here, by "stable" contacts, we refer to the NP-Polymer contacts that remain intact for a finite duration of time; of course, such contacts, after being intact for a finite time duration, might get broken and reformed. In terms of the mechanism of the process, the NP is driven inside a grafted layer of collapsed (in the absence of solvent) and phobic (to the NP) polymer molecules by a liquid drop (polymer is philic to the liquid). Subsequently, the liquid molecules imbibe and diffuse inside the polymer layer, but the NPs, due to the large steric effect imposed by the polymer molecules, remain localized within the polymer layer. This ensures the establishment of several stable direct contacts between the NP and the highly phobic polymer molecules. We quantify these contacts by their numbers, stability, and frequency of occurrences as well as their dependences on the NP-polymer interaction energies and NP sizes. We also quantify the associated NP dynamics inside the polymeric layer. Finally, we argue that our finding will open up avenues for leveraging NP-polymer interactions for a myriad of applications even for cases where the polymer molecules are phobic to the NPs.
Collapse
Affiliation(s)
- Sai Ankit Etha
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Turash Haque Pial
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
16
|
Song Y, Ma Z, Zhang W. Manipulation of a Single Polymer Chain: From the Nanomechanical Properties to Dynamic Structure Evolution. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ziwen Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
17
|
Ritsema van Eck G, Chiappisi L, de Beer S. Fundamentals and Applications of Polymer Brushes in Air. ACS APPLIED POLYMER MATERIALS 2022; 4:3062-3087. [PMID: 35601464 PMCID: PMC9112284 DOI: 10.1021/acsapm.1c01615] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/03/2022] [Indexed: 05/22/2023]
Abstract
For several decades, high-density, end-tethered polymers, forming so-called polymer brushes, have inspired scientists to understand their properties and to translate them to applications. While earlier research focused on polymer brushes in liquids, it was recently recognized that these brushes can find application in air as well. In this review, we report on recent progress in unraveling fundamental concepts of brushes in air, such as their vapor-swelling and solvent partitioning. Moreover, we provide an overview of the plethora of applications in air (e.g., in sensing, separations or smart adhesives) where brushes can be key components. To conclude, we provide an outlook by identifying open questions and issues that, when solved, will pave the way for the large scale application of brushes in air.
Collapse
Affiliation(s)
- Guido
C. Ritsema van Eck
- Sustainable
Polymer Chemistry Group, Department of Molecules & Materials,
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Leonardo Chiappisi
- Institut
Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Sissi de Beer
- Sustainable
Polymer Chemistry Group, Department of Molecules & Materials,
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
18
|
Veldscholte LB, de Beer S. OpenHumidistat: Humidity-controlled experiments for everyone. HARDWAREX 2022; 11:e00288. [PMID: 35509938 PMCID: PMC9058855 DOI: 10.1016/j.ohx.2022.e00288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Humidity control is a crucial element for a wide variety of experiments. Yet, often naive methods are used that do not yield stable regulation of the humidity, are slow, or are inflexible. PID-based electropneumatic humidistats solve these problems, but commercial devices are not widespread, typically proprietary and/or prohibitively expensive. Here we describe OpenHumidistat: a free and open-source humidistat for laboratory-scale humidity control that is affordable (€500) and easy to build. The design is based around mixing a humid and dry air flow in varying proportions, using proportional solenoid valves and flow sensors to control flow rates. The mixed flow is led into a measurement chamber, which contains a humidity sensor to provide feedback to the controller, to achieve closed-loop humidity control.
