1
|
Ding N, Zhou F, Li G, Shen H, Bai L, Su J. Quantum dots for bone tissue engineering. Mater Today Bio 2024; 28:101167. [PMID: 39205871 PMCID: PMC11350444 DOI: 10.1016/j.mtbio.2024.101167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024] Open
Abstract
In confronting the global prevalence of bone-related disorders, bone tissue engineering (BTE) has developed into a critical discipline, seeking innovative materials to revolutionize treatment paradigms. Quantum dots (QDs), nanoscale semiconductor particles with tunable optical properties, are at the cutting edge of improving bone regeneration. This comprehensive review delves into the multifaceted roles that QDs play within the realm of BTE, emphasizing their potential to not only revolutionize imaging but also to osteogenesis, drug delivery, antimicrobial strategies and phototherapy. The customizable nature of QDs, attributed to their size-dependent optical and electronic properties, has been leveraged to develop precise imaging modalities, enabling the visualization of bone growth and scaffold integration at an unprecedented resolution. Their nanoscopic scale facilitates targeted drug delivery systems, ensuring the localized release of therapeutics. QDs also possess the potential to combat infections at bone defect sites, preventing and improving bacterial infections. Additionally, they can be used in phototherapy to stimulate important bone repair processes and work well with the immune system to improve the overall healing environment. In combination with current trendy artificial intelligence (AI) technology, the development of bone organoids can also be combined with QDs. While QDs demonstrate considerable promise in BTE, the transition from laboratory research to clinical application is fraught with challenges. Concerns regarding the biocompatibility, long-term stability of QDs within the biological environment, and the cost-effectiveness of their production pose significant hurdles to their clinical adoption. This review summarizes the potential of QDs in BTE and highlights the challenges that lie ahead. By overcoming these obstacles, more effective, efficient, and personalized bone regeneration strategies will emerge, offering new hope for patients suffering from debilitating bone diseases.
Collapse
Affiliation(s)
- Ning Ding
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Guangfeng Li
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200444, China
| | - Hao Shen
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, China
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
2
|
Zhang Y, Sun S, Wu Y, Chen F. Emerging Roles of Graphitic Carbon Nitride-based Materials in Biomedical Applications. ACS Biomater Sci Eng 2024; 10:4645-4661. [PMID: 39086282 DOI: 10.1021/acsbiomaterials.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Graphite carbon nitride (g-C3N4) is a two-dimensional conjugated polymer with a unique energy band structure similar to graphene. Due to its outstanding analytical advantages, such as relatively small band gap (2.7 eV), low-cost synthesis, high thermal stability, excellent photocatalytic ability, and good biocompatibility, g-C3N4 has attracted the interest of researchers and industry, especially in the medical field. This paper summarizes the latest research on g-C3N4-based composites in various biomedical applications, including therapy, diagnostic imaging, biosensors, antibacterial, and wearable devices. In addition, the application prospects and possible challenges of g-C3N4 in nanomedicine are also discussed in detail. This review is expected to inspire emerging biomedical applications based on g-C3N4.
Collapse
Affiliation(s)
- Yue Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, P. R. China
| | - Shuang Sun
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, P. R. China
| | - Yuanyu Wu
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, P. R. China
| | - Fangfang Chen
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, P. R. China
| |
Collapse
|
3
|
Wu X, Zhou Z, Li K, Liu S. Nanomaterials-Induced Redox Imbalance: Challenged and Opportunities for Nanomaterials in Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308632. [PMID: 38380505 PMCID: PMC11040387 DOI: 10.1002/advs.202308632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Cancer cells typically display redox imbalance compared with normal cells due to increased metabolic rate, accumulated mitochondrial dysfunction, elevated cell signaling, and accelerated peroxisomal activities. This redox imbalance may regulate gene expression, alter protein stability, and modulate existing cellular programs, resulting in inefficient treatment modalities. Therapeutic strategies targeting intra- or extracellular redox states of cancer cells at varying state of progression may trigger programmed cell death if exceeded a certain threshold, enabling therapeutic selectivity and overcoming cancer resistance to radiotherapy and chemotherapy. Nanotechnology provides new opportunities for modulating redox state in cancer cells due to their excellent designability and high reactivity. Various nanomaterials are widely researched to enhance highly reactive substances (free radicals) production, disrupt the endogenous antioxidant defense systems, or both. Here, the physiological features of redox imbalance in cancer cells are described and the challenges in modulating redox state in cancer cells are illustrated. Then, nanomaterials that regulate redox imbalance are classified and elaborated upon based on their ability to target redox regulations. Finally, the future perspectives in this field are proposed. It is hoped this review provides guidance for the design of nanomaterials-based approaches involving modulating intra- or extracellular redox states for cancer therapy, especially for cancers resistant to radiotherapy or chemotherapy, etc.
Collapse
Affiliation(s)
- Xumeng Wu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
| | - Ziqi Zhou
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Kai Li
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Shaoqin Liu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| |
Collapse
|
4
|
Wu X, Li Y, Wen M, Xie Y, Zeng K, Liu YN, Chen W, Zhao Y. Nanocatalysts for modulating antitumor immunity: fabrication, mechanisms and applications. Chem Soc Rev 2024; 53:2643-2692. [PMID: 38314836 DOI: 10.1039/d3cs00673e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Immunotherapy harnesses the inherent immune system in the body to generate systemic antitumor immunity, offering a promising modality for defending against cancer. However, tumor immunosuppression and evasion seriously restrict the immune response rates in clinical settings. Catalytic nanomedicines can transform tumoral substances/metabolites into therapeutic products in situ, offering unique advantages in antitumor immunotherapy. Through catalytic reactions, both tumor eradication and immune regulation can be simultaneously achieved, favoring the development of systemic antitumor immunity. In recent years, with advancements in catalytic chemistry and nanotechnology, catalytic nanomedicines based on nanozymes, photocatalysts, sonocatalysts, Fenton catalysts, electrocatalysts, piezocatalysts, thermocatalysts and radiocatalysts have been rapidly developed with vast applications in cancer immunotherapy. This review provides an introduction to the fabrication of catalytic nanomedicines with an emphasis on their structures and engineering strategies. Furthermore, the catalytic substrates and state-of-the-art applications of nanocatalysts in cancer immunotherapy have also been outlined and discussed. The relationships between nanostructures and immune regulating performance of catalytic nanomedicines are highlighted to provide a deep understanding of their working mechanisms in the tumor microenvironment. Finally, the challenges and development trends are revealed, aiming to provide new insights for the future development of nanocatalysts in catalytic immunotherapy.
Collapse
Affiliation(s)
- Xianbo Wu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yuqing Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Mei Wen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yongting Xie
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Ke Zeng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Wansong Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| |
Collapse
|
5
|
Ranjbari F, Fathi F. Recent Advances in Chemistry, Mechanism, and Applications of Quantum Dots in Photodynamic and Photothermal Therapy. Anticancer Agents Med Chem 2024; 24:733-744. [PMID: 38409708 DOI: 10.2174/0118715206295598240215112910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
Semiconductor quantum dots (QD) are a kind of nanoparticle with unique optical properties that have attracted a lot of attention in recent years. In this paper, the characteristics of these nanoparticles and their applications in nanophototherapy have been reviewed. Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), has gained special importance because of its high accuracy and local treatment due to the activation of the drug at the tumor site. PDT is a new way of cancer treatment that is performed by activating light-sensitive compounds named photosensitizers (PS) by light. PSs cause the destruction of diseased tissue through the production of singlet oxygen. PTT is another non-invasive method that induces cell death through the conversion of near-infrared light (NIR) into heat in the tumor situation by the photothermal agent (PA). Through using energy transfer via the FRET (Förster resonance energy transfer) process, QDs provide light absorption wavelength for both methods and cover the optical weaknesses of phototherapy agents.
Collapse
Affiliation(s)
- Faride Ranjbari
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzaneh Fathi
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
6
|
Demirci S, Suner SS, Neli OU, Koca A, Sahiner N. B, P, and S heteroatom doped, bio- and hemo-compatible 2D graphitic-carbon nitride ( g-C 3N 4) with antioxidant, light-induced antibacterial, and bioimaging endeavors. NANOTECHNOLOGY 2023; 35:025101. [PMID: 37804825 DOI: 10.1088/1361-6528/ad0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/06/2023] [Indexed: 10/09/2023]
Abstract
The synthesis of two-dimensional (2D) graphiticg-C3N4and heteroatom-doped graphitic H@g-C3N4(H: B, P, or S) particles were successfully done using melamine as source compounds and boric acid, phosphorous red, and sulfur as doping agents. The band gap values of 2Dg-C3N4, B50@g-C3N4, P50@g-C3N4, and S50@g-C3N4structures were determined as 2.90, 3.03, 2.89, and 2.93 eV, respectively. The fluorescent emission wavelengths of 2Dg-C3N4, B50@g-C3N4, P50@g-C3N4, and S50@g-C3N4structures were observed at 442, 430, 441, and 442 nm, respectively upon excitation atλEx= 325 nm. There is also one additional new emission wavelength was found at 345 nm for B50@g-C3N4structure. The blood compatibility test results ofg-C3N4, B50@g-C3N4, P50@g-C3N4, and S50@g-C3N4structures revealed that all materials are blood compatible with <2% hemolysis and >90% blood clotting indices at 100μg ml-1concentration. The cell toxicity of the prepared 2D graphitic structures were also tested on L929 fibroblast cells, and even the heteroatom doped hasg-C3N4structures induce no cytotoxicity was observed with >91% cell viability even at 250μg ml-1particle concentration with the exception of P50@g-C3N4which as >75 viability. Moreover, for 2Dg-C3N4, B50@g-C3N4, and S50@g-C3N4constructs, even at 500μg ml-1concentration, >90% cell viabilities was monitored. As a diagnostic material, B50@g-C3N4was found to have significantly high penetration and distribution abilities into L929 fibroblast cells granting a great potential in fluorescence imaging and bioimaging applications. Furthermore, the elemental doping with B, P, and S ofg-C3N4were found to significantly increase the photodynamic antibacterial activity e.g. more than half of bacterial elimination by heteroatom-doped forms ofg-C3N4under UVA treatment was achieved.
