1
|
Song Y, Su M, Xiang H, Kang J, Yu W, Peng Z, Wang H, Cheng B, Deng N, Kang W. PEO-Based Solid-State Polymer Electrolytes for Wide-Temperature Solid-State Lithium Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408045. [PMID: 39593246 DOI: 10.1002/smll.202408045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/01/2024] [Indexed: 11/28/2024]
Abstract
Developing solid-state lithium metal batteries with wide operating temperature range is important in future. Polyethylene oxide (PEO)-based solid-state electrolytes are extensively studied for merits including superior flexibility and low glass transition temperature. However, ideal usage temperatures for conventional PEO-based solid-state electrolytes are between 60 and 65 °C, and unequable temperature degrades their electrochemical performances at low and high temperatures (≤25 °C and ≥80 °C). Herein, modification methods of PEO electrolytes for low, high especially wide-temperature applications are reviewed based on detailed analyses of mechanisms involved in its modification at different temperatures. First, shortcomings of PEO solid electrolytes due to influence of temperature are pointed out. Second, existing modification strategies are summarized in detail from three aspects of high, low especially wide temperatures, including application of PEO derivatives or chain segment modification treatment of PEO, addition of fillers, and other modification methods such as reasonable regulation of lithium salts, introduction of functional layers and addition of metal-organic frameworks (MOFs) or covalent organic frameworks (COFs). Finally, a summary and description of PEO-based solid electrolyte research and development trends for wide-temperature applications are provided. The review aims to offer some guidance for the creation of PEO solid batteries with wider working temperature ranges.
Collapse
Affiliation(s)
- Yunxuan Song
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Meng Su
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Hengying Xiang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Junbao Kang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Wen Yu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Zhaozhao Peng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Hang Wang
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Nanping Deng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
- Key Laboratory of Advanced Textile Composites, Ministry of Education of China, Tiangong University, Tianin, 300387, P. R. China
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
- Key Laboratory of Advanced Textile Composites, Ministry of Education of China, Tiangong University, Tianin, 300387, P. R. China
| |
Collapse
|
2
|
Tamate R, Ueki T. Adaptive Ion-Gel: Stimuli-Responsive, and Self-Healing Ion Gels. CHEM REC 2023; 23:e202300043. [PMID: 37068193 DOI: 10.1002/tcr.202300043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Indexed: 04/19/2023]
Abstract
Ion gels are an emerging class of polymer gels in which a three-dimensional polymer network swells with an ionic liquid. Ion gels have drawn considerable attention in various fields such as energy and biotechnology owing to their excellent properties including nonvolatility, nonflammability, high ionic conductivity, and high thermal and electrochemical stability. Since the first report on ion gels (published ∼30 years ago), diverse functional ion gels exhibiting impressive physicochemical properties have been reported. In this review, recent developments in functional ion gels that can modulate their physical properties in response to environmental conditions are outlined. Stimuli-responsive ion gels that can adaptively undergo phase transitions in response to thermal and light stimuli are initially discussed, followed by an evaluation of diverse self-healing ion gels that can spontaneously mend mechanical damage through judiciously designed ion-gel networks.
Collapse
Affiliation(s)
- Ryota Tamate
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
- PRESTO, JST, 7 Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Takeshi Ueki
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Graduate School of Life Science Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| |
Collapse
|
3
|
Lucio AJ, Sumarlan I, Bulmer E, Efimov I, Viles S, Hillman AR, Zaleski CJ, Ryder KS. Measuring and Enhancing the Ionic Conductivity of Chloroaluminate Electrolytes for Al-Ion Batteries. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:13866-13876. [PMID: 37492190 PMCID: PMC10364082 DOI: 10.1021/acs.jpcc.3c02302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Indexed: 07/27/2023]
Abstract
At the core of the aluminum (Al) ion battery is the liquid electrolyte, which governs the underlying chemistry. Optimizing the rheological properties of the electrolyte is critical to advance the state of the art. In the present work, the chloroaluminate electrolyte is made by reacting AlCl3 with a recently reported acetamidinium chloride (Acet-Cl) salt in an effort to make a more performant liquid electrolyte. Using AlCl3:Acet-Cl as a model electrolyte, we build on our previous work, which established a new method for extracting the ionic conductivity from fitting voltammetric data, and in this contribution, we validate the method across a range of measurement parameters in addition to highlighting the model electrolytes' conductivity relative to current chloroaluminate liquids. Specifically, our method allows the extraction of both the ionic conductivity and voltammetric data from a single, simple, and routine measurement. To bring these results in the context of current methods, we compare our results to two independent standard conductivity measurement techniques. Several different measurement parameters (potential scan rate, potential excursion, temperature, and composition) are examined. We find that our novel method can resolve similar trends in conductivity to conventional methods, but typically, the values are a factor of two higher. The values from our method, on the other hand, agree closely with literature values reported elsewhere. Importantly, having now established the approach for our new method, we discuss the conductivity of AlCl3:Acet-Cl-based formulations. These electrolytes provide a significant improvement (5-10× higher) over electrolytes made from similar Lewis base salts (e.g., urea or acetamide). The Lewis base salt precursors have a low economic cost compared to state-of-the-art imidazolium-based salts and are non-toxic, which is advantageous for scale-up. Overall, this is a noteworthy step at designing cost-effective and performant liquid electrolytes for Al-ion battery applications.