Collapse
Key Words
-
K
d
, Derivative gain
-
K
ff
, Feed-forward gain
-
K
i
, Integral gain
-
K
p
, Proportional gain
-
V
˙
, (Volumetric) flowrate
- ADC, Analog-to-digital converter
- CC, Creative Commons
- CERN OHL, CERN Open Hardware License
- CV, Control variable
- Controller
- DC, Direct current
- DI, Deionized (water)
- EDA, Electronic design automation
- Electronics
- FC, Flow controller
- FCE, Final control element
- GNU GPL, GNU General Public License
- HC, Humidity controller
- Humidity
- I/O, Input/output
- IC, Integrated circuit
- MOSFET, Metal-oxide-semiconductor field-effect transistor
- PCB, Printed circuit board
- PID
- PID, Proportional, integral, derivative (control)
- PU, Poly(urethane)
- PV, Process variable
- PVC, Poly(vinyl chloride)
- PWM, Pulse-width modulation
- Pneumatics
- RAM, Random-access memory
- SMT, Surface-mount technology
- SP, Setpoint
- THT, Through-hole technology
- UI, User interface
- VCCS, Voltage-controlled current sink
Collapse
Affiliation(s)
- Lars B. Veldscholte
- Sustainable Polymer Chemistry Group, Department of Molecules & Materials MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Sissi de Beer
- Sustainable Polymer Chemistry Group, Department of Molecules & Materials MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
19
|
Ding Z, Chen C, Yu Y, de Beer S. Synthetic strategies to enhance the long-term stability of polymer brush coatings. J Mater Chem B 2022; 10:2430-2443. [DOI: 10.1039/d1tb02605d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-density, end-anchored macromolecules that form so-called polymer brushes are popular components of bio-inspired surface coatings. In a bio-memetic approach, they have been utilized to reduce friction, repel contamination and control...
Collapse
|
20
|
Bell K, Freeburne S, Wolford A, Pester CW. Reusable polymer brush-based photocatalysts for PET-RAFT polymerization. Polym Chem 2022. [DOI: 10.1039/d2py00966h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Fluorescein polymer-brush functionalized glass beads synthesize polymers via photoelectron reversible addition fragmentation chain transfer (PET-RAFT) polymerization. These shelf stable heterogeneous catalysts can be recycled after simple filtration.
Collapse
Affiliation(s)
- Kirsten Bell
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sarah Freeburne
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Adam Wolford
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Christian W. Pester
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
21
|
Durmaz EN, Sahin S, Virga E, de Beer S, de Smet LCPM, de Vos WM. Polyelectrolytes as Building Blocks for Next-Generation Membranes with Advanced Functionalities. ACS APPLIED POLYMER MATERIALS 2021; 3:4347-4374. [PMID: 34541543 PMCID: PMC8438666 DOI: 10.1021/acsapm.1c00654] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 05/06/2023]
Abstract
The global society is in a transition, where dealing with climate change and water scarcity are important challenges. More efficient separations of chemical species are essential to reduce energy consumption and to provide more reliable access to clean water. Here, membranes with advanced functionalities that go beyond standard separation properties can play a key role. This includes relevant functionalities, such as stimuli-responsiveness, fouling control, stability, specific selectivity, sustainability, and antimicrobial activity. Polyelectrolytes and their complexes are an especially promising system to provide advanced membrane functionalities. Here, we have reviewed recent work where advanced membrane properties stem directly from the material properties provided by polyelectrolytes. This work highlights the versatility of polyelectrolyte-based membrane modifications, where polyelectrolytes are not only applied as single layers, including brushes, but also as more complex polyelectrolyte multilayers on both porous membrane supports and dense membranes. Moreover, free-standing membranes can also be produced completely from aqueous polyelectrolyte solutions allowing much more sustainable approaches to membrane fabrication. The Review demonstrates the promise that polyelectrolytes and their complexes hold for next-generation membranes with advanced properties, while it also provides a clear outlook on the future of this promising field.