Collapse
Affiliation(s)
- Sahin Demirci
- Department of Chemistry, Faculty of Sciences, and Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale, 17100, Turkey
| | - Selin Sagbas Suner
- Department of Chemistry, Faculty of Sciences, and Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale, 17100, Turkey
| | - Ozlem Uguz Neli
- Department of Chemical Engineering, Engineering Faculty, Marmara University, Istanbul, Turkey
| | - Atif Koca
- Department of Chemical Engineering, Engineering Faculty, Marmara University, Istanbul, Turkey
| | - Nurettin Sahiner
- Department of Chemistry, Faculty of Sciences, and Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale, 17100, Turkey
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida Eye Institute, 12901 Bruce B Down Blvd, MDC 21, Tampa, FL 33612, United States of America
- Department of Chemical & Biomedical Engineering, Director, Materials Science and Engineering Program, University of South Florida, Tampa, FL 33620, United States of America
| |
Collapse
|
7
|
Deshmukh S, Pawar K, Koli V, Pachfule P. Emerging Graphitic Carbon Nitride-based Nanobiomaterials for Biological Applications. ACS APPLIED BIO MATERIALS 2023; 6:1339-1367. [PMID: 37011107 DOI: 10.1021/acsabm.2c01016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Graphitic carbon nitride (g-CN) based nanostructures are distinctive materials with unique compositional, structural, optical, and electronic properties with exceptional band structure, moderate surface area, and exceptional thermal and chemical stability. Because of these properties, g-CN based nanomaterials have shown promising applications and higher performance in the biological avenue. This review covers the state-of-the-art synthetic strategies used for the preparation of the materials, the basic structure, and a panorama of different optimization strategies leading to improved physicochemical properties responsible for the biological application. The following sections include the recent progress in the use of g-CN based nanobiomaterials for biosensors, bioimaging, photodynamic therapy, drug delivery, chemotherapy, and the antimicrobial segment. Furthermore, we have summarized the role and evaluation of biosafety and biocompatibility of the material. Finally, the unresolved issues, plausible challenges, current status, and future perspectives for the development and design of g-CN have been summarized and are expected to promote a clinical path for the medical sector and human well-being.
Collapse
Affiliation(s)
- Shamkumar Deshmukh
- Department of Chemistry, Damani Bhairuratan Fatechand, Dayanand College of Arts and Science, Solapur 413002, India
| | - Krishna Pawar
- School of Nanoscience and Technology, Shivaji University, Kolhapur 416004, India
| | - Valmiki Koli
- Department of Physics, National Dong Hwa University, Shou-Feng, Hualien 97401, Taiwan
| | - Pradip Pachfule
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| |
Collapse
|
8
|
Qin Q, Yang M, Shi Y, Cui H, Pan C, Ren W, Wu A, Hu J. Mn-doped Ti-based MOFs for magnetic resonance imaging-guided synergistic microwave thermal and microwave dynamic therapy of liver cancer. Bioact Mater 2023; 27:72-81. [PMID: 37006824 PMCID: PMC10063380 DOI: 10.1016/j.bioactmat.2023.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
Currently, precise ablation of tumors without damaging the surrounding normal tissue is still an urgent problem for clinical microwave therapy of liver cancer. Herein, we synthesized Mn-doped Ti MOFs (Mn–Ti MOFs) nanosheets by in-situ doping method and applied them for microwave therapy. Infrared thermal imaging results indicate Mn–Ti MOFs can rapidly increase the temperature of normal saline, attributing to the porous structure improving microwave-induced ion collision frequency. Moreover, Mn–Ti MOFs show higher 1O2 output than Ti MOFs under 2 W of low-power microwave irradiation due to the narrower band-gap after Mn doping. At the same time, Mn endows the MOFs with a desirable T1 contrast of magnetic resonance imaging (r2/r1 = 2.315). Further, results on HepG2 tumor-bearing mice prove that microwave-triggered Mn–Ti MOFs nearly eradicate the tumors after 14 days of treatment. Our study offers a promising sensitizer for synergistic microwave thermal and microwave dynamic therapy of liver cancer. Mn-doped Ti-MOFs nanosheets (Mn–Ti MOFs) were synthesized as novel microwave sensitizers. Mn–Ti MOFs can significantly generate heat and produce ROS under low-power microwave irradiation. The combination of microwave thermal therapy and microwave dynamic therapy can effectively inhibit the growth of tumor cells in vitro and in vivo. The microwave sensitizers have potential application in MRI-guided microwave therapy for liver cancer.
Collapse
Affiliation(s)
- Qiongyu Qin
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, PR China
| | - Ming Yang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, PR China
| | - Yu Shi
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, PR China
| | - Haijing Cui
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, PR China
| | - Chunshu Pan
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo, 315010, PR China
| | - Wenzhi Ren
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, PR China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, PR China
- Corresponding author. Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, PR China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, PR China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, PR China
- Corresponding author. Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, PR China.
| | - Jianqing Hu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, PR China
- Corresponding author. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, PR China.
| |
Collapse
|
9
|
Singh G, Imtiyaz K, Saumya, Rizvi MA, Nenavathu BP. Verteporfin Loaded Graphitic Carbon Nitride Nanosheets for Combined Photo‐Chemotherapy. ChemistrySelect 2023. [DOI: 10.1002/slct.202204914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Geetanjali Singh
- Department of Applied Sciences and Humanities Indira Gandhi Delhi Technical University for Women, Kashmere Gate Delhi 110006 India
| | - Khalid Imtiyaz
- Department of Biosciences Jamia Millia Islamia University 110025 New Delhi India
| | - Saumya
- Department of Applied Sciences and Humanities Indira Gandhi Delhi Technical University for Women, Kashmere Gate Delhi 110006 India
| | - Moshahid A. Rizvi
- Department of Biosciences Jamia Millia Islamia University 110025 New Delhi India
| | - Bhavani P. Nenavathu
- Department of Applied Sciences and Humanities Indira Gandhi Delhi Technical University for Women, Kashmere Gate Delhi 110006 India
| |
Collapse
|
10
|
Zhou H, Liu Z, Zhang Z, Pandey NK, Amador E, Nguyen W, Chudal L, Xiong L, Chen W, Wen Y. Copper-cysteamine nanoparticle-mediated microwave dynamic therapy improves cancer treatment with induction of ferroptosis. Bioact Mater 2022; 24:322-330. [PMID: 36632507 PMCID: PMC9807746 DOI: 10.1016/j.bioactmat.2022.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Photodynamic Therapy (PDT) holds a great promise for cancer patients, however, due to the hypoxic characteristics of most solid tumors and the limited penetration depth of light in tissues, the extensive clinical application of PDT is limited. Herein, we report microwave induced copper-cysteamine (Cu-Cy) nanoparticles-based PDT as a promising cancer treatment to overcome cancer resistance in combination with ferroptosis. The treatment efficiency of Cu-Cy-mediated microwave dynamic therapy (MWDT) tested on HCT15 colorectal cancer (CRC) cells via cell titer-blue cell viability assay and live/dead assay reveal that Cu-Cy upon MW irradiation can effectively destroy HCT15 CRC cells with average IC-50 values of 20 μg/mL. The cytotoxicity of Cu-Cy to tumor cells after MW stimulation can be alleviated by ferroptosis inhibitor. Furthermore, Cu-Cy mediated MWDT could deplete glutathione peroxide 4 (GPX4) and enhance lipid peroxides (LPO) and malondialdehyde (MDA). Our findings demonstrate that MW-activated Cu-Cy killed CRC cells by inducing ferroptosis. The superior in vivo antitumor efficacy of the Cu-Cy was corroborated by a HCT15 tumor-bearing mice model. Immunohistochemical experiments showed that the GPX4 expression level in Cu-Cy + MW group was significantly lower than that in other groups. Overall, these findings demonstrate that Cu-Cy nanoparticles have a safe and promising clinical application prospect in MWDT for deep-seated tumors and effectively inhibit tumor cell proliferation by inducing ferroptosis, which provides a potential solution for cancer resistance.
Collapse
Affiliation(s)
- Hui Zhou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhongtao Liu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zijian Zhang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Nil Kanatha Pandey
- Department of Physics, The University of Texas at Arlington, Arlington, TX, 76019-0059, USA
| | - Eric Amador
- Department of Physics, The University of Texas at Arlington, Arlington, TX, 76019-0059, USA
| | - William Nguyen
- Department of Physics, The University of Texas at Arlington, Arlington, TX, 76019-0059, USA
| | - Lalit Chudal
- Department of Physics, The University of Texas at Arlington, Arlington, TX, 76019-0059, USA
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China,Correponding author
| | - Wei Chen
- Department of Physics, The University of Texas at Arlington, Arlington, TX, 76019-0059, USA,Corresponding author.
