1
|
Tusnim J, Kutuzov P, Grasman JM. In Vitro Models for Peripheral Nerve Regeneration. Adv Healthc Mater 2024; 13:e2401605. [PMID: 39324286 DOI: 10.1002/adhm.202401605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/14/2024] [Indexed: 09/27/2024]
Abstract
Peripheral nerve injury (PNI) resulting in lesions is highly prevalent clinically, but current therapeutic approaches fail to provide satisfactory outcomes in many patients. While peripheral nerves have intrinsic regenerative capacity, the regenerative capabilities of peripheral nerves are often insufficient to restore full functionality. This highlights an unmet need for developing more effective strategies to repair damaged peripheral nerves and improve regenerative success. Consequently, researchers are actively exploring a variety of therapeutic strategies, encompassing the local delivery of trophic factors or bioactive molecules, the design of advanced biomaterials that interact with regenerating axons, and augmentation with nerve guidance conduits or complex prostheses. However, clinical translation of these technologies remains limited, emphasizing the need for continued research on peripheral nerve regeneration modalities that can enhance functional restoration. Experimental models that accurately recapitulate key aspects of peripheral nerve injury and repair biology can accelerate therapeutic development by enabling systematic testing of new techniques. Advancing regenerative therapies for PNI requires bridging the gap between basic science discoveries and clinical application. This review discusses different in vitro models of peripheral nerve injury and repair, including their advantages, limitations, and potential applications.
Collapse
Affiliation(s)
- Jarin Tusnim
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Peter Kutuzov
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Jonathan M Grasman
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
2
|
Abed H, Radha R, Anjum S, Paul V, AlSawaftah N, Pitt WG, Ashammakhi N, Husseini GA. Targeted Cancer Therapy-on-A-Chip. Adv Healthc Mater 2024; 13:e2400833. [PMID: 39101627 PMCID: PMC11582519 DOI: 10.1002/adhm.202400833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/15/2024] [Indexed: 08/06/2024]
Abstract
Targeted cancer therapy (TCT) is gaining increased interest because it reduces the risks of adverse side effects by specifically treating tumor cells. TCT testing has traditionally been performed using two-dimensional (2D) cell culture and animal studies. Organ-on-a-chip (OoC) platforms have been developed to recapitulate cancer in vitro, as cancer-on-a-chip (CoC), and used for chemotherapeutics development and testing. This review explores the use of CoCs to both develop and test TCTs, with a focus on three main aspects, the use of CoCs to identify target biomarkers for TCT development, the use of CoCs to test free, un-encapsulated TCTs, and the use of CoCs to test encapsulated TCTs. Despite current challenges such as system scaling, and testing externally triggered TCTs, TCToC shows a promising future to serve as a supportive, pre-clinical platform to expedite TCT development and bench-to-bedside translation.
Collapse
Affiliation(s)
- Heba Abed
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
| | - Remya Radha
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
| | - Shabana Anjum
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
| | - Vinod Paul
- Materials Science and Engineering PhD programCollege of Arts and SciencesAmerican University of SharjahSharjahUAE
| | - Nour AlSawaftah
- Materials Science and Engineering PhD programCollege of Arts and SciencesAmerican University of SharjahSharjahUAE
| | - William G. Pitt
- Department of Chemical EngineeringBrigham Young UniversityProvoUT84602USA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME)Michigan State UniversityEast LansingMI48824USA
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095‐1600USA
| | - Ghaleb A. Husseini
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
- Materials Science and Engineering PhD programCollege of Arts and SciencesAmerican University of SharjahSharjahUAE
| |
Collapse
|
3
|
Morais AS, Mendes M, Cordeiro MA, Sousa JJ, Pais AC, Mihăilă SM, Vitorino C. Organ-on-a-Chip: Ubi sumus? Fundamentals and Design Aspects. Pharmaceutics 2024; 16:615. [PMID: 38794277 PMCID: PMC11124787 DOI: 10.3390/pharmaceutics16050615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/08/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
This review outlines the evolutionary journey from traditional two-dimensional (2D) cell culture to the revolutionary field of organ-on-a-chip technology. Organ-on-a-chip technology integrates microfluidic systems to mimic the complex physiological environments of human organs, surpassing the limitations of conventional 2D cultures. This evolution has opened new possibilities for understanding cell-cell interactions, cellular responses, drug screening, and disease modeling. However, the design and manufacture of microchips significantly influence their functionality, reliability, and applicability to different biomedical applications. Therefore, it is important to carefully consider design parameters, including the number of channels (single, double, or multi-channels), the channel shape, and the biological context. Simultaneously, the selection of appropriate materials compatible with the cells and fabrication methods optimize the chips' capabilities for specific applications, mitigating some disadvantages associated with these systems. Furthermore, the success of organ-on-a-chip platforms greatly depends on the careful selection and utilization of cell resources. Advances in stem cell technology and tissue engineering have contributed to the availability of diverse cell sources, facilitating the development of more accurate and reliable organ-on-a-chip models. In conclusion, a holistic perspective of in vitro cellular modeling is provided, highlighting the integration of microfluidic technology and meticulous chip design, which play a pivotal role in replicating organ-specific microenvironments. At the same time, the sensible use of cell resources ensures the fidelity and applicability of these innovative platforms in several biomedical applications.