Collapse
Affiliation(s)
- Elif Nur Durmaz
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
| | - Sevil Sahin
- Laboratory
of Organic Chemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Ettore Virga
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
- Wetsus, European
Centre of Excellence for Sustainable Water
Technology, Oostergoweg
9, 8911 MA Leeuwarden, The Netherlands
| | - Sissi de Beer
- Sustainable
Polymer Chemistry Group, Department of Molecules and Materials MESA+
Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Louis C. P. M. de Smet
- Laboratory
of Organic Chemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Wiebe M. de Vos
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
| |
Collapse
|
22
|
Smook LA, Ritsema van Eck GC, de Beer S. Vapor sorption in binary polymer brushes: The effect of the polymer-polymer interface. J Chem Phys 2021; 155:054904. [PMID: 34364330 DOI: 10.1063/5.0057065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polymer brushes attract vapors that are good solvents for polymers. This is useful in sensing and other technologies that rely on concentrating vapors for optimal performance. It was recently shown that vapor sorption can be enhanced further by incorporating two incompatible types of polymers A and B in the brushes: additional vapor adsorbs at the high-energy polymer-polymer interface in these binary brushes. In this article, we present a model that describes this enhanced sorption in binary brushes of immiscible A-B polymers. To do so, we set up a free-energy model to predict the interfacial area between the different polymer phases in binary brushes. This description is combined with Gibbs adsorption isotherms to determine the adsorption at these interfaces. We validate our model with coarse-grained molecular dynamics simulations. Moreover, based on our results, we propose design parameters (A-B chain fraction, grafting density, vapor, and A-B interaction strength) for optimal vapor absorption in coatings composed of binary brushes.
Collapse
Affiliation(s)
- Leon A Smook
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Guido C Ritsema van Eck
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Sissi de Beer
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
23
|
|
24
|
Smook LA, Ritsema van Eck GC, de Beer S. Concentrating Vapor Traces with Binary Brushes of Immiscible Polymers. ACS APPLIED POLYMER MATERIALS 2021; 3:2336-2340. [PMID: 34056613 PMCID: PMC8154206 DOI: 10.1021/acsapm.1c00321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/20/2021] [Indexed: 05/30/2023]
Abstract
Vapors in the air around us can provide useful information about our environment, but we need sensitive vapor sensors to access this information, especially because those vapors are often present at very low concentrations. We report molecular dynamics simulations of a concept that can significantly increase the sensitivity of vapor sensors at low concentrations. By coating the sensor surfaces with end-anchored immiscible polymers, surface-bound polymer blends are formed that can concentrate vapors, reaching sorption enhancements of more than one order of magnitude, especially at low vapor concentrations.
Collapse
Affiliation(s)
- Leon A. Smook
- Sustainable Polymer Chemistry Group,
Department of Molecules & Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Guido C. Ritsema van Eck
- Sustainable Polymer Chemistry Group,
Department of Molecules & Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Sissi de Beer
- Sustainable Polymer Chemistry Group,
Department of Molecules & Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
25
|
Veldscholte LB, Horst RJ, de Beer S. Design, construction, and testing of an accurate low-cost humidistat for laboratory-scale applications. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:48. [PMID: 33818666 PMCID: PMC8021525 DOI: 10.1140/epje/s10189-021-00062-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/24/2021] [Indexed: 06/02/2023]
Abstract
Stable and precise control of humidity is imperative for a wide variety of experiments. However, commercially available humidistats (devices that maintain a constant humidity) are often prohibitively expensive. Here, we present a simple yet effective humidistat for laboratory-scale applications that can be easily and affordably (<€250) constructed based on an Arduino Uno as microcontroller, a set of proportional miniature solenoid valves, a gas washing bottle, and a humidity sensor. The microcontroller implements a PID controller that regulates the ratio of a dry and humid airflow. The design and implementation of the device, including a custom driver circuit for the solenoids, are described in detail, and the firmware is freely available online. Finally, we demonstrate its proper operation and performance through step response and long-term stability tests, which shows settling times of approx. 30 s and an attainable relative humidity range of 10-95.