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China,Corresponding author.
| |
Collapse
|
11
|
Enhanced Photodynamic Therapy: A Review of Combined Energy Sources. Cells 2022; 11:cells11243995. [PMID: 36552759 PMCID: PMC9776440 DOI: 10.3390/cells11243995] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Photodynamic therapy (PDT) has been used in recent years as a non-invasive treatment for cancer, due to the side effects of traditional treatments such as surgery, radiotherapy, and chemotherapy. This therapeutic technique requires a photosensitizer, light energy, and oxygen to produce reactive oxygen species (ROS) which mediate cellular toxicity. PDT is a useful non-invasive therapy for cancer treatment, but it has some limitations that need to be overcome, such as low-light-penetration depths, non-targeting photosensitizers, and tumor hypoxia. This review focuses on the latest innovative strategies based on the synergistic use of other energy sources, such as non-visible radiation of the electromagnetic spectrum (microwaves, infrared, and X-rays), ultrasound, and electric/magnetic fields, to overcome PDT limitations and enhance the therapeutic effect of PDT. The main principles, mechanisms, and crucial elements of PDT are also addressed.
Collapse
|
12
|
Pourmadadi M, Rahmani E, Eshaghi MM, Shamsabadipour A, Ghotekar S, Rahdar A, Romanholo Ferreira LF. Graphitic carbon nitride (g-C3N4) as a new carrier for drug delivery applications: A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Yang DC, Wen LF, Du L, Luo CM, Lu ZY, Liu JY, Lin Z. A Hypoxia-Activated Prodrug Conjugated with a BODIPY-Based Photothermal Agent for Imaging-Guided Chemo-Photothermal Combination Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40546-40558. [PMID: 36059107 DOI: 10.1021/acsami.2c09071] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hypoxia-activated prodrugs (HAPs) have drawn increasing attention for improving the antitumor effects while minimizing side effects. However, the heterogeneous distribution of the hypoxic region in tumors severely impedes the curative effect of HAPs. Additionally, most HAPs are not amenable to optical imaging, and it is difficult to precisely trace them in tissues. Herein, we carefully designed and synthesized a multifunctional therapeutic BAC prodrug by connecting the chemotherapeutic drug camptothecin (CPT) and the fluorescent photothermal agent boron dipyrromethene (BODIPY) via hypoxia-responsive azobenzene linkers. To enhance the solubility and tumor accumulation, the prepared BAC was further encapsulated into a human serum albumin (HSA)-based drug delivery system to form HSA@BAC nanoparticles. Since the CPT was caged by a BODIPY-based molecule at the active site, the BAC exhibited excellent biosafety. Importantly, the activated CPT could be quickly released from BAC and could perform chemotherapy in hypoxic cancer cells, which was ascribed to the cleavage of the azobenzene linker by overexpressed azoreductase. After irradiation with a 730 nm laser, HSA@BAC can efficiently generate hyperthermia to achieve irreversible cancer cell death by oxygen-independent photothermal therapy. Under fluorescence imaging-guided local irradiation, both in vitro and in vivo studies demonstrated that HSA@BAC exhibited superior antitumor effects with minimal side effects.
Collapse
Affiliation(s)
- De-Chao Yang
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Lin-Feng Wen
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Liyang Du
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Cheng-Miao Luo
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zi-Yao Lu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jian-Yong Liu
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhonghui Lin
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
14
|
Lv S, Liu Y, Zhao Y, Fan X, Lv F, Feng E, Liu D, Song F. Rational design of a small organic photosensitizer for NIR-I imaging-guided synergistic photodynamic and photothermal therapy. Biomater Sci 2022; 10:4785-4795. [PMID: 35852125 DOI: 10.1039/d2bm00661h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing a small molecular photosensitizer to achieve multimodal phototherapy has recently garnered attention as a promising strategy for efficient cancer treatment. However, synthesis of a multifunctional small molecular photosensitizer has remained challenging. Here we report an aggregation-induced-emission (AIE)-featured luminogen (AIEgen) TPA-BTZ decorated with long and branched alkyl chains. TPA-BTZ shows long-wavelength emission at ca. 800 nm in the NIR-I region. Moreover, upon laser irradiation, TPA-BTZ could produce O2˙- and 1O2via both type I and type II mechanisms for enhanced photodynamic therapy (PDT). The propeller-like structure triphenylamine (TPA) rotators not only endow TPA-BTZ with AIE characteristics but also facilitate heat generation by intramolecular rotation for photothermal therapy (PTT). More importantly, long and branched alkyl chains can create intermolecular spatial isolation in the fabricated TPA-BTZ@PEG2000 nanoparticles (NPs) to allow sufficient intramolecular motion for photothermal conversion. Due to these unique features, in vitro and in vivo evaluations demonstrate that the TPA-BTZ@PEG2000 NPs exhibited long-term NIR-imaging ability, superior tumoricidal activity, and suppressed tumor growth. This research provides new insights for developing new AIEgens for NIR imaging-guided multimodal phototherapy.
Collapse
Affiliation(s)
- Shibo Lv
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science. Shandong University, Qingdao, Shandong, 266237, China.
| | - Yuhan Liu
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science. Shandong University, Qingdao, Shandong, 266237, China.
| | - Yanliang Zhao
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science. Shandong University, Qingdao, Shandong, 266237, China.
| | - Xiaoxue Fan
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science. Shandong University, Qingdao, Shandong, 266237, China.
| | - Fangyuan Lv
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science. Shandong University, Qingdao, Shandong, 266237, China.
| | - Erting Feng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, High-tech District, Dalian, China.
| | - Dapeng Liu
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science. Shandong University, Qingdao, Shandong, 266237, China.
| | - Fengling Song
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science. Shandong University, Qingdao, Shandong, 266237, China. .,State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, High-tech District, Dalian, China.
| |
Collapse
|
15
|
Self-Matrix N-Doped Room Temperature Phosphorescent Carbon Dots Triggered by Visible and Ultraviolet Light Dual Modes. NANOMATERIALS 2022; 12:nano12132210. [PMID: 35808046 PMCID: PMC9268601 DOI: 10.3390/nano12132210] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 12/28/2022]
Abstract
The synthesis of room temperature phosphorescent carbon dots (RTP-CDs) without any matrix is important in various applications. In particular, RTP-CDs with dual modes of excitation are more interesting. Here, we successfully synthesized matrix-free carbonized polymer dots (CPDs) that can generate green RTP under visible and ultraviolet light dual-mode excitation. Using acrylic acid (AA) and ammonium oxalate as precursors, a simple one-pot hydrothermal method was selected to prepare AA-CPDs. Here, acrylic acid is easy to polymerize under high temperature and high pressure, which makes AA-CPDs form a dense cross-linked internal structure. Ammonium oxalate as a nitrogen source can form amino groups during the reaction, which reacts with a large number of pendant carboxyl groups on the polymer chains to further form a cross-linked structure. The carboxyl and amino groups on the surface of AA-CPDs are connected by intermolecular hydrogen bonds. These hydrogen bonds can provide space protection (isolation of oxygen) around the AA-CPDs phosphor, which can stably excite the triplet state. This self-matrix structure effectively inhibits the non-radiative transition by blocking the intramolecular motion of CPDs. Under the excitation of WLED and 365 nm ultraviolet light, AA-CPDs exhibit the phosphorescence emission at 464 nm and 476 nm, respectively. The naked-eye observation exceeds 5 s and 10 s, respectively, and the average lifetime at 365 nm excitation wavelength is as long as 412.03 ms. In addition, it successfully proved the potential application of AA-CPDs in image anti-counterfeiting.
Collapse
|
16
|
Jin X, Zhao H, Chao Z, Wang X, Zhang Q, Ju H, Liu Y. Self-assembled Cupric Oxide Nanoclusters for Highly efficient chemodynamic therapy. Chem Asian J 2022; 17:e202200296. [PMID: 35713338 DOI: 10.1002/asia.202200296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/04/2022] [Indexed: 11/11/2022]
Abstract
Chemodynamic therapy (CDT) based on Fenton and Fenton-like reactions induces cancer cell killing via in situ catalyzing H2 O2 and generating highly oxidative hydroxyl radicals (⋅OH) in tumor sites. Their application is not limited by tumor grown depth or hypoxic microenvironment. However, the reaction efficiency is still hampered due to the structure of catalytic agents and the requirement for low pH environment. Here, we design a porous CuO nanocluster (CuO NC) through self-assembly of oleylamine stabilized CuO NPs (OAm-CuO NPs), and functionalize it with folic acid (CuO NC-FA) for specific tumor cell targeting. It can catalyze H2 O2 with high efficiency in nearly neutral environment. Besides, the porous structure of CuO NC also helps the diffusion of H2 O2 to the interior of nanocluster to further improve Fenton-like reaction efficiency. The convenient synthesis of CuO NC-FA with good Fenton-like reaction efficiency at neutral environment demonstrates good chemodynamic therapy effect.