Collapse
Affiliation(s)
- Ana Sofia Morais
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.M.); (M.M.); (M.A.C.); (J.J.S.)
| | - Maria Mendes
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.M.); (M.M.); (M.A.C.); (J.J.S.)
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - Marta Agostinho Cordeiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.M.); (M.M.); (M.A.C.); (J.J.S.)
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - João J. Sousa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.M.); (M.M.); (M.A.C.); (J.J.S.)
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - Alberto Canelas Pais
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - Silvia M. Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508 TB Utrecht, The Netherlands;
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.M.); (M.M.); (M.A.C.); (J.J.S.)
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| |
Collapse
|
4
|
Pierfelice TV, D'Amico E, Petrini M, Romano M, D'Arcangelo C, Sbordone L, Barone A, Plebani R, Iezzi G. A Systematic Review on Organ-on-a-Chip in PDMS or Hydrogel in Dentistry: An Update of the Literature. Gels 2024; 10:102. [PMID: 38391432 PMCID: PMC10887950 DOI: 10.3390/gels10020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Organs-on-a-chip (OoCs) are microfluidic devices constituted by PDMS or hydrogel in which different layers of cells are separated by a semipermeable membrane. This technology can set many parameters, like fluid shear stress, chemical concentration gradient, tissue-organ interface, and cell interaction. The use of these devices in medical research permits the investigation of cell patterning, tissue-material interface, and organ-organ interaction, mimicking the complex structures and microenvironment of human and animal bodies. This technology allows us to reconstitute in vitro complex conditions that recapitulate in vivo environments. One of the main advantages of these systems is that they represent a very realistic model that, in many cases, can replace animal experimentation, eliminating costs and related ethical issues. Organ-on-a-chip can also contain bacteria or cancer cells. This technology could be beneficial in dentistry for testing novel antibacterial substances and biomaterials, performing studies on inflammatory disease, or planning preclinical studies. A significant number of publications and reviews have been published on this topic. Still, to our knowledge, they mainly focus on the materials used for fabrication and the different patterns of the chip applied to the experimentations. This review presents the most recent applications of organ-on-a-chip models in dentistry, starting from the reconstituted dental tissues to their clinical applications and future perspectives.
Collapse
Affiliation(s)
- Tania Vanessa Pierfelice
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Emira D'Amico
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Morena Petrini
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Mario Romano
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Camillo D'Arcangelo
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Ludovico Sbordone
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Antonio Barone
- Department of Surgical, Medical, Molecular Pathologies and of the Critical Needs, School of Dentistry, University of Pisa, 56126 Pisa, Italy
- Complex Unit of Stomatology and Oral Surgery, University Hospital of Pisa, 56126 Pisa, Italy
| | - Roberto Plebani
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
5
|
Lachance GP, Gauvreau D, Boisselier É, Boukadoum M, Miled A. Breaking Barriers: Exploring Neurotransmitters through In Vivo vs. In Vitro Rivalry. SENSORS (BASEL, SWITZERLAND) 2024; 24:647. [PMID: 38276338 PMCID: PMC11154401 DOI: 10.3390/s24020647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Neurotransmitter analysis plays a pivotal role in diagnosing and managing neurodegenerative diseases, often characterized by disturbances in neurotransmitter systems. However, prevailing methods for quantifying neurotransmitters involve invasive procedures or require bulky imaging equipment, therefore restricting accessibility and posing potential risks to patients. The innovation of compact, in vivo instruments for neurotransmission analysis holds the potential to reshape disease management. This innovation can facilitate non-invasive and uninterrupted monitoring of neurotransmitter levels and their activity. Recent strides in microfabrication have led to the emergence of diminutive instruments that also find applicability in in vitro investigations. By harnessing the synergistic potential of microfluidics, micro-optics, and microelectronics, this nascent realm of research holds substantial promise. This review offers an overarching view of the current neurotransmitter sensing techniques, the advances towards in vitro microsensors tailored for monitoring neurotransmission, and the state-of-the-art fabrication techniques that can be used to fabricate those microsensors.
Collapse
Affiliation(s)
| | - Dominic Gauvreau
- Department Electrical Engineering, Université Laval, Québec, QC G1V 0A6, Canada; (G.P.L.); (D.G.)
| | - Élodie Boisselier
- Department Ophthalmology and Otolaryngology—Head and Neck Surgery, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Mounir Boukadoum
- Department Computer Science, Université du Québec à Montréal, Montréal, QC H2L 2C4, Canada;
| | - Amine Miled
- Department Electrical Engineering, Université Laval, Québec, QC G1V 0A6, Canada; (G.P.L.); (D.G.)