Collapse
Affiliation(s)
- Lars B Veldscholte
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Rens J Horst
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Sissi de Beer
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
26
|
Yu Y, Brió Pérez M, Cao C, de Beer S. Switching (bio-) adhesion and friction in liquid by stimulus responsive polymer coatings. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Smook LA, Ritsema van Eck GC, de Beer S. Friends, Foes, and Favorites: Relative Interactions Determine How Polymer Brushes Absorb Vapors of Binary Solvents. Macromolecules 2020; 53:10898-10906. [PMID: 33380750 PMCID: PMC7759003 DOI: 10.1021/acs.macromol.0c02228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/17/2020] [Indexed: 11/30/2022]
Abstract
Polymer brushes can absorb vapors from the surrounding atmosphere, which is relevant for many applications such as in sensing and separation technologies. In this article, we report on the absorption of binary mixtures of solvent vapors (A and B) with a thermodynamic mean-field model and with grand-canonical molecular dynamics simulations. Both methods show that the vapor with the strongest vapor-polymer interaction is favored and absorbs preferentially. In addition, the absorption of one vapor (A) influences the absorption of another (B). If the A-B interaction is stronger than the interaction between vapor B and the polymers, the presence of vapor A in the brush can aid the absorption of B: the vapors absorb collaboratively as friends. In contrast, if the A-polymer interaction is stronger than the B-polymer interaction and the brush has reached its maximum sorption capacity, the presence of A can reduce the absorption of B: the vapors absorb competitively as foes.
Collapse
Affiliation(s)
- Leon A. Smook
- Sustainable Polymer Chemistry, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Guido C. Ritsema van Eck
- Sustainable Polymer Chemistry, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Sissi de Beer
- Sustainable Polymer Chemistry, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
28
|
Laus M, Chiarcos R, Gianotti V, Antonioli D, Sparnacci K, Munaò G, Milano G, De Nicola A, Perego M. Evidence of Mechanochemical Control in “Grafting to” Reactions of Hydroxy-Terminated Statistical Copolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Michele Laus
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, Alessandria 15121, Italy
| | - Riccardo Chiarcos
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, Alessandria 15121, Italy
| | - Valentina Gianotti
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, Alessandria 15121, Italy
| | - Diego Antonioli
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, Alessandria 15121, Italy
| | - Katia Sparnacci
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, Alessandria 15121, Italy
| | - Gianmarco Munaò
- Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d’Alcontres 31, Messina 98166, Italy
| | - Giuseppe Milano
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan Yonezawa, Yamagata-ken 992-8510, Japan
| | - Antonio De Nicola
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan Yonezawa, Yamagata-ken 992-8510, Japan
| | - Michele Perego
- CNR-IMM, Unit of Agrate Brianza, Agrate Brianza 20864, Italy
| |
Collapse
|
29
|
Ritsema van Eck GC, Veldscholte LB, Nijkamp JHWH, de Beer S. Sorption Characteristics of Polymer Brushes in Equilibrium with Solvent Vapors. Macromolecules 2020; 53:8428-8437. [PMID: 33071358 PMCID: PMC7558291 DOI: 10.1021/acs.macromol.0c01637] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/11/2020] [Indexed: 12/13/2022]
Abstract
![]()
While
polymer brushes in contact with liquids have been researched
intensively, the characteristics of brushes in equilibrium with vapors
have been largely unexplored, despite their relevance for many applications,
including sensors and smart adhesives. Here, we use molecular dynamics
simulations to show that solvent and polymer density distributions
for brushes exposed to vapors are qualitatively different from those
of brushes exposed to liquids. Polymer density profiles for vapor-solvated
brushes decay more sharply than for liquid-solvated brushes. Moreover,
adsorption layers of enhanced solvent density are formed at the brush–vapor
interface. Interestingly and despite all of these effects, we find
that solvent sorption in the brush is described rather well with a
simple mean-field Flory–Huggins model that incorporates an
entropic penalty for stretching of the brush polymers, provided that
parameters such as the polymer–solvent interaction parameter,
grafting density, and relative vapor pressure are varied individually.
Collapse
Affiliation(s)
- Guido C Ritsema van Eck
- Materials Science and Technology of Polymers, University of Twente, Enschede 7522 NB, The Netherlands
| | - Lars B Veldscholte
- Materials Science and Technology of Polymers, University of Twente, Enschede 7522 NB, The Netherlands
| | - Jan H W H Nijkamp
- Materials Science and Technology of Polymers, University of Twente, Enschede 7522 NB, The Netherlands
| | - Sissi de Beer
- Materials Science and Technology of Polymers, University of Twente, Enschede 7522 NB, The Netherlands
| |
Collapse
|