Collapse
Affiliation(s)
- Xinyu Jin
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R China
| | - Hongxia Zhao
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R China
| | - Zhicong Chao
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R China
| | - Xiaofeng Wang
- Department of Urology Affiliated Drum Tower Hospital, Medical School of Nanjing University Institute of Urology, Nanjing University, Nanjing, 210008, P. R. China
| | - Qing Zhang
- Department of Urology Affiliated Drum Tower Hospital, Medical School of Nanjing University Institute of Urology, Nanjing University, Nanjing, 210008, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R China.,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
17
|
Gao D, Wang P, Gao F, Nguyen W, Chen W. Tuning Multicolor Emission of Manganese-Activated Gallogermanate Nanophosphors by Regulating Mn Ions Occupying Sites for Multiple Anti-Counterfeiting Application. NANOMATERIALS 2022; 12:nano12122029. [PMID: 35745368 PMCID: PMC9230621 DOI: 10.3390/nano12122029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023]
Abstract
The ability to manipulate the luminescent color, intensity and long lifetime of nanophosphors is important for anti-counterfeiting applications. Unfortunately, persistent luminescence materials with multimode luminescent features have rarely been reported, even though they are expected to be highly desirable in sophisticated anti-counterfeiting. Here, the luminescence properties of Zn3Ga2GeO8:Mn phosphors were tuned by using different preparation approaches, including a hydrothermal method and solid-state reaction approach combining with non-equivalent ion doping strategy. As a result, Mn-activated Zn3Ga2GeO8 phosphors synthesized by a hydrothermal method demonstrate an enhanced red photoluminescence at 701 nm and a strong green luminescence with persistent luminescence and photostimulated luminescence at 540 nm. While Mn-activated Zn3Ga2GeO8 phosphors synthesized by solid-state reactions combined with a hetero-valent doping approach only exhibit an enhanced single-band red emission. Keeping the synthetic method unchanged, the substitution of hetero-valent dopant ion Li+ into different sites is valid for spectral fine-tuning. A spectral tuning mechanism is also proposed. Mn-activated Zn3Ga2GeO8 phosphors synthesized by a hydrothermal approach with multimodal luminescence is especially suitable for multiple anti-counterfeiting, multicolor display and other potential applications.
Collapse
Affiliation(s)
- Dangli Gao
- College of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China; (P.W.); (F.G.)
- Correspondence: (D.G.); (W.C.)
| | - Peng Wang
- College of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China; (P.W.); (F.G.)
| | - Feng Gao
- College of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China; (P.W.); (F.G.)
| | - William Nguyen
- Department of Physics, The University of Texas at Arlington, Arlington, TX 76019-0059, USA;
| | - Wei Chen
- Department of Physics, The University of Texas at Arlington, Arlington, TX 76019-0059, USA;
- Correspondence: (D.G.); (W.C.)
| |
Collapse
|
18
|
Liu B, Chen J, Peng Y, Xiao W, Peng Z, Qiu P. Graphitic-phase C 3N 4 nanosheets combined with MnO 2 nanosheets for sensitive fluorescence quenching detection of organophosphorus pesticides. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:441-449. [PMID: 35414329 DOI: 10.1080/03601234.2022.2063608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, we have developed a sensitive approach to measure organophosphorus pesticides (OPs) using graphitic-phase C3N4 nanosheets (g-C3N4) combined with a nanomaterial-based quencher, MnO2 nanosheets (MnO2 NS). Since MnO2 NS can quench the fluorescence of g-C3N4 via the inner-filter effect (IFE), enzymatic hydrolysate (thiocholine, TCh) can efficiently trigger the decomposition of MnO2 nanosheets in the presence of acetylcholinesterase (AChE) and acetylthiocholine (ATCh), resulting in the fluorescence recovery of g-C3N4. OPs, as inhibitors to AChE activity, can prevent the generation of TCh and decomposition of MnO2 nanosheets while exhibiting fluorescence quenching. Therefore, the AChE-ATCh-MnO2-g-C3N4 system can be utilized to quantitatively detect OPs based on g-C3N4 fluorescence. Under optimal conditions, the linear ranges for the determination of parathion-methyl (PM) and 2,2-dichlorovinyl dimethyl phosphate (DDVP) were found to be 0.1-2.1 ng/mL and 0.5-16 ng/mL, respectively, with limits of detection of 0.069 ng/mL and 0.20 ng/mL, respectively. The advantages of this assay are user-friendliness, ease of use, and cost effectiveness compared to other more sophisticated analytical instruments.
Collapse
Affiliation(s)
- Bicheng Liu
- Department of Chemistry, Nanchang University, Nanchang, China
| | - Jin Chen
- Department of Chemistry, Nanchang University, Nanchang, China
| | - Yiyang Peng
- Department of Chemistry, Nanchang University, Nanchang, China
| | - Wenyue Xiao
- Department of Chemistry, Nanchang University, Nanchang, China
| | - Zoujun Peng
- Department of Chemistry, Nanchang University, Nanchang, China
| | - Ping Qiu
- Department of Chemistry, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Zhou H, Liu Z, Wang Y, Wen X, Amador EH, Yuan L, Ran X, Xiong L, Ran Y, Chen W, Wen Y. Colorectal liver metastasis: molecular mechanism and interventional therapy. Signal Transduct Target Ther 2022; 7:70. [PMID: 35246503 PMCID: PMC8897452 DOI: 10.1038/s41392-022-00922-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently occurring malignancy tumors with a high morbidity additionally, CRC patients may develop liver metastasis, which is the major cause of death. Despite significant advances in diagnostic and therapeutic techniques, the survival rate of colorectal liver metastasis (CRLM) patients remains very low. CRLM, as a complex cascade reaction process involving multiple factors and procedures, has complex and diverse molecular mechanisms. In this review, we summarize the mechanisms/pathophysiology, diagnosis, treatment of CRLM. We also focus on an overview of the recent advances in understanding the molecular basis of CRLM with a special emphasis on tumor microenvironment and promise of newer targeted therapies for CRLM, further improving the prognosis of CRLM patients.
Collapse
Affiliation(s)
- Hui Zhou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Zhongtao Liu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Yongxiang Wang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Xiaoyong Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Eric H Amador
- Department of Physics, The University of Texas, Arlington, TX, 76019, USA
| | - Liqin Yuan
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Xin Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China.
| | - Yuping Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wei Chen
- Department of Physics, The University of Texas, Arlington, TX, 76019, USA.
- Medical Technology Research Centre, Chelmsford Campus, Anglia Ruskin University, Chelmsford, CM1 1SQ, UK.
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China.
| |
Collapse
|
20
|
Zhou S, Li R, Li Y, Wang Y, Feng L. A tailored and red-emissive type I photosensitizer to potentiate photodynamic immunotherapy. J Mater Chem B 2022; 10:8003-8012. [DOI: 10.1039/d2tb01578a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodynamic immunotherapy (PDIT) emerges and shows great potentials in eradicating malignant tumors for the advantages on simultaneously damaging primary tumors, inhibiting tumors metastasis and recurrence. However, hypoxic microenvironment of tumor...
Collapse
|
21
|
Pandey NK, Xiong W, Wang L, Chen W, Bui B, Yang J, Amador E, Chen M, Xing C, Athavale AA, Hao Y, Feizi W, Lumata L. Aggregation-induced emission luminogens for highly effective microwave dynamic therapy. Bioact Mater 2022; 7:112-125. [PMID: 34466721 PMCID: PMC8379457 DOI: 10.1016/j.bioactmat.2021.05.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/05/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023] Open
Abstract
Aggregation-induced emission luminogens (AIEgens) exhibit efficient cytotoxic reactive oxygen species (ROS) generation capability and unique light-up features in the aggregated state, which have been well explored in image-guided photodynamic therapy (PDT). However, the limited penetration depth of light in tissue severely hinders AIEgens as a candidate for primary or adjunctive therapy for clinical applications. Coincidentally, microwaves (MWs) show a distinct advantage for deeper penetration depth in tissues than light. Herein, for the first time, we report AIEgen-mediated microwave dynamic therapy (MWDT) for cancer treatment. We found that two AIEgens (TPEPy-I and TPEPy-PF6) served as a new type of microwave (MW) sensitizers to produce ROS, including singlet oxygen (1O2), resulting in efficient destructions of cancer cells. The results of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and live/dead assays reveal that the two AIEgens when activated by MW irradiation can effectively kill cancer cells with average IC-50 values of 2.73 and 3.22 μM, respectively. Overall, the ability of the two AIEgens to be activated by MW not only overcomes the limitations of conventional PDT, but also helps to improve existing MW ablation therapy by reducing the MW dose required to achieve the same therapeutic outcome, thus reducing the occurrence of side-effects of MW radiation.
Collapse
Affiliation(s)
- Nil Kanatha Pandey
- Department of Physics, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Wei Xiong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Lingyun Wang
- Department of Physics, The University of Texas at Arlington, Arlington, TX 76019, USA
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Wei Chen
- Department of Physics, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Brian Bui
- Department of Physics, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Jian Yang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Eric Amador
- Department of Physics, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Mingli Chen
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Christina Xing
- Department of Physics, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Aseem Atul Athavale
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Yaowu Hao
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Wirya Feizi
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Lloyd Lumata
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| |
Collapse
|
22
|
Recent advances and trends in nanoparticles based photothermal and photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 37:102697. [PMID: 34936918 DOI: 10.1016/j.pdpdt.2021.102697] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
Abstract
Light-mediated therapies, including photodynamic therapy (PDT) and photothermal therapy (PTT) have been exploited as minimally invasive techniques for ablation of various tumors., Both modalities may eradicate tumors with minimal side effects to normal tissues and organs. Moreover, developments of light-mediated approaches using nanoparticles (NPs) and photosensitizer (PS) as diagnostic and therapeutic agents may have a crucial role in achieving successful cancer treatment. In recent years, novel nanoplatforms and strategies have been investigated to boost the therapeutic effect.. In this regard, gold, iron oxide, graphene oxide nanoparticles and hybrid nanocomposites have attracted attention.. Moreover, the combination of these materials with PS, in the form of hybrid NPs, reduces in vitro and in vivo normal tissue cytotoxicity, improves their solubility property in the biological environment and enhances the therapeutic effects. In this review, we look into the basic principles of PTT and PDT with their strengths and limitations to treat cancers. We also will discuss light-based nanoparticles and their PTT and PDT applications in the preclinical and clinical translation. Also, recent advances and trends in this field will be discussed along with the clinical challenges of PTT and PDT.
Collapse
|
23
|
Bosio GN, Mártire DO. Carbon nitride nanomaterials with application in photothermal and photodynamic therapies. Photodiagnosis Photodyn Ther 2021; 37:102683. [PMID: 34915184 DOI: 10.1016/j.pdpdt.2021.102683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/17/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022]
Abstract
Phototherapies offer treatment of tumors with high spatial selectivity. Photodynamic therapy (PDT) consists in the administration of a photosensitizer (PS) followed by local photoirradiation with light of specific wavelength. The excited states of the PS interact with biomolecules and molecular oxygen producing reactive oxygen species (ROS), which initiate cell death. Photothermal therapy (PTT) employs photothermal agents to harvest the energy from light and convert it into heat to produce a temperature increase of the surrounding environment leading to cell death. Due to their good biocompatibility and unique photophysical properties, carbon-based materials are suitable for application in PDT and PTT. In particular, graphitic carbon nitride (g-C3N4), is a low-cost, non-toxic, and environment-friendly material, which is currently being used in the development of new nanomaterials with application in PDT and PTT. This brief review includes recent advances in the development of g-C3N4-based nanomaterials specifically designed for achieving red-shifted band gaps with the aim of generating oxygen molecules via water splitting upon red light or NIR irradiation to tackle the hypoxic condition of the tumor area. Nanomaterials designed for theranostics, combining medical imaging applications with PDT and/or PTT treatments are also included. The recent developments of g-C3N4-nanomaterials containing lanthanide-based upconversion nanoparticles are also covered. Finally, g-C3N4-based nanomaterials employed in microwave induced photodynamic therapy, sonodynamic therapy, and magnetic hyperthermia are considered.
Collapse
Affiliation(s)
- Gabriela N Bosio
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, CONICET, Casilla de Correo 16, Sucursal 4, La Plata 1900, Argentina.
| | - Daniel O Mártire
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, CONICET, Casilla de Correo 16, Sucursal 4, La Plata 1900, Argentina.
| |
Collapse
|
24
|
Zhai W, Xiong T, He Z, Lu S, Lai Z, He Q, Tan C, Zhang H. Nanodots Derived from Layered Materials: Synthesis and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006661. [PMID: 34212432 DOI: 10.1002/adma.202006661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/01/2020] [Indexed: 06/13/2023]
Abstract
Layered 2D materials, such as graphene, transition metal dichalcogenides, transition metal oxides, black phosphorus, graphitic carbon nitride, hexagonal boron nitride, and MXenes, have attracted intensive attention over the past decades owing to their unique properties and wide applications in electronics, catalysis, energy storage, biomedicine, etc. Further reducing the lateral size of layered 2D materials down to less than 10 nm allows for preparing a new class of nanostructures, namely, nanodots derived from layered materials. Nanodots derived from layered materials not only can exhibit the intriguing properties of nanodots due to the size confinement originating from the ultrasmall size, but also can inherit some unique properties of ultrathin layered 2D materials, making them promising candidates in a wide range of applications, especially in biomedicine and catalysis. Here, a comprehensive summary on the materials categories, advantages, synthesis methods, and potential applications of these nanodots derived from layered materials is provided. Finally, personal insights about the challenges and future directions in this promising research field are also given.
Collapse
Affiliation(s)
- Wei Zhai
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Tengfei Xiong
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Zhen He
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Shiyao Lu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Zhuangchai Lai
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
25
|
Huang H, Feng W, Chen Y. Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chem Soc Rev 2021; 50:11381-11485. [PMID: 34661206 DOI: 10.1039/d0cs01138j] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To date, nanotechnology has increasingly been identified as a promising and efficient means to address a number of challenges associated with public health. In the past decade, two-dimensional (2D) biomaterials, as a unique nanoplatform with planar topology, have attracted explosive interest in various fields such as biomedicine due to their unique morphology, physicochemical properties and biological effect. Motivated by the progress of graphene in biomedicine, dozens of types of ultrathin 2D biomaterials have found versatile bio-applications, including biosensing, biomedical imaging, delivery of therapeutic agents, cancer theranostics, tissue engineering, as well as others. The effective utilization of 2D biomaterials stems from the in-depth knowledge of structure-property-bioactivity-biosafety-application-performance relationships. A comprehensive summary of 2D biomaterials for biomedicine is still lacking. In this comprehensive review, we aim to concentrate on the state-of-the-art 2D biomaterials with a particular focus on their versatile biomedical applications. In particular, we discuss the design, fabrication and functionalization of 2D biomaterials used for diverse biomedical applications based on the up-to-date progress. Furthermore, the interactions between 2D biomaterials and biological systems on the spatial-temporal scale are highlighted, which will deepen the understanding of the underlying action mechanism of 2D biomaterials aiding their design with improved functionalities. Finally, taking the bench-to-bedside as a focus, we conclude this review by proposing the current crucial issues/challenges and presenting the future development directions to advance the clinical translation of these emerging 2D biomaterials.
Collapse
Affiliation(s)
- Hui Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.,Wenzhou Institute of Shanghai University, Wenzhou, 325000, P. R. China.,School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
26
|
Zhao P, Jin B, Zhang Q, Peng R. Fabrication and photocatalytic activity of graphitic-C 3N 4 quantum dots-decorated basic zinc carbonate prepared by a co-precipitation method. Phys Chem Chem Phys 2021; 23:20329-20339. [PMID: 34486613 DOI: 10.1039/d1cp03466a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Graphitic carbon nitride quantum dots (CNQDs) with a high quantum yield (up to 43%) were synthesized by incorporating the unique organic functional group of barbituric acid into the framework of the carbon nitride structure by supramolecular pre-organization. The CNQDs were introduced onto the surface of basic zinc carbonate (BZC) by co-precipitation. The resulting CNQDs/BZC composite showed that the degradation efficiency of tetracycline was 2.4 times higher than that of ZnO. The Z-scheme mechanism for the as-prepared sample was proposed for the enhanced photocatalytic degradation rate. The ˙O2- and ˙OH radicals played major roles due to the suitable bandgap. Finally, the formation and possible photocatalytic mechanisms of the CNQDs/BZC composite are proposed.
Collapse
Affiliation(s)
- Ping Zhao
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P. R. China.
| | - Bo Jin
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P. R. China.
| | - Qingchun Zhang
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P. R. China.
| | - Rufang Peng
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P. R. China.
| |
Collapse
|
27
|
Ramezani F, Ghasemi-Kasman M, Nosratiyan N, Ghasemi S, Feizi F. Acute administration of sulfur-doped g-C3N4 induces cognitive deficits and exacerbates the levels of glial activation in mouse hippocampus. Brain Res Bull 2021; 176:54-66. [PMID: 34419511 DOI: 10.1016/j.brainresbull.2021.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/29/2021] [Accepted: 08/15/2021] [Indexed: 11/27/2022]
Abstract
During the last decades, graphitic carbon nitride (g-C3N4) has attracted increasing attention in several biomedical fields. In this study, the effects of sulfur-doped g-C3N4 (TCN) on cognitive function and histopathology of hippocampus were investigated in mice. The characteristics of synthetized sample were evaluated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and energy dispersive X-ray (EDX). Twenty-four male NMRI mice received vehicle, TCN at doses of 50, 150, or 500 mg/kg via gavage for one week. Morris water maze test was done to assess the cognitive function at day 14 post TCN administration. Nissl staining was used to determine the number of dark cells in the hippocampus. Immunostaining against NeuN, GFAP, and Iba1 was done to evaluate the neuronal density and levels of glial activation, respectively. Behavioral tests indicated that TCN reduces the spatial learning and memory in a dose-dependent manner. Histological evaluations showed an increased level of neuronal loss and glial activation in the hippocampus of TCN treated mice at doses of 150 and 500 mg/kg. Overall, our data indicate that TCN induces the cognitive impairment that is partly mediated via its exacerbating impacts on neuronal loss and glial activation.
Collapse
Affiliation(s)
- Farangis Ramezani
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Nasrin Nosratiyan
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Shahram Ghasemi
- Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Farideh Feizi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
28
|
Mi Y, Dai L, Xu N, Zheng W, Ma C, Chen W, Zhang Q. Viability inhibition of A375 melanoma cells in vitroby a high-frequency nanosecond-pulsed magnetic field combined with targeted iron oxide nanoparticles via membrane magnetoporation. NANOTECHNOLOGY 2021; 32:385101. [PMID: 34144549 DOI: 10.1088/1361-6528/ac0caf] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/18/2021] [Indexed: 06/12/2023]
Abstract
Poor efficacy and low electrical safety are issues in the treatment of tumours with pulsed magnetic fields (PMFs). Based on the cumulative effect of high-frequency pulses and the enhanced perforation effect of targeted nanoparticles, this article proposes for the first time a new method that combines high-frequency nanosecond-pulsed magnetic fields (nsPMFs) with folic acid-superparamagnetic iron oxide nanoparticles (SPIONs-FA) to kill tumour cells. After determining the safe concentration of the targeted iron oxide nanoparticles, CCK-8 reagent was used to detect the changes in cell viability after utilising the combined method. After that, PI macromolecular dyes were used to stain the cells. Then, the state of the cell membrane was observed by scanning electron microscopy, and other methods were applied to study the cell membrane permeability changes after the combined treatment of the cells. It was finally confirmed that the high-frequency PMF can significantly reduce cell viability through the cumulative effect. In addition, the targeted iron oxide nanoparticles can reduce the magnetic field amplitude and the number of pulses required for the high-frequency PMF to kill tumour cellsin vitrothrough magnetoporation. The objective of this research is to improve the electrical safety of the PMF with the use of nsPMFs for the safe, efficient and low-intensity treatment of tumours.
Collapse
Affiliation(s)
- Yan Mi
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Lujian Dai
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Ning Xu
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Wei Zheng
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Chi Ma
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Wenjuan Chen
- Chongqing University Cancer Hospital, Chongqing 400044, People's Republic of China
| | - Qin Zhang
- Chongqing University Cancer Hospital, Chongqing 400044, People's Republic of China
| |
Collapse
|
29
|
Yu J, Liu S, Wang Y, He X, Zhang Q, Qi Y, Zhou D, Xie Z, Li X, Huang Y. Synergistic enhancement of immunological responses triggered by hyperthermia sensitive Pt NPs via NIR laser to inhibit cancer relapse and metastasis. Bioact Mater 2021; 7:389-400. [PMID: 34466740 PMCID: PMC8379359 DOI: 10.1016/j.bioactmat.2021.05.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
The combination of tumor ablation and immunotherapy is a promising strategy against tumor relapse and metastasis. Photothermal therapy (PTT) triggers the release of tumor-specific antigens and damage associated molecular patterns (DAMPs) in-situ. However, the immunosuppressive tumor microenvironment restrains the activity of the effector immune cells. Therefore, systematic immunomodulation is critical to stimulate the tumor microenvironment and augment the anti-tumor therapeutic effect. To this end, polyethylene glycol (PEG)-stabilized platinum (Pt) nanoparticles (Pt NPs) conjugated with a PD-L1 inhibitor (BMS-1) through a thermo-sensitive linkage were constructed. Upon near-infrared (NIR) exposure, BMS-1 was released and maleimide (Mal) was exposed on the surface of Pt NPs, which captured the antigens released from the ablated tumor cells, resulting in the enhanced antigen internalization and presentation. In addition, the Pt NPs acted as immune adjuvants by stimulating dendritic cells (DCs) maturation. Furthermore, BMS-1 relieved T cell exhaustion and induced the infiltration of effector T cells into the tumor tissues. Thus, Pt NPs can ablate tumors through PTT, and augment the anti-tumor immune response through enhanced antigen presentation and T cells infiltration, thereby preventing tumor relapse and metastasis. Pt NPs ablated tumor cells through PTT and served as immune adjuvants. Released BMS-1 and deprotected maleimide by thermo-sensitive Diels-Alder reaction. Pt NPs captured the antigens with exposed maleimide and stimulated dendritic cells maturation. Controlled release of BMS-1 in response to PTT relieved T cell exhaustion.
Collapse
Affiliation(s)
- Jie Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.,University of Science and Technology of China, Hefei, 230026, PR China
| | - Sha Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Yupeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Xidong He
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.,University of Science and Technology of China, Hefei, 230026, PR China
| | - Qingfei Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Yanxin Qi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Dongfang Zhou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.,University of Science and Technology of China, Hefei, 230026, PR China
| | - Xiaoyuan Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.,Faculty of Chemistry, Northeast Normal University, Changchun, 130024, PR China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.,Faculty of Chemistry, Northeast Normal University, Changchun, 130024, PR China
| |
Collapse
|
30
|
Das M, Solanki A, Ganesh A, Thakore S. Emerging hybrid biomaterials for oxidative stress induced photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 34:102259. [PMID: 33737219 DOI: 10.1016/j.pdpdt.2021.102259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/17/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022]
Abstract
Cancer therapy has undergone tremendous advancements in the past few years. The drawbacks of most of these therapies have encouraged researchers to obtain further insight into the complex chemical, biochemical and biological processes ongoing in the evolving cancer cells. These studies have led to an advent of reactive oxygen species mediated therapies to target and disrupt the cancer pathology. Photodynamic therapy (PDT) has emerged as a potent candidate for oxidative stress mediated non-invasive technique for rapid diagnosis and treatment of cancer. Towards this, biomacromolecules derived hybrid nanomaterials have contributed largely in the development of various therapeutics and theranostics for efficacious cancer management that can assist PDT. This review summarizes various hybrid biomaterials and advanced techniques that have been explored widely in the past few years for PDT application. The article also mentions some of the important in-vitro and in-vivo developments and observations explored by employing these materials for PDT application. The article also describes the interactions of these materials at the biological interface and the probable mechanism that assist in generation of oxidative stress and subsequent cell death.
Collapse
Affiliation(s)
- Manita Das
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 3960002, India
| | - Archana Solanki
- Research and Development Centre, Gujarat Narmada Valley Fertilizers and Chemicals Ltd, Bharuch, 392015, India
| | - Ashwini Ganesh
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, 3960002, India
| | - Sonal Thakore
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 3960002, India; Institute of Interdisciplinary Studies, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 3960002, India.
| |
Collapse
|
31
|
Micheletto MC, Guidelli ÉJ, Costa-Filho AJ. Interaction of Genetically Encoded Photosensitizers with Scintillating Nanoparticles for X-ray Activated Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2289-2302. [PMID: 33405500 DOI: 10.1021/acsami.0c19041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photodynamic therapy (PDT) applications are limited by the low penetration of UV-visible light into biological tissues. Considering X-rays as an alternative to excite photosensitizers (PS) in a deeper tumor, an intermediate particle able to convert the X-ray energy into visible light (scintillating nanoparticle, ScNP) is necessary. Moreover, accumulation of PS in the target cells is also required. Genetically encoded proteins could be used as a photosensitizer, allowing the exclusive expression of PS inside the tumor cells. Here, the interaction of eGFP, KillerOrange, and KillerRed proteins with LaF3:Tb3+ ScNP was investigated, for the first time, in terms of its physicochemical and energy transfer properties. The protein structure, stability, and function were evaluated upon adverse physiological conditions and X-ray irradiation. Optimal parameters for energy transfer from ScNP to the proteins were investigated, paving the way for the use of genetically encoded photosensitizers for applications in X-ray activated photodynamic therapy.
Collapse
Affiliation(s)
- Mariana C Micheletto
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Éder J Guidelli
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Antonio J Costa-Filho
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| |
Collapse
|
32
|
Li WP, Yen CJ, Wu BS, Wong TW. Recent Advances in Photodynamic Therapy for Deep-Seated Tumors with the Aid of Nanomedicine. Biomedicines 2021; 9:69. [PMID: 33445690 PMCID: PMC7828119 DOI: 10.3390/biomedicines9010069] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Photodynamic therapy (PDT) works through photoactivation of a specific photosensitizer (PS) in a tumor in the presence of oxygen. PDT is widely applied in oncology to treat various cancers as it has a minimally invasive procedure and high selectivity, does not interfere with other treatments, and can be repeated as needed. A large amount of reactive oxygen species (ROS) and singlet oxygen is generated in a cancer cell during PDT, which destroys the tumor effectively. However, the efficacy of PDT in treating a deep-seated tumor is limited due to three main reasons: Limited light penetration depth, low oxygen concentration in the hypoxic core, and poor PS accumulation inside a tumor. Thus, PDT treatments are only approved for superficial and thin tumors. With the advancement of nanotechnology, PDT to treat deep-seated or thick tumors is becoming a reachable goal. In this review, we provide an update on the strategies for improving PDT with nanomedicine using different sophisticated-design nanoparticles, including two-photon excitation, X-ray activation, targeting tumor cells with surface modification, alteration of tumor cell metabolism pathways, release of therapeutic gases, improvement of tumor hypoxia, and stimulation of host immunity. We focus on the difficult-to-treat pancreatic cancer as a model to demonstrate the influence of advanced nanomedicine in PDT. A bright future of PDT application in the treatment of deep-seated tumors is expected.
Collapse
Affiliation(s)
- Wei-Peng Li
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chia-Jui Yen
- Division of Hematology and Oncology, Department of Internal Medicine, Graduate Institute of Clinical Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan;
| | - Bo-Sheng Wu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Tak-Wah Wong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
33
|
Zhang W, Dang G, Dong J, Li Y, Jiao P, Yang M, Zou X, Cao Y, Ji H, Dong L. A multifunctional nanoplatform based on graphitic carbon nitride quantum dots for imaging-guided and tumor-targeted chemo-photodynamic combination therapy. Colloids Surf B Biointerfaces 2021; 199:111549. [PMID: 33388720 DOI: 10.1016/j.colsurfb.2020.111549] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 12/29/2022]
Abstract
Graphitic carbon nitride quantum dots (g-CNQDs) have shown great potential in imaging, drug delivery and photodynamic therapy (PDT). However, relevant research on g-CNQDs for PDT or drug delivery has been conducted separately. Herein, we develop a g-CNQDs-based nanoplatform (g-CPFD) to achieve simultaneously imaging and chemo-photodynamic combination therapy in one system. A g-CNQDs-based nanocarrier (g-CPF) is first prepared by successively introducing carboxyamino-terminated oligomeric polyethylene glycol and folic acid onto the surface of g-CNQDs via two-step amidation. The resultant g-CPF possesses good physiological stability, strong blue fluorescence, desirable biocompatibility, and visible light-stimulated reactive oxygen species generating ability. Further non-covalently loaded doxorubicin enables the system with chemotherapy function. Compared with free doxorubicin, g-CPFD expresses more efficient chemotherapy to HeLa cells due to improved folate receptor-mediated cellular uptake and intracellular pH-triggered drug release. Furthermore, g-CPFD under visible light irradiation shows enhanced inhibition on the growth of cancer cells compared to sole chemotherapy or PDT. Thus, g-CPFD exhibits exceptional anti-tumor efficiency due to folate receptor-mediated targeting ability, intracellular pH-triggered drug release and a combined treatment effect arising from PDT and chemotherapy. Moreover, this nanoplatform benefits imaging-guided drug delivery because of inherent fluorescent properties of doxorubicin and g-CPF, hence achieving the goal of imaging-guided chemo-photodynamic combination treatments.
Collapse
Affiliation(s)
- Wenxian Zhang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Guangyao Dang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Jian Dong
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China.
| | - Yanyan Li
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Peng Jiao
- Life Science Research Center, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Mingfeng Yang
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Xianwen Zou
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Yutao Cao
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Haiwei Ji
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Lifeng Dong
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China.
| |
Collapse
|
34
|
Zhou B, Guo Z, Lin Z, Jiang BP, Shen XC. Stimuli-Responsive Nanomaterials for Smart Tumor-Specific Phototherapeutics. ChemMedChem 2020; 16:919-931. [PMID: 33345434 DOI: 10.1002/cmdc.202000831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/10/2020] [Indexed: 12/14/2022]
Abstract
Phototherapy, a type of photoresponsive regulation of biological activities, together with additional stimuli-responsive features, offers significant potential for enhancing the precision and efficacy of cancer treatments. To achieve tumor-specific therapeutics, numerous studies have focused on the development of smart phototherapeutic nanomaterials (PNMs) that can respond to endogenous pathological characteristics (e. g., mild acidity, the overproduction of glutathione, the overproduction of hydrogen peroxide, the overexpression of specific surface receptors, etc.) present in the tumor and/or exogenous stimuli. Such responsiveness can effectively improve the physicochemical properties, cellular uptake, tumor-targeting performance, and pharmacokinetic profile of PNMs. Herein, we will systematically discuss recent advances in this field. Moreover, potential challenges and future directions in the development of stimuli-responsive PNMs are also presented to support the development of this emerging cutting-edge research area.
Collapse
Affiliation(s)
- Bo Zhou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Zhengxi Guo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Zhaoxin Lin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
35
|
Liu H, Lv X, Qian J, Li H, Qian Y, Wang X, Meng X, Lin W, Wang H. Graphitic Carbon Nitride Quantum Dots Embedded in Carbon Nanosheets for Near-Infrared Imaging-Guided Combined Photo-Chemotherapy. ACS NANO 2020; 14:13304-13315. [PMID: 33016066 DOI: 10.1021/acsnano.0c05143] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rational design of metal-free multifunctional therapeutic reagents offers great opportunities for cancer treatment in the clinic. Here, graphitic carbon nitride (g-C3N4) quantum dots embedded in carbon nanosheets (CNQD-CN) are in situ prepared via a one-pot hydrothermal approach with formamide as carbon and nitrogen source. The CNQD-CN not only serves as an excellent near-infrared (NIR) fluorescent marker but also acts as a pH-responsive nanocarrier. Moreover, the CNQD-CN possesses both light-to-heat conversion and singlet oxygen generation capabilities under a single NIR excitation wavelength. Further investigations show that systemic delivery of doxorubicin (DOX) using the multifunctional CNQD-CN nanocarrier under NIR irradiation was highly effective to cause cancer cell apoptosis in vitro and inhibit tumor growth in vivo. CNQD-CN represents a multifunctional therapeutic platform for synchronous cancer imaging and treatment through the synergistic effect of phototherapy and chemotherapy.
Collapse
Affiliation(s)
- Hongji Liu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China
- University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, Anhui, People's Republic of China
| | - Xiaotong Lv
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China
- University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China
| | - Junchao Qian
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Hong Li
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China
| | - Yong Qian
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, Anhui, People's Republic of China
| | - Xingyu Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China
- University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, Anhui, People's Republic of China
| | - Xiangfu Meng
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China
- University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, Anhui, People's Republic of China
| | - Wenchu Lin
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China
| | - Hui Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China
| |
Collapse
|
36
|
Huo D, Jiang X, Hu Y. Recent Advances in Nanostrategies Capable of Overcoming Biological Barriers for Tumor Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904337. [PMID: 31663198 DOI: 10.1002/adma.201904337] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/27/2019] [Indexed: 05/22/2023]
Abstract
Engineered nanomaterials have been extensively employed as therapeutics for tumor management. Meanwhile, the complex tumor niche along with multiple barriers at the cellular level collectively hinders the action of nanomedicines. Here, the advanced strategies that hold promise for overcoming the numerous biological barriers facing nanomedicines are summarized. Starting from tumor entry, methods that promote tissue penetration of nanomedicine and address the hypoxia issue are also highlighted. Then, emphasis is given to the significance of overcoming both physical barriers, such as membrane-associated efflux pumps, and biological features, such as resistance to apoptosis. The pros and cons for an individual approach are presented. In addition, the associated technical problems are discussed, along with the importance of balancing the therapeutic merits and the additional cost of sophisticated nanomedicine designs.
Collapse
Affiliation(s)
- Da Huo
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xiqun Jiang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yong Hu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China
| |
Collapse
|
37
|
Zheng H, Zhao Z, Phan JB, Ning H, Huang Q, Wang R, Zhang J, Chen W. Highly Efficient Metal-Free Two-Dimensional Luminescent Melem Nanosheets for Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2145-2151. [PMID: 31845568 DOI: 10.1021/acsami.9b19915] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two-dimensional (2D) luminescent materials have received tremendous attention for their intrinsic properties and promising practical applications. Achieving 2D luminescent materials with high photoluminescence (PL) efficiency is still a great challenge. Here, ultrathin metal-free 2D luminescent nanosheets of 2,5,8-triamino-tri-s-triazine (melem) are synthesized through a facile liquid exfoliation process assisted by ultrasound. The as-obtained melem nanosheets distribute in the size range from a few nanometers to around 150 nm with a thickness of about 5 to 6 atomic layers. Melem nanosheets exhibit efficient blue emission with a PL efficiency as high as 77.09%, much higher than the heavily explored 2D luminescent g-C3N4 nanosheets. The high efficiency of melem nanosheets comes from the absence of atom vacancies and the low carrier mobility. Benefiting from the easy synthesis, good stability, low cell toxicity, and high efficiency, melem nanosheets are successfully applied as bioimaging materials on human breast cancer cells, requiring no extra treatments such as surface coating or functionalization. These metal-free 2D luminescent melem nanosheets hold great potential for various applications including bioimaging and other biorelated applications.
Collapse
Affiliation(s)
- Huibin Zheng
- Key Laboratory of Micro-Nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics , Beihang University , Beijing 100191 , China
| | - Zhengui Zhao
- Key Laboratory of Micro-Nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics , Beihang University , Beijing 100191 , China
| | - Jonathan B Phan
- Department of Physics , The University of Texas at Arlington , Arlington , Texas 76019-0059 , United States
| | - Honglong Ning
- State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| | - Qianming Huang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics , University of Science and Technology Beijing , Beijing 100083 , China
| | - Rongming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics , University of Science and Technology Beijing , Beijing 100083 , China
| | - Junying Zhang
- Key Laboratory of Micro-Nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics , Beihang University , Beijing 100191 , China
- State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| | - Wei Chen
- Department of Physics , The University of Texas at Arlington , Arlington , Texas 76019-0059 , United States
| |
Collapse
|
38
|
Zhu H, Ni N, Govindarajan S, Ding X, Leong DT. Phototherapy with layered materials derived quantum dots. NANOSCALE 2020; 12:43-57. [PMID: 31799539 DOI: 10.1039/c9nr07886j] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Quantum dots (QDs) originating from two-dimensional (2D) sheets of graphitic carbon nitride (g-C3N4), graphene, hexagonal boron nitride (h-BN), monoatomic buckled crystals (phosphorene), germanene, silicene and transition metal dichalcogenides (TMDCs) are emerging zero-dimensional materials. These QDs possess diverse optical properties, are chemically stable, have surprisingly excellent biocompatibility and are relatively amenable to surface modifications. It is therefore not difficult to see that these QDs have potential in a variety of bioapplications, including biosensing, bioimaging and anticancer and antimicrobial therapy. In this review, we briefly summarize the recent progress of these exciting QD based nanoagents and strategies for phototherapy. In addition, we will discuss about the current limitations, challenges and future prospects of QDs in biomedical applications.
Collapse
Affiliation(s)
- Houjuan Zhu
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117585, Singapore. and Centre for Advanced 2D Materials, Graphene Research Centre, National University of Singapore, Singapore 117546, Singapore
| | - Nengyi Ni
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Suresh Govindarajan
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Xianguang Ding
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117585, Singapore. and NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
39
|
|
40
|
Wang W, Cheng X, Liao J, Lin Z, Chen L, Liu D, Zhang T, Li L, Lu Y, Xia H. Synergistic Photothermal and Photodynamic Therapy for Effective Implant-Related Bacterial Infection Elimination and Biofilm Disruption Using Cu9S8 Nanoparticles. ACS Biomater Sci Eng 2019; 5:6243-6253. [PMID: 33405531 DOI: 10.1021/acsbiomaterials.9b01280] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Wanshun Wang
- Department of Graduate School, Guangzhou University of Chinese Medicine, 12 Airport Road, Guangzhou, Guangdong 510405, P. R. China
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Hospital of Orthopedics, General Hospital of Southern Theater Command of PLA, 111 Liuhua Road, Guangzhou, Guangdong 510010, P. R. China
| | - Xiaohang Cheng
- Traditional Chinese Medical Hospital of Xinjiang Urumqi Midong, 1055 Fuqian Road, Midong, Urumqi, Xinjiang 831400, P. R. China
| | - Jiawei Liao
- Department of Graduate School, Guangzhou University of Chinese Medicine, 12 Airport Road, Guangzhou, Guangdong 510405, P. R. China
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Hospital of Orthopedics, General Hospital of Southern Theater Command of PLA, 111 Liuhua Road, Guangzhou, Guangdong 510010, P. R. China
| | - Zefeng Lin
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Hospital of Orthopedics, General Hospital of Southern Theater Command of PLA, 111 Liuhua Road, Guangzhou, Guangdong 510010, P. R. China
| | - Lingling Chen
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Hospital of Orthopedics, General Hospital of Southern Theater Command of PLA, 111 Liuhua Road, Guangzhou, Guangdong 510010, P. R. China
| | - Dandan Liu
- Department of Graduate School, Guangzhou University of Chinese Medicine, 12 Airport Road, Guangzhou, Guangdong 510405, P. R. China
| | - Tao Zhang
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Hospital of Orthopedics, General Hospital of Southern Theater Command of PLA, 111 Liuhua Road, Guangzhou, Guangdong 510010, P. R. China
| | - Lihua Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials, School of Materials Science and Engineering, School of Physics, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510640, P. R. China
| | - Yao Lu
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Hospital of Orthopedics, General Hospital of Southern Theater Command of PLA, 111 Liuhua Road, Guangzhou, Guangdong 510010, P. R. China
- Department of Orthopedics, Clinical Research Centre, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou, Guangdong 510282, P. R. China
| | - Hong Xia
- Department of Graduate School, Guangzhou University of Chinese Medicine, 12 Airport Road, Guangzhou, Guangdong 510405, P. R. China
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Hospital of Orthopedics, General Hospital of Southern Theater Command of PLA, 111 Liuhua Road, Guangzhou, Guangdong 510010, P. R. China
| |
Collapse
|
41
|
Multifunctional iron-based Metal−Organic framework as biodegradable nanozyme for microwave enhancing dynamic therapy. Biomaterials 2019; 214:119223. [DOI: 10.1016/j.biomaterials.2019.119223] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/01/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023]
|
42
|
Zhou Z, Niu X, Ma L, Wang J. Revealing the pH‐Dependent Photoluminescence Mechanism of Graphitic C
3
N
4
Quantum Dots. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201900074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Zhaobo Zhou
- School of PhysicsSoutheast University Nanjing 211189 China
| | - Xianghong Niu
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of ScienceNanjing University of Posts and Telecommunications Nanjing 210046 China
| | - Liang Ma
- School of PhysicsSoutheast University Nanjing 211189 China
| | - Jinlan Wang
- School of PhysicsSoutheast University Nanjing 211189 China
| |
Collapse
|
43
|
Lan M, Zhao S, Liu W, Lee C, Zhang W, Wang P. Photosensitizers for Photodynamic Therapy. Adv Healthc Mater 2019; 8:e1900132. [PMID: 31067008 DOI: 10.1002/adhm.201900132] [Citation(s) in RCA: 529] [Impact Index Per Article: 105.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/01/2019] [Indexed: 12/12/2022]
Abstract
As an emerging clinical modality for cancer treatment, photodynamic therapy (PDT) takes advantage of the cytotoxic activity of reactive oxygen species (ROS) that are generated by light irradiating photosensitizers (PSs) in the presence of oxygen (O2 ). However, further advancements including tumor selectivity and ROS generation efficiency are still required. Substantial efforts are devoted to design and synthesize smart PSs with optimized properties for achieving a desirable therapeutic efficacy. This review summarizes the recent progress in developing intelligent PSs for efficient PDT, ranging from single molecules to delicate nanomaterials. The strategies to improve ROS generation through optimizing photoinduced electron transfer and energy transfer processes of PSs are highlighted. Moreover, the approaches that combine PDT with other therapeutics (e.g., chemotherapy, photothermal therapy, and radiotherapy) and the targeted delivery in cancer cells or tumor tissue are introduced. The main challenges for the clinical application of PSs are also discussed.
Collapse
Affiliation(s)
- Minhuan Lan
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product SafetyCollege of Chemistry and Chemical EngineeringCentral South University Changsha 410083 P. R. China
| | - Shaojing Zhao
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product SafetyCollege of Chemistry and Chemical EngineeringCentral South University Changsha 410083 P. R. China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and DevicesTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Chun‐Sing Lee
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Materials Science and EngineeringCity University of Hong Kong Hong Kong SAR CN P. R. China
| | - Wenjun Zhang
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Materials Science and EngineeringCity University of Hong Kong Hong Kong SAR CN P. R. China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and DevicesTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
44
|
Li Y, Luo S, Sun L, Kong D, Sheng J, Wang K, Dong C. A Green, Simple, and Rapid Detection for Amaranth in Candy Samples Based on the Fluorescence Quenching of Nitrogen-Doped Graphene Quantum Dots. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01505-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Exploration of TiO 2 nanoparticle mediated microdynamic therapy on cancer treatment. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 18:272-281. [PMID: 30878657 DOI: 10.1016/j.nano.2019.02.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/02/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022]
Abstract
Radical therapy takes advantage of the reactive oxygen species produced in greater quantities within tumor cells than in normal cells. Here, for the first time, we explore a TiO2 nanoparticle mediated microwave induced radical therapy (termed as Microdynamic Therapy) as a new cancer treatment method. The experiments in vitro and in vivo demonstrate that colloidal TiO2 nanoparticles could significantly suppress the growth of osteosarcomas, even under low power (5 W) microwave (MW) irradiation for 5 min. The high photocatalytic activity of TiO2 nanoparticles efficiently utilizes the microwave-induced plasmonic effect for the formation of reactive oxygen species (ROS). Furthermore, TiO2 nanoparticles exhibit a higher cytotoxicity on cancer cells (osteosarcoma UMR-106 cells) than on normal cells (mouse fibroblast L929 cells). The effectiveness of TiO2 nanoparticles for microwave induced radical therapy demonstrates that this is a new landmark approach to treating cancers.
Collapse
|
46
|
Pandey NK, Chudal L, Phan J, Lin L, Johnson O, Xing M, Liu JP, Li H, Huang X, Shu Y, Chen W. A facile method for the synthesis of copper–cysteamine nanoparticles and study of ROS production for cancer treatment. J Mater Chem B 2019; 7:6630-6642. [DOI: 10.1039/c9tb01566c] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A facile synthesis method of copper–cysteamine nanoparticles is reported and their application for cancer treatment through ROS-mediated mechanisms is explored.
Collapse
Affiliation(s)
| | - Lalit Chudal
- Department of Physics
- University of Texas at Arlington
- Arlington
- USA
| | - Jonathan Phan
- Department of Physics
- University of Texas at Arlington
- Arlington
- USA
| | - Liangwu Lin
- Laboratory on High-Strength Structural Materials
- Central South University
- Changsha 410083
- P. R. China
| | - Omar Johnson
- Department of Physics
- University of Texas at Arlington
- Arlington
- USA
| | - Meiying Xing
- Department of Physics
- University of Texas at Arlington
- Arlington
- USA
| | - J. Ping Liu
- Department of Physics
- University of Texas at Arlington
- Arlington
- USA
| | - Haibin Li
- Department of Physics
- University of Texas at Arlington
- Arlington
- USA
- School of Materials Science and Engineering
| | - Xuejing Huang
- Department of Physics
- University of Texas at Arlington
- Arlington
- USA
| | - Yang Shu
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
| | - Wei Chen
- Department of Physics
- University of Texas at Arlington
- Arlington
- USA
| |
Collapse
|
47
|
Liu H, Wang X, Wang H, Nie R. Synthesis and biomedical applications of graphitic carbon nitride quantum dots. J Mater Chem B 2019; 7:5432-5448. [DOI: 10.1039/c9tb01410a] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review summarizes the synthetic methods and addresses current applications and future perspectives of graphitic carbon nitride quantum dots in the biomedical field.
Collapse
Affiliation(s)
- Hongji Liu
- The Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions
- High Magnetic Field Laboratory
- Hefei Institutes of Physical Science
- Chinese Academy of Sciences
- Hefei 230031
| | - Xingyu Wang
- The Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions
- High Magnetic Field Laboratory
- Hefei Institutