1
|
Li C, Zhu A, Yang L, Wang X, Guo Z. Advances in magnetoelectric composites for promoting bone regeneration: a review. J Mater Chem B 2024; 12:4361-4374. [PMID: 38639047 DOI: 10.1039/d3tb02617e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Repair of large bone defects is one of the clinical problems that have not yet been fully solved. The dynamic balance of bone tissue is regulated by many biological, chemical and physical environmental factors. Simulating the microenvironment of bone tissue in the physiological state through biomimetic materials is an important development direction of tissue engineering in recent years. With the deepening of research, it has been found that when bone tissue is damaged, its surrounding magnetoelectric microenvironment is subsequently destroyed, and providing a magnetoelectric microenvironment in the biomimetic state will be beneficial to promote bone repair. This review describes the piezoelectric effect of natural bone tissue with magnetoelectric stimulation for bone regeneration, provides a detailed account of the historical development of magnetoelectric composites and the current magnetoelectric composites that are most commonly utilized in the field of tissue engineering. Besides, the hypothesized mechanistic pathways through which magnetoelectric composite materials promote bone regeneration are critically examined, including the enhancement of osteogenesis, promotion of cell adhesion and angiogenesis, modulation of bone immunity, and promotion of nerve regeneration.
Collapse
Affiliation(s)
- Chengyu Li
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, P. R. China.
| | - Andi Zhu
- Department of Implantology and Prosthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, P. R. China
| | - Liqing Yang
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, P. R. China.
| | - Xinyi Wang
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, P. R. China.
| | - Zehong Guo
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, P. R. China.
| |
Collapse
|
2
|
Zhang YQ, Geng Q, Li C, Wang HC, Ren C, Zhang YF, Bai JS, Pan HB, Cui X, Yao MX, Chen W. Application of piezoelectric materials in the field of bone: a bibliometric analysis. Front Bioeng Biotechnol 2023; 11:1210637. [PMID: 37600300 PMCID: PMC10436523 DOI: 10.3389/fbioe.2023.1210637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
In the past 4 decades, many articles have reported on the effects of the piezoelectric effect on bone formation and the research progress of piezoelectric biomaterials in orthopedics. The purpose of this study is to comprehensively evaluate all existing research and latest developments in the field of bone piezoelectricity, and to explore potential research directions in this area. To assess the overall trend in this field over the past 40 years, this study comprehensively collected literature reviews in this field using a literature retrieval program, applied bibliometric methods and visual analysis using CiteSpace and R language, and identified and investigated publications based on publication year (1984-2022), type of literature, language, country, institution, author, journal, keywords, and citation counts. The results show that the most productive countries in this field are China, the United States, and Italy. The journal with the most publications in the field of bone piezoelectricity is the International Journal of Oral & Maxillofacial Implants, followed by Implant Dentistry. The most productive authors are Lanceros-Méndez S, followed by Sohn D.S. Further research on the results obtained leads to the conclusion that the research direction of this field mainly includes piezoelectric surgery, piezoelectric bone tissue engineering scaffold, manufacturing artificial cochleae for hearing loss patients, among which the piezoelectric bone tissue engineering scaffold is the main research direction in this field. The piezoelectric materials involved in this direction mainly include polyhydroxybutyrate valerate, PVDF, and BaTiO3.
Collapse
Affiliation(s)
- Yu-Qin Zhang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Qian Geng
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chao Li
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Hai-Cheng Wang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Chuan Ren
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Yi-Fan Zhang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Jun-Sheng Bai
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Hao-Bo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xu Cui
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Meng-Xuan Yao
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Wei Chen
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| |
Collapse
|
3
|
Merazzo KJ, Díez AG, Tubio CR, Manchado JC, Malet R, Pérez M, Costa P, Lanceros-Mendez S. Acrylonitrile Butadiene Styrene-Based Composites with Permalloy with Tailored Magnetic Response. Polymers (Basel) 2023; 15:polym15030626. [PMID: 36771927 PMCID: PMC9920037 DOI: 10.3390/polym15030626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
This work reports on tailoring the magnetic properties of acrylonitrile butadiene styrene (ABS)-based composites for their application in magnetoactive systems, such as magnetic sensors and actuators. The magnetic properties of the composites are provided by the inclusion of varying permalloy (Py-Ni75Fe20Mo5) nanoparticle content within the ABS matrix. Composites with Py nanoparticle content up to 80 wt% were prepared and their morphological, mechanical, thermal, dielectric and magnetic properties were evaluated. It was found that ABS shows the capability to include high loads of the filler without negatively influencing its thermal and mechanical properties. In fact, the thermal properties of the ABS matrix are basically unaltered with the inclusion of the Py nanoparticles, with the glass transition temperatures of pristine ABS and its composites remaining around 105 °C. The mechanical properties of the composites depend on filler content, with the Young's modulus ranging from 1.16 GPa for the pristine ABS up to 1.98 GPa for the sample with 60 wt% filler content. Regarding the magnetic properties, the saturation magnetization of the composites increased linearly with increasing Py content up to a value of 50.9 emu/g for the samples with 80 wt% of Py content. A numerical model has been developed to support the findings about the magnetic behavior of the NP within the ABS. Overall, the slight improvement in the mechanical properties and the magnetic properties provides the ABS composites new possibilities for applications in magnetoactive systems, including magnetic sensors, actuators and magnetic field shielding.
Collapse
Affiliation(s)
- Karla J. Merazzo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Materials Science and Engineering Research Center (CICIMA), University of Costa Rica, San Pedro 11501-2060, Costa Rica
- School of Physics, University of Costa Rica, San Pedro 11501-2060, Costa Rica
- Correspondence: or
| | - Ander García Díez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Carmen R. Tubio
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Juan Carlos Manchado
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48190 Zamudio, Spain
| | - Ramón Malet
- ELIX Polymers, Polígono Industrial-Ctra. de Vilaseca-La Pineda s/n, 43110 La Canonja, Spain
| | - Marc Pérez
- ELIX Polymers, Polígono Industrial-Ctra. de Vilaseca-La Pineda s/n, 43110 La Canonja, Spain
| | - Pedro Costa
- Center of Physics, University of Minho, 4710-058 Braga, Portugal
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|