| |
Collapse
|
6
|
Shah DD, Raghani NR, Chorawala MR, Singh S, Prajapati BG. Harnessing three-dimensional (3D) cell culture models for pulmonary infections: State of the art and future directions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2861-2880. [PMID: 37266588 PMCID: PMC10235844 DOI: 10.1007/s00210-023-02541-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/17/2023] [Indexed: 06/03/2023]
Abstract
Pulmonary infections have been a leading etiology of morbidity and mortality worldwide. Upper and lower respiratory tract infections have multifactorial causes, which include bacterial, viral, and rarely, fungal infections. Moreover, the recent emergence of SARS-CoV-2 has created havoc and imposes a huge healthcare burden. Drug and vaccine development against these pulmonary pathogens like respiratory syncytial virus, SARS-CoV-2, Mycobacteria, etc., requires a systematic set of tools for research and investigation. Currently, in vitro 2D cell culture models are widely used to emulate the in vivo physiologic environment. Although this approach holds a reasonable promise over pre-clinical animal models, it lacks the much-needed correlation to the in vivo tissue architecture, cellular organization, cell-to-cell interactions, downstream processes, and the biomechanical milieu. In view of these inadequacies, 3D cell culture models have recently acquired interest. Mammalian embryonic and induced pluripotent stem cells may display their remarkable self-organizing abilities in 3D culture, and the resulting organoids replicate important structural and functional characteristics of organs such the kidney, lung, gut, brain, and retina. 3D models range from scaffold-free systems to scaffold-based and hybrid models as well. Upsurge in organs-on-chip models for pulmonary conditions has anticipated encouraging results. Complexity and dexterity of developing 3D culture models and the lack of standardized working procedures are a few of the setbacks, which are expected to be overcome in the coming times. Herein, we have elaborated the significance and types of 3D cell culture models for scrutinizing pulmonary infections, along with the in vitro techniques, their applications, and additional systems under investigation.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Neha R Raghani
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, India.
| |
Collapse
|
7
|
Liu Y, Yao X, Fan C, Zhang G, Luo X, Qian Y. Microfabrication and lab-on-a-chip devices promote in vitromodeling of neural interfaces for neuroscience researches and preclinical applications. Biofabrication 2023; 16:012002. [PMID: 37832555 DOI: 10.1088/1758-5090/ad032a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
Neural tissues react to injuries through the orchestration of cellular reprogramming, generating specialized cells and activating gene expression that helps with tissue remodeling and homeostasis. Simplified biomimetic models are encouraged to amplify the physiological and morphological changes during neural regeneration at cellular and molecular levels. Recent years have witnessed growing interest in lab-on-a-chip technologies for the fabrication of neural interfaces. Neural system-on-a-chip devices are promisingin vitromicrophysiological platforms that replicate the key structural and functional characteristics of neural tissues. Microfluidics and microelectrode arrays are two fundamental techniques that are leveraged to address the need for microfabricated neural devices. In this review, we explore the innovative fabrication, mechano-physiological parameters, spatiotemporal control of neural cell cultures and chip-based neurogenesis. Although the high variability in different constructs, and the restriction in experimental and analytical access limit the real-life applications of microphysiological models, neural system-on-a-chip devices have gained considerable translatability for modeling neuropathies, drug screening and personalized therapy.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, People's Republic of China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xiangyun Yao
- Department of Orthopedics, Shanghai Sixth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, People's Republic of China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, People's Republic of China
| | - Guifeng Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xi Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yun Qian
- Department of Orthopedics, Shanghai Sixth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, People's Republic of China
| |
Collapse
|
8
|
Zilinskaite N, Shukla RP, Baradoke A. Use of 3D Printing Techniques to Fabricate Implantable Microelectrodes for Electrochemical Detection of Biomarkers in the Early Diagnosis of Cardiovascular and Neurodegenerative Diseases. ACS MEASUREMENT SCIENCE AU 2023; 3:315-336. [PMID: 37868357 PMCID: PMC10588936 DOI: 10.1021/acsmeasuresciau.3c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
This Review provides a comprehensive overview of 3D printing techniques to fabricate implantable microelectrodes for the electrochemical detection of biomarkers in the early diagnosis of cardiovascular and neurodegenerative diseases. Early diagnosis of these diseases is crucial to improving patient outcomes and reducing healthcare systems' burden. Biomarkers serve as measurable indicators of these diseases, and implantable microelectrodes offer a promising tool for their electrochemical detection. Here, we discuss various 3D printing techniques, including stereolithography (SLA), digital light processing (DLP), fused deposition modeling (FDM), selective laser sintering (SLS), and two-photon polymerization (2PP), highlighting their advantages and limitations in microelectrode fabrication. We also explore the materials used in constructing implantable microelectrodes, emphasizing their biocompatibility and biodegradation properties. The principles of electrochemical detection and the types of sensors utilized are examined, with a focus on their applications in detecting biomarkers for cardiovascular and neurodegenerative diseases. Finally, we address the current challenges and future perspectives in the field of 3D-printed implantable microelectrodes, emphasizing their potential for improving early diagnosis and personalized treatment strategies.
Collapse
Affiliation(s)
- Nemira Zilinskaite
- Wellcome/Cancer
Research UK Gurdon Institute, Henry Wellcome Building of Cancer and
Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, U.K.
- Faculty
of Medicine, University of Vilnius, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
| | - Rajendra P. Shukla
- BIOS
Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck
Center for Complex Fluid Dynamics, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Ausra Baradoke
- Wellcome/Cancer
Research UK Gurdon Institute, Henry Wellcome Building of Cancer and
Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, U.K.
- Faculty
of Medicine, University of Vilnius, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
- BIOS
Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck
Center for Complex Fluid Dynamics, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Center for
Physical Sciences and Technology, Savanoriu 231, LT-02300 Vilnius, Lithuania
| |
Collapse
|
9
|
Cauli E, Polidoro MA, Marzorati S, Bernardi C, Rasponi M, Lleo A. Cancer-on-chip: a 3D model for the study of the tumor microenvironment. J Biol Eng 2023; 17:53. [PMID: 37592292 PMCID: PMC10436436 DOI: 10.1186/s13036-023-00372-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
The approval of anticancer therapeutic strategies is still slowed down by the lack of models able to faithfully reproduce in vivo cancer physiology. On one hand, the conventional in vitro models fail to recapitulate the organ and tissue structures, the fluid flows, and the mechanical stimuli characterizing the human body compartments. On the other hand, in vivo animal models cannot reproduce the typical human tumor microenvironment, essential to study cancer behavior and progression. This study reviews the cancer-on-chips as one of the most promising tools to model and investigate the tumor microenvironment and metastasis. We also described how cancer-on-chip devices have been developed and implemented to study the most common primary cancers and their metastatic sites. Pros and cons of this technology are then discussed highlighting the future challenges to close the gap between the pre-clinical and clinical studies and accelerate the approval of new anticancer therapies in humans.
Collapse
Affiliation(s)
- Elisa Cauli
- Department of Electronics, Information and Bioengineering, Politecnico Di Milano, Milan, Italy.
- Accelera Srl, Nerviano, Milan, Italy.
| | - Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Simona Marzorati
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico Di Milano, Milan, Italy
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
10
|
Didier CM, Fox D, Pollard KJ, Baksh A, Iyer NR, Bosak A, Li Sip YY, Orrico JF, Kundu A, Ashton RS, Zhai L, Moore MJ, Rajaraman S. Fully Integrated 3D Microelectrode Arrays with Polydopamine-Mediated Silicon Dioxide Insulation for Electrophysiological Interrogation of a Novel 3D Human, Neural Microphysiological Construct. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37157-37173. [PMID: 37494582 DOI: 10.1021/acsami.3c05788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Advances within in vitro biological system complexity have enabled new possibilities for the "Organs-on-a-Chip" field. Microphysiological systems (MPS) as such incorporate sophisticated biological constructs with custom biological sensors. For microelectromechanical systems (MEMS) sensors, the dielectric layer is critical for device performance, where silicon dioxide (SiO2) represents an excellent candidate due to its biocompatibility and wide utility in MEMS devices. Yet, high temperatures traditionally preclude SiO2 from incorporation in polymer-based BioMEMS. Electron-beam deposition of SiO2 may provide a low-temperature, dielectric serving as a nanoporous MPS growth substrate. Herein, we enable improved adherence of nanoporous SiO2 to polycarbonate (PC) and 316L stainless steel (SS) via polydopamine (PDA)-mediated chemistry. The resulting stability of the combinatorial PDA-SiO2 film was interrogated, along with the nature of the intrafilm interactions. A custom polymer-metal three-dimensional (3D) microelectrode array (3D MEA) is then reported utilizing PDA-SiO2 insulation, for definition of novel dorsal root ganglion (DRG)/nociceptor and dorsal horn (DH) 3D neural constructs in excess of 6 months for the first time. Spontaneous/evoked compound action potentials (CAPs) are successfully reported. Finally, inhibitory drugs treatments showcase pharmacological responsiveness of the reported multipart biological activity. These results represent the initiation of a novel 3D MEA-integrated, 3D neural MPS for the long-term electrophysiological study.
Collapse
Affiliation(s)
- Charles M Didier
- University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816, United States
| | - David Fox
- University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816, United States
| | - Kevin J Pollard
- Tulane University, 6823 St Charles Ave, New Orleans, Louisiana 70118, United States
| | - Aliyah Baksh
- University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816, United States
| | - Nisha R Iyer
- University of Wisconsin-Madison, 330 N. Orchard Street, Madison, Wisconsin 53717, United States
| | - Alexander Bosak
- Tulane University, 6823 St Charles Ave, New Orleans, Louisiana 70118, United States
| | - Yuen Yee Li Sip
- University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816, United States
| | - Julia F Orrico
- University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816, United States
| | - Avra Kundu
- University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816, United States
| | - Randolph S Ashton
- University of Wisconsin-Madison, 330 N. Orchard Street, Madison, Wisconsin 53717, United States
| | - Lei Zhai
- University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816, United States
| | - Michael J Moore
- Tulane University, 6823 St Charles Ave, New Orleans, Louisiana 70118, United States
- AxoSim Inc., 1441 Canal St., New Orleans, Louisiana 70112, United States
| | - Swaminathan Rajaraman
- University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816, United States
- Primordia Biosystems Inc., 1317 Edgewater Drive, #2701, Orlando, Florida 32804, United States
| |
Collapse
|
11
|
Chang Y, Cao Q, Venton BJ. 3D printing for customized carbon electrodes. CURRENT OPINION IN ELECTROCHEMISTRY 2023; 38:101228. [PMID: 36911532 PMCID: PMC9997447 DOI: 10.1016/j.coelec.2023.101228] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Traditional carbon electrodes are made of glassy carbon or carbon fibers and have limited shapes. 3D printing offers many advantages for manufacturing carbon electrodes, such as complete customization of the shape and the ability to fabricate devices and electrodes simultaneously. Additive manufacturing is the most common 3D printing method, where carbon materials are added to the material to make it conductive, and treatments applied to enhance electrochemical activity. A newer form of 3D printing is 2-photon lithography, where electrodes are printed in photoresist via laser lithography and then annealed to carbon by pyrolysis. Applications of 3D printed carbon electrodes include nanoelectrode measurements of neurotransmitters, arrays of biosensors, and integrated electrodes in microfluidic devices.
Collapse
Affiliation(s)
- Yuanyu Chang
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904
| | - Qun Cao
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904
| |
Collapse
|
12
|
Didier CM, Orrico JF, Cepeda Torres OS, Castro JM, Baksh A, Rajaraman S. Microfabricated polymer-metal biosensors for multifarious data collection from electrogenic cellular models. MICROSYSTEMS & NANOENGINEERING 2023; 9:22. [PMID: 36875634 PMCID: PMC9974480 DOI: 10.1038/s41378-023-00488-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 05/28/2023]
Abstract
Benchtop tissue cultures have become increasingly complex in recent years, as more on-a-chip biological technologies, such as microphysiological systems (MPS), are developed to incorporate cellular constructs that more accurately represent their respective biological systems. Such MPS have begun facilitating major breakthroughs in biological research and are poised to shape the field in the coming decades. These biological systems require integrated sensing modalities to procure complex, multiplexed datasets with unprecedented combinatorial biological detail. In this work, we expanded upon our polymer-metal biosensor approach by demonstrating a facile technology for compound biosensing that was characterized through custom modeling approaches. As reported herein, we developed a compound chip with 3D microelectrodes, 3D microfluidics, interdigitated electrodes (IDEs) and a microheater. The chip was subsequently tested using the electrical/electrochemical characterization of 3D microelectrodes with 1 kHz impedance and phase recordings and IDE-based high-frequency (~1 MHz frequencies) impedimetric analysis of differential localized temperature recordings, both of which were modeled through equivalent electrical circuits for process parameter extraction. Additionally, a simplified antibody-conjugation strategy was employed for a similar IDE-based analysis of the implications of a key analyte (l-glutamine) binding to the equivalent electrical circuit. Finally, acute microfluidic perfusion modeling was performed to demonstrate the ease of microfluidics integration into such a polymer-metal biosensor platform for potential complimentary localized chemical stimulation. Overall, our work demonstrates the design, development, and characterization of an accessibly designed polymer-metal compound biosensor for electrogenic cellular constructs to facilitate comprehensive MPS data collection.
Collapse
Affiliation(s)
- Charles M. Didier
- NanoScience Technology Center, University of Central Florida, 4353 Scorpius Street, Research I, Suite 231, FL 32816 Orlando, USA
- Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd, FL 32827 Orlando, USA
| | - Julia F. Orrico
- NanoScience Technology Center, University of Central Florida, 4353 Scorpius Street, Research I, Suite 231, FL 32816 Orlando, USA
| | - Omar S. Cepeda Torres
- NanoScience Technology Center, University of Central Florida, 4353 Scorpius Street, Research I, Suite 231, FL 32816 Orlando, USA
- Department of Biomedical Engineering, Polytechnic University of Puerto Rico, 377, 00918, Ponce de Leon, San Juan, Puerto Rico
| | - Jorge Manrique Castro
- NanoScience Technology Center, University of Central Florida, 4353 Scorpius Street, Research I, Suite 231, FL 32816 Orlando, USA
- Department of Electrical and Computer Engineering, University of Central Florida, 4238 Scorpius Street, FL 32816 Orlando, USA
| | - Aliyah Baksh
- NanoScience Technology Center, University of Central Florida, 4353 Scorpius Street, Research I, Suite 231, FL 32816 Orlando, USA
| | - Swaminathan Rajaraman
- NanoScience Technology Center, University of Central Florida, 4353 Scorpius Street, Research I, Suite 231, FL 32816 Orlando, USA
- Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd, FL 32827 Orlando, USA
- Department of Electrical and Computer Engineering, University of Central Florida, 4238 Scorpius Street, FL 32816 Orlando, USA
- Department of Materials Science and Engineering, University of Central Florida, 12760 Pegasus Drive, Engineering I, Suite 207, FL 32816 Orlando, USA
| |
Collapse
|
13
|
Socci MC, Rodríguez G, Oliva E, Fushimi S, Takabatake K, Nagatsuka H, Felice CJ, Rodríguez AP. Polymeric Materials, Advances and Applications in Tissue Engineering: A Review. Bioengineering (Basel) 2023; 10:bioengineering10020218. [PMID: 36829712 PMCID: PMC9952269 DOI: 10.3390/bioengineering10020218] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023] Open
Abstract
Tissue Engineering (TE) is an interdisciplinary field that encompasses materials science in combination with biological and engineering sciences. In recent years, an increase in the demand for therapeutic strategies for improving quality of life has necessitated innovative approaches to designing intelligent biomaterials aimed at the regeneration of tissues and organs. Polymeric porous scaffolds play a critical role in TE strategies for providing a favorable environment for tissue restoration and establishing the interaction of the biomaterial with cells and inducing substances. This article reviewed the various polymeric scaffold materials and their production techniques, as well as the basic elements and principles of TE. Several interesting strategies in eight main TE application areas of epithelial, bone, uterine, vascular, nerve, cartilaginous, cardiac, and urinary tissue were included with the aim of learning about current approaches in TE. Different polymer-based medical devices approved for use in clinical trials and a wide variety of polymeric biomaterials are currently available as commercial products. However, there still are obstacles that limit the clinical translation of TE implants for use wide in humans, and much research work is still needed in the field of regenerative medicine.
Collapse
Affiliation(s)
- María Cecilia Socci
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
- Correspondence: (M.C.S.); (A.P.R.)
| | - Gabriela Rodríguez
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
| | - Emilia Oliva
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
| | - Shigeko Fushimi
- Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Department of Oral Pathology and Medicine, Okayama University Dental School, Okayama 700-8525, Japan
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Carmelo José Felice
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
| | - Andrea Paola Rodríguez
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
- Correspondence: (M.C.S.); (A.P.R.)
| |
Collapse
|
14
|
Cho S, Lee S, Ahn SI. Design and engineering of organ-on-a-chip. Biomed Eng Lett 2023; 13:97-109. [PMID: 36620430 PMCID: PMC9806813 DOI: 10.1007/s13534-022-00258-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/21/2022] [Accepted: 12/20/2022] [Indexed: 01/03/2023] Open
Abstract
Organ-on-a-chip (OOC) is an emerging interdisciplinary technology that reconstitutes the structure, function, and physiology of human tissues as an alternative to conventional preclinical models for drug screening. Over the last decade, substantial progress has been made in mimicking tissue- and organ-level functions on chips through technical advances in biomaterials, stem cell engineering, microengineering, and microfluidic technologies. Structural and engineering constituents, as well as biological components, are critical factors to be considered to reconstitute the tissue function and microenvironment on chips. In this review, we highlight critical engineering technologies for reconstructing the tissue microarchitecture and dynamic spatiotemporal microenvironment in OOCs. We review the technological advances in the field of OOCs for a range of applications, including systemic analysis tools that can be integrated with OOCs, multiorgan-on-chips, and large-scale manufacturing. We then discuss the challenges and future directions for the development of advanced end-user-friendly OOC systems for a wide range of applications.
Collapse
Affiliation(s)
- Sujin Cho
- School of Mechanical Engineering, Pusan National University, Busan, 46241 Republic of Korea
| | - Sumi Lee
- School of Mechanical Engineering, Pusan National University, Busan, 46241 Republic of Korea
| | - Song Ih Ahn
- School of Mechanical Engineering, Pusan National University, Busan, 46241 Republic of Korea
| |
Collapse
|
15
|
Hrynevich A, Li Y, Cedillo-Servin G, Malda J, Castilho M. (Bio)fabrication of microfluidic devices and organs-on-a-chip. 3D Print Med 2023. [DOI: 10.1016/b978-0-323-89831-7.00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
16
|
Copper–Ruthenium Composite as Perspective Material for Bioelectrodes: Laser-Assisted Synthesis, Biocompatibility Study, and an Impedance-Based Cellular Biosensor as Proof of Concept. BIOSENSORS 2022; 12:bios12070527. [PMID: 35884330 PMCID: PMC9313201 DOI: 10.3390/bios12070527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
Copper is an inexpensive material that has found wide application in electronics due to its remarkable electric properties. However, the high toxicity of both copper and copper oxide imposes restrictions on the application of this metal as a material for bioelectronics. One way to increase the biocompatibility of pure copper while keeping its remarkable properties is to use copper-based composites. In the present study, we explored a new copper–ruthenium composite as a potential biocompatible material for bioelectrodes. Sample electrodes were obtained by subsequent laser deposition of copper and ruthenium on glass plates from a solution containing salts of these metals. The fabricated Cu–Ru electrodes exhibit high effective area and their impedance properties can be described by simple R-CPE equivalent circuits that make them perspective for sensing applications. Finally, we designed a simple impedance cell-based biosensor using this material that allows us to distinguish between dead and alive HeLa cells.
Collapse
|
17
|
Miny L, Maisonneuve BGC, Quadrio I, Honegger T. Modeling Neurodegenerative Diseases Using In Vitro Compartmentalized Microfluidic Devices. Front Bioeng Biotechnol 2022; 10:919646. [PMID: 35813998 PMCID: PMC9263267 DOI: 10.3389/fbioe.2022.919646] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/31/2022] [Indexed: 01/27/2023] Open
Abstract
The human brain is a complex organ composed of many different types of cells interconnected to create an organized system able to efficiently process information. Dysregulation of this delicately balanced system can lead to the development of neurological disorders, such as neurodegenerative diseases (NDD). To investigate the functionality of human brain physiology and pathophysiology, the scientific community has been generated various research models, from genetically modified animals to two- and three-dimensional cell culture for several decades. These models have, however, certain limitations that impede the precise study of pathophysiological features of neurodegeneration, thus hindering therapeutical research and drug development. Compartmentalized microfluidic devices provide in vitro minimalistic environments to accurately reproduce neural circuits allowing the characterization of the human central nervous system. Brain-on-chip (BoC) is allowing our capability to improve neurodegeneration models on the molecular and cellular mechanism aspects behind the progression of these troubles. This review aims to summarize and discuss the latest advancements of microfluidic models for the investigations of common neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Louise Miny
- NETRI, Lyon, France
- BIORAN Team, Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Lyon 1 University, Bron, France
| | | | - Isabelle Quadrio
- BIORAN Team, Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Lyon 1 University, Bron, France
- Laboratory of Neurobiology and Neurogenetics, Department of Biochemistry and Molecular Biology, Lyon University Hospital, Bron, France
| | | |
Collapse
|
18
|
Koyilot MC, Natarajan P, Hunt CR, Sivarajkumar S, Roy R, Joglekar S, Pandita S, Tong CW, Marakkar S, Subramanian L, Yadav SS, Cherian AV, Pandita TK, Shameer K, Yadav KK. Breakthroughs and Applications of Organ-on-a-Chip Technology. Cells 2022; 11:cells11111828. [PMID: 35681523 PMCID: PMC9180073 DOI: 10.3390/cells11111828] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 12/10/2022] Open
Abstract
Organ-on-a-chip (OOAC) is an emerging technology based on microfluid platforms and in vitro cell culture that has a promising future in the healthcare industry. The numerous advantages of OOAC over conventional systems make it highly popular. The chip is an innovative combination of novel technologies, including lab-on-a-chip, microfluidics, biomaterials, and tissue engineering. This paper begins by analyzing the need for the development of OOAC followed by a brief introduction to the technology. Later sections discuss and review the various types of OOACs and the fabrication materials used. The implementation of artificial intelligence in the system makes it more advanced, thereby helping to provide a more accurate diagnosis as well as convenient data management. We introduce selected OOAC projects, including applications to organ/disease modelling, pharmacology, personalized medicine, and dentistry. Finally, we point out certain challenges that need to be surmounted in order to further develop and upgrade the current systems.
Collapse
Affiliation(s)
- Mufeeda C. Koyilot
- Molecular Robotics, Cochin 682033, India; (M.C.K.); (P.N.); (S.S.); (R.R.); (S.J.); (S.M.); (A.V.C.)
| | - Priyadarshini Natarajan
- Molecular Robotics, Cochin 682033, India; (M.C.K.); (P.N.); (S.S.); (R.R.); (S.J.); (S.M.); (A.V.C.)
| | - Clayton R. Hunt
- Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Sonish Sivarajkumar
- Molecular Robotics, Cochin 682033, India; (M.C.K.); (P.N.); (S.S.); (R.R.); (S.J.); (S.M.); (A.V.C.)
| | - Romy Roy
- Molecular Robotics, Cochin 682033, India; (M.C.K.); (P.N.); (S.S.); (R.R.); (S.J.); (S.M.); (A.V.C.)
| | - Shreeram Joglekar
- Molecular Robotics, Cochin 682033, India; (M.C.K.); (P.N.); (S.S.); (R.R.); (S.J.); (S.M.); (A.V.C.)
| | - Shruti Pandita
- Mays Cancer Center, University of Texas Health Sciences Center at San Antonio, San Antonio, TX 78229, USA;
| | - Carl W. Tong
- School of Engineering Medicine, Texas A&M University, Houston, TX 77030, USA;
| | - Shamsudheen Marakkar
- Molecular Robotics, Cochin 682033, India; (M.C.K.); (P.N.); (S.S.); (R.R.); (S.J.); (S.M.); (A.V.C.)
| | | | - Shalini S. Yadav
- Department of Immunology, UT MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Anoop V. Cherian
- Molecular Robotics, Cochin 682033, India; (M.C.K.); (P.N.); (S.S.); (R.R.); (S.J.); (S.M.); (A.V.C.)
| | - Tej K. Pandita
- Houston Methodist Research Institute, Houston, TX 77030, USA;
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Department of Translational Medical Sciences, Texas A&M University, Houston, TX 77030, USA
- Correspondence: (T.K.P.); (K.S.); (K.K.Y.)
| | - Khader Shameer
- School of Public Health, Faculty of Medicine, Imperial College London, South Kensington, London SW7 2AZ, UK
- Correspondence: (T.K.P.); (K.S.); (K.K.Y.)
| | - Kamlesh K. Yadav
- School of Engineering Medicine, Texas A&M University, Houston, TX 77030, USA;
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Department of Translational Medical Sciences, Texas A&M University, Houston, TX 77030, USA
- Correspondence: (T.K.P.); (K.S.); (K.K.Y.)
| |
Collapse
|
19
|
Nunes C, Gorczyca G, Mendoza-deGyves E, Ponti J, Bogni A, Carpi D, Bal-Price A, Pistollato F. Upscaling biological complexity to boost neuronal and oligodendroglia maturation and improve in vitro developmental neurotoxicity (DNT) evaluation. Reprod Toxicol 2022; 110:124-140. [PMID: 35378221 DOI: 10.1016/j.reprotox.2022.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/14/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022]
Abstract
Human induced pluripotent stem cell (iPSC)-derived neuronal and glial cell models are suitable to assess the effects of environmental chemicals on the developing brain. Such test systems can recapitulate several key neurodevelopmental features, such as neural stem cell formation and differentiation towards different neuronal subtypes and astrocytes, neurite outgrowth, synapse formation and neuronal network formation and function, which are crucial for brain development. While monolayer, two-dimensional (2D) cultures of human iPSC-neuronal or glial derivatives are generally suited for high-throughput testing, they also show some limitations. In particular, differentiation towards myelinating oligodendrocytes can only be achieved after extended periods in differentiation. In recent years, the implementation of three-dimensional (3D) neuronal and glial models obtained from human iPSCs has been shown to compensate for such limitations, enabling robust differentiation towards both neuronal and glial cell populations, myelination and formation of more mature neuronal network activity. Here we compared the differentiation capacity of human iPSC-derived neural stem cells cultured either as 2D monolayer or as 3D neurospheres, and assessed chlorpyrifos (CPF) effects. Data indicate that 3D neurospheres differentiate towards neurons and oligodendroglia more rapidly than 2D cultures; however, the 2D model is more suitable to assess neuronal functionality by analysis of spontaneous electrical activity using multielectrode array. Moreover, 2D and 3D test systems are diversely susceptible to CPF treatment. In conclusion, the selection of the most suitable in vitro test system (either 2D or 3D) should take into account the context of use and intended research goals ('fit for purpose' principle).
Collapse
Affiliation(s)
- Carolina Nunes
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Gabriela Gorczyca
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Kraków, Poland
| | | | - Jessica Ponti
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Alessia Bogni
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Donatella Carpi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | |
Collapse
|
20
|
Joint-on-chip platforms: entering a new era of in vitro models for arthritis. Nat Rev Rheumatol 2022; 18:217-231. [PMID: 35058618 DOI: 10.1038/s41584-021-00736-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 12/12/2022]
|
21
|
Didier CM, Kundu A, Rajaraman S. Rapid Makerspace Microfabrication and Characterization of 3D Microelectrode Arrays (3D MEAs) for Organ-on-a-Chip Models. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS : A JOINT IEEE AND ASME PUBLICATION ON MICROSTRUCTURES, MICROACTUATORS, MICROSENSORS, AND MICROSYSTEMS 2021; 30:853-863. [PMID: 34949905 PMCID: PMC8691745 DOI: 10.1109/jmems.2021.3110163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Integrated sensors in "on-a-chip" in vitro cellular models are a necessity for granularity in data collection required for advanced biosensors. As these models become more complex, the requirement for the integration of electrogenic cells is apparent. Interrogation of such cells, whether alone or within a connected cellular framework, are best achieved with microelectrodes, in the form of a microelectrode array (MEA). Makerspace microfabrication has thus far enabled novel and accessible approaches to meet these demands. Here, resin-based 3D printing, selective multimodal laser micromachining, and simple insulation strategies, define an approach to highly customizable and "on-demand" in vitro 3D MEA-based biosensor platforms. The scalability of this approach is aided by a novel makerspace microfabrication assisted technique denoted using the term Hypo-Rig. The MEA utilizes custom-defined metal microfabricated microelectrodes transitioned from planar (2D) to 3D using the Hypo-Rig. To simulate this transition process, COMSOL modeling is utilized to estimate transitionary forces and angles (with respect to normal). Practically, the Hypo-Rig demonstrated a force of ~40N, as well as a consistent 70° average angular transitionary performance which matched well with the COMSOL model. To illustrate the scalability potential, 3 × 3, 6 × 6, and 8 × 8 versions of the device were fabricated and characterized. The 3D MEAs, demonstrated impedance and phase measurements in the biologically relevant 1 kHz range of 45.4 kΩ, and -34.6° respectively, for polystyrene insulated, ~70μm sized microelectrodes.
Collapse
Affiliation(s)
- Charles M Didier
- Burnett School of Biomedical Sciences, and the Nanoscience Technology Center at the University of Central Florida, Orlando, FL 32816, USA
| | - Avra Kundu
- College of Engineering and Computer Science at the University of Central Florida, Orlando, FL 32816, USA
| | - Swaminathan Rajaraman
- Nanoscience Technology Center, the Department of Materials Science and Engineering, the College of Electrical and Computer Engineering, and the Burnett School of Biomedical Sciences at the University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
22
|
Radisic M, Loskill P. Beyond PDMS and Membranes: New Materials for Organ-on-a-Chip Devices. ACS Biomater Sci Eng 2021; 7:2861-2863. [PMID: 34275298 DOI: 10.1021/acsbiomaterials.1c00831] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|