1
|
Dang X, Li N, Yu Z, Ji X, Yang M, Wang X. Advances in the preparation and application of cellulose-based antimicrobial materials: A review. Carbohydr Polym 2024; 342:122385. [PMID: 39048226 DOI: 10.1016/j.carbpol.2024.122385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024]
Abstract
The rise of polymer materials in modern life has drawn attention to renewable, easily biodegradable, environmentally-friendly bio-based polymers. Notably, significant research has been dedicated to creating green antimicrobial functional materials for the biomedical field using natural polymer materials. Cellulose is a rich natural biomass organic polymer material. Given its favorable attributes like film-forming capability, biodegradability, and biocompatibility, it is extensively employed to tackle a wide range of challenges confronting humanity today. However, its inherent drawbacks, such as insolubility in water and most organic solvents, hygroscopic nature, difficulty in melting, and limited antimicrobial properties, continue to pose challenges for realizing the high-value applications of cellulose. Achieving multifunctionality and more efficient application of cellulose still poses major challenges. In this regard, the current development status of cellulose materials was reviewed, covering the classification, preparation methods, and application status of cellulose-based antimicrobial materials. The application value of cellulose-based antimicrobial materials in biomedicine, textiles, food packaging, cosmetics and wastewater treatment was summarised. Finally, insights were provided into the developing prospects of cellulose-based antimicrobial materials were provided.
Collapse
Affiliation(s)
- Xugang Dang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Institute for Biomass and Function Materials & College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Nan Li
- Institute for Biomass and Function Materials & College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhenfu Yu
- Institute for Biomass and Function Materials & College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Mao Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xuechuan Wang
- Institute for Biomass and Function Materials & College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
2
|
Wu K, Hu Y, Wu X, Wang S, Shang M, Yang L, Sun J. Fabrication of multifunctional cotton fabrics with quaternized N-halamine endowing the synergetic rechargeable antibacterial, wound healing and self-cleaning performances. Int J Biol Macromol 2024; 275:133493. [PMID: 38960230 DOI: 10.1016/j.ijbiomac.2024.133493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Cotton has attracted considerable attention due to its functional characteristics. The focus of research on cotton has shifted in recent years towards designing multi-functional and modified media for cotton fibers, which can be firmly combined with textiles, giving them reusability and extending their service life. This study constructed a synergistic antibacterial layer of quaternary ammonium compounds (QACs) and N-halamine (Hals) using an in-situ free radical copolymerization method in water, named QACs/Hals@cotton-Cl. The route significantly increases the number of antibacterial active centers. FTIR, XPS, and SEM were used to systematically analyze the product's chemical structure, surface morphology, and other characteristics. The modified fabric's antibacterial efficiency, wound healing, renewability, and durability were also evaluated. The chlorinated modified cotton fabric could completely eradicate S. aureus and E. coli within 10 min. Compared with pure cotton, it notably promoted the healing rate of infected wounds in mice. The modification method imparted excellent hydrophobicity to the cotton fabric, with a contact angle exceeding 130°, making it easy to remove surface stains. After 30 days of regular storage and 24 h of UV irradiation, the active chlorine concentration (Cl+%) only decreased by 25 % and 39 %, respectively, and the reduced Cl+% was effectively recharged via simple re-chlorination. The hydrophobicity and antimicrobial properties of QACs/Hals@cotton-Cl remained stable even after 20 cycles of friction. This simple synthesis technique provides a convenient approach for the scalable fabrication of multifunctional and rechargeable antibacterial textiles, with potential applications in medical devices and personal hygiene protection.
Collapse
Affiliation(s)
- Kun Wu
- Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen 361024, PR China.