Collapse
Affiliation(s)
- Anthony J. Lucio
- Centre
for Sustainable Materials Processing, School of Chemistry, University of Leicester, Leicester LE1 7RH, U.K.
| | - Iwan Sumarlan
- Centre
for Sustainable Materials Processing, School of Chemistry, University of Leicester, Leicester LE1 7RH, U.K.
- Department
of Chemistry, University of Mataram, Jl. Majapahit. No. 62, Mataram, 83115 Lombok, Indonesia
| | - Elena Bulmer
- Centre
for Sustainable Materials Processing, School of Chemistry, University of Leicester, Leicester LE1 7RH, U.K.
| | - Igor Efimov
- Department
of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, U.K.
| | - Stephen Viles
- Centre
for Sustainable Materials Processing, School of Chemistry, University of Leicester, Leicester LE1 7RH, U.K.
| | - A. Robert Hillman
- Centre
for Sustainable Materials Processing, School of Chemistry, University of Leicester, Leicester LE1 7RH, U.K.
| | - Christopher J. Zaleski
- Biotechnology
Group, School of Chemistry, University of
Leicester, Leicester LE1 7RH, U.K.
| | - Karl S. Ryder
- Centre
for Sustainable Materials Processing, School of Chemistry, University of Leicester, Leicester LE1 7RH, U.K.
| |
Collapse
|
4
|
Yang X, Liu J, Pei N, Chen Z, Li R, Fu L, Zhang P, Zhao J. The Critical Role of Fillers in Composite Polymer Electrolytes for Lithium Battery. NANO-MICRO LETTERS 2023; 15:74. [PMID: 36976386 PMCID: PMC10050671 DOI: 10.1007/s40820-023-01051-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
With excellent energy densities and highly safe performance, solid-state lithium batteries (SSLBs) have been hailed as promising energy storage devices. Solid-state electrolyte is the core component of SSLBs and plays an essential role in the safety and electrochemical performance of the cells. Composite polymer electrolytes (CPEs) are considered as one of the most promising candidates among all solid-state electrolytes due to their excellent comprehensive performance. In this review, we briefly introduce the components of CPEs, such as the polymer matrix and the species of fillers, as well as the integration of fillers in the polymers. In particular, we focus on the two major obstacles that affect the development of CPEs: the low ionic conductivity of the electrolyte and high interfacial impedance. We provide insight into the factors influencing ionic conductivity, in terms of macroscopic and microscopic aspects, including the aggregated structure of the polymer, ion migration rate and carrier concentration. In addition, we also discuss the electrode-electrolyte interface and summarize methods for improving this interface. It is expected that this review will provide feasible solutions for modifying CPEs through further understanding of the ion conduction mechanism in CPEs and for improving the compatibility of the electrode-electrolyte interface.
Collapse
Affiliation(s)
- Xueying Yang
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Jiaxiang Liu
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Nanbiao Pei
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Zhiqiang Chen
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Ruiyang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Centre of Chemistry for Energy Materials, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, Engineering Research Center of Electrochemical Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Lijun Fu
- College of Energy, Nanjing Technical University, Nanjing, 211816, People's Republic of China.
| | - Peng Zhang
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China.
| | - Jinbao Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Centre of Chemistry for Energy Materials, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, Engineering Research Center of Electrochemical Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
5
|
Jones S, Bamford J, Fredrickson GH, Segalman RA. Decoupling Ion Transport and Matrix Dynamics to Make High Performance Solid Polymer Electrolytes. ACS POLYMERS AU 2022; 2:430-448. [PMID: 36561285 PMCID: PMC9761859 DOI: 10.1021/acspolymersau.2c00024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 12/25/2022]
Abstract
Transport of ions through solid polymeric electrolytes (SPEs) involves a complicated interplay of ion solvation, ion-ion interactions, ion-polymer interactions, and free volume. Nonetheless, prevailing viewpoints on the subject promote a significantly simplified picture, likening ion transport in a polymer to that in an unstructured fluid at low solute concentrations. Although this idealized liquid transport model has been successful in guiding the design of homogeneous electrolytes, structured electrolytes provide a promising alternate route to achieve high ionic conductivity and selectivity. In this perspective, we begin by describing the physical origins of the idealized liquid transport mechanism and then proceed to examine known cases of decoupling between the matrix dynamics and ionic transport in SPEs. Specifically we discuss conditions for "decoupled" mobility that include a highly polar electrolyte environment, a percolated path of free volume elements (either through structured or unstructured channels), high ion concentrations, and labile ion-electrolyte interactions. Finally, we proceed to reflect on the potential of these mechanisms to promote multivalent ion conductivity and the need for research into the interfacial properties of solid polymer electrolytes as well as their performance at elevated potentials.
Collapse
Affiliation(s)
- Seamus
D. Jones
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States,Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States,Mitsubishi
Chemical Center for Advanced Materials, University of California, Santa
Barbara, California 93106, United States
| | - James Bamford
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States,Mitsubishi
Chemical Center for Advanced Materials, University of California, Santa
Barbara, California 93106, United States,Materials
Department, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| | - Glenn H. Fredrickson
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States,Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States,Mitsubishi
Chemical Center for Advanced Materials, University of California, Santa
Barbara, California 93106, United States,Materials
Department, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| | - Rachel A. Segalman
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States,Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States,Mitsubishi
Chemical Center for Advanced Materials, University of California, Santa
Barbara, California 93106, United States,Materials
Department, University of California Santa
Barbara, Santa
Barbara, California 93106, United States,
| |
Collapse
|