| | - Yanling Hu
- Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen 361024, PR China
| | - Xueling Wu
- Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen 361024, PR China
| | - Shenglong Wang
- Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Mingyi Shang
- Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen 361024, PR China
| | - Le Yang
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, PR China
| | - Jingjing Sun
- Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen 361024, PR China
| |
Collapse
|
3
|
Argenziano R, Viggiano S, Laezza A, Scalia AC, Aprea P, Bochicchio B, Pepe A, Panzella L, Cochis A, Rimondini L, Napolitano A. Highly Cytocompatible Polylactic Acid Based Electrospun Microfibers Loaded with Silver Nanoparticles Generated onto Chestnut Shell Lignin for Targeted Antibacterial Activity and Antioxidant Action. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28230-28244. [PMID: 38775439 DOI: 10.1021/acsami.4c05761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Electrospun (e-spun) fibers are generally regarded as powerful tools for cell growth in tissue regeneration applications, and the possibility of imparting functional properties to these materials represents an increasingly pursued goal. We report herein the preparation of hybrid materials in which an e-spun d,l-polylactic acid matrix, to which chitosan or crystalline nanocellulose was added to improve hydrophilicity, was loaded with different amounts of silver(0) nanoparticles (AgNP) generated onto chestnut shell lignin (CSL) (AgNP@CSL). A solvent-free mechanochemical method was used for efficient (85% of the theoretical value by XRD analysis) Ag(0) production from the reduction of AgNO3 by lignin. For comparison, e-spun fibers containing CSL alone were also prepared. SEM and TEM analyses confirmed the presence of AgNP@CSL (average size 30 nm) on the fibers. Different chemical assays indicated that the AgNP@CSL containing fibers exhibited marked antioxidant properties (EC50 1.6 ± 0.1 mg/mL, DPPH assay), although they were halved with respect to those of the CSL containing fibers, as expected because of the efficient silver ion reduction. All the fibers showed high cytocompatibility toward human mesenchymal stem cells (hMSCs) representative of the self-healing process, and their antibacterial properties were tested against the pathogens Escherichia coli (E. coli), Staphylococcus epidermidis, and Pseudomonas aeruginosa. Finally, competitive surface colonization as simulated by cocultures of hMSC and E. coli showed that AgNP@CSL loaded fibers offered the cells a targeted protection from infection, thus well balancing cytocompatibility and antibacterial properties.
Collapse
Affiliation(s)
- Rita Argenziano
- Department of Chemical Sciences, University of Naples "Federico II", Naples 80126, Italy
- Department of Agricultural Sciences, University of Naples "Federico II", Portici (NA), Naples 80055, Italy
| | - Sara Viggiano
- Department of Chemical Sciences, University of Naples "Federico II", Naples 80126, Italy
| | - Antonio Laezza
- Department of Science, University of Basilicata, Potenza 85100, Italy
| | - Alessandro Calogero Scalia
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale UPO, Novara 28100, Italy
| | - Paolo Aprea
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples"Federico II", Naples 80125, Italy
| | | | - Antonietta Pepe
- Department of Science, University of Basilicata, Potenza 85100, Italy
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples "Federico II", Naples 80126, Italy
| | - Andrea Cochis
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale UPO, Novara 28100, Italy
| | - Lia Rimondini
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale UPO, Novara 28100, Italy
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples "Federico II", Naples 80126, Italy
| |
Collapse
|
4
|
Chiloeches A, Zágora J, Plachá D, Torres MDT, de la Fuente-Nunez C, López-Fabal F, Gil-Romero Y, Fernández-García R, Fernández-García M, Echeverría C, Muñoz-Bonilla A. Synergistic Combination of Antimicrobial Peptides and Cationic Polyitaconates in Multifunctional PLA Fibers. ACS APPLIED BIO MATERIALS 2023; 6:4805-4813. [PMID: 37862451 PMCID: PMC10852355 DOI: 10.1021/acsabm.3c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023]
Abstract
Combining different antimicrobial agents has emerged as a promising strategy to enhance efficacy and address resistance evolution. In this study, we investigated the synergistic antimicrobial effect of a cationic biobased polymer and the antimicrobial peptide (AMP) temporin L, with the goal of developing multifunctional electrospun fibers for potential biomedical applications, particularly in wound dressing. A clickable polymer with pendent alkyne groups was synthesized by using a biobased itaconic acid building block. Subsequently, the polymer was functionalized through click chemistry with thiazolium groups derived from vitamin B1 (PTTIQ), as well as a combination of thiazolium and AMP temporin L, resulting in a conjugate polymer-peptide (PTTIQ-AMP). The individual and combined effects of the cationic PTTIQ, Temporin L, and PTTIQ-AMP were evaluated against Gram-positive and Gram-negative bacteria as well as Candida species. The results demonstrated that most combinations exhibited an indifferent effect, whereas the covalently conjugated PTTIQ-AMP displayed an antagonistic effect, potentially attributed to the aggregation process. Both antimicrobial compounds, PTTIQ and temporin L, were incorporated into poly(lactic acid) electrospun fibers using the supercritical solvent impregnation method. This approach yielded fibers with improved antibacterial performance, as a result of the potent activity exerted by the AMP and the nonleaching nature of the cationic polymer, thereby enhancing long-term effectiveness.
Collapse
Affiliation(s)
- Alberto Chiloeches
- Instituto
de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, Madrid 28006, Spain
- Universidad
Nacional de Educación a Distancia (UNED), C/Bravo Murillo 38, Madrid 28015, Spain
| | - Jakub Zágora
- Nanotechnology
Centre, CEET, VSB—Technical University
of Ostrava, 17. Listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Daniela Plachá
- Nanotechnology
Centre, CEET, VSB—Technical University
of Ostrava, 17. Listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Marcelo D. T. Torres
- Machine
Biology Group, Departments of Psychiatry and Microbiology, Institute
for Biomedical Informatics, Institute for Translational Medicine and
Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments
of Bioengineering and Chemical and Biomolecular Engineering, School
of Engineering and Applied Science, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute
for Computational Science, University of
Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Cesar de la Fuente-Nunez
- Machine
Biology Group, Departments of Psychiatry and Microbiology, Institute
for Biomedical Informatics, Institute for Translational Medicine and
Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments
of Bioengineering and Chemical and Biomolecular Engineering, School
of Engineering and Applied Science, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute
for Computational Science, University of
Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Fátima López-Fabal
- Hospital
Universitario de Móstoles C/Dr. Luis Montes, s/n, Móstoles 28935, Madrid, Spain
- Facultad
de Ciencias Experimentales, Universidad
Francisco de Vitoria, Carretera Pozuelo a Majadahonda, Km 1.800, Madrid 28223, Spain
| | - Yolanda Gil-Romero
- Hospital
Universitario de Móstoles C/Dr. Luis Montes, s/n, Móstoles 28935, Madrid, Spain
| | | | - Marta Fernández-García
- Instituto
de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, Madrid 28006, Spain
| | - Coro Echeverría
- Instituto
de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, Madrid 28006, Spain
| | - Alexandra Muñoz-Bonilla
- Instituto
de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, Madrid 28006, Spain
| |
Collapse
|
5
|
Song J, Lv J, Jin J, Jin Z, Li T, Wu J. Research Advances on the Bioactivity of 1,2,3-Triazolium Salts. Int J Mol Sci 2023; 24:10694. [PMID: 37445872 DOI: 10.3390/ijms241310694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
1,2,3-Triazolium salts have demonstrated significant potential in the fields of medicine and agriculture, exhibiting exceptional antibacterial, antifungal, anticancer, and antileishmanial properties. Moreover, these salts can be utilized as additives or components to produce nano- and fiber-based materials with antibacterial properties. In this review, we summarize several synthetic strategies to obtain 1,2,3-triazolium salts and the structures of 1,2,3-triazolium derivatives with biological activities in the domains of pharmaceuticals, pesticides, and functional materials. Additionally, the structure-activity relationship (SAR) of 1,2,3-triazolium salts with different biological activities has been analyzed. Finally, this review presents the potential applications and prospects of 1,2,3-triazolium salts in the fields of agriculture, medicine, and industrial synthesis.
Collapse
Affiliation(s)
- Jia Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Jie Lv
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Jiamiao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Tingting Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Jian Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| |
Collapse
|
6
|
Hevilla V, Sonseca Á, Echeverría C, Muñoz-Bonilla A, Fernández-García M. Photocured Poly(Mannitol Sebacate) with Functional Methacrylic Monomer: Analysis of Physical, Chemical, and Biological Properties. Polymers (Basel) 2023; 15:polym15061561. [PMID: 36987340 PMCID: PMC10054831 DOI: 10.3390/polym15061561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
In this work, we described the formation of polymeric networks with potential antimicrobial character based on an acrylate oligomer, poly(mannitol sebacate) (PMS), and an enzymatically synthesized methacrylic monomer with thiazole groups (MTA). Networks with different content of MTA were prepared, and further physico-chemically characterized by microhardness, water contact angle measurements, and differential scanning calorimetry. Monomer incorporation into the networks and subsequent quaternization to provide thiazolium moieties affected the mechanical behavior and the surface wettability of the networks. Moreover, the introduction of permanent cationic charges in the network surface could give antimicrobial activity to them. Therefore, the antibacterial behavior and the hemotoxicity were analyzed against Gram-positive and Gram-negative bacteria and red blood cells, respectively.
Collapse
Affiliation(s)
- Víctor Hevilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain
- Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), 28006 Madrid, Spain
| | - Águeda Sonseca
- Instituto de Tecnología de Materiales, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain
| | - Coro Echeverría
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain
- Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), 28006 Madrid, Spain
| | - Alexandra Muñoz-Bonilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain
- Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), 28006 Madrid, Spain
| | - Marta Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain
- Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), 28006 Madrid, Spain
| |
Collapse
|
7
|
Grzebieniarz W, Biswas D, Roy S, Jamróz E. Advances in biopolymer-based multi-layer film preparations and food packaging applications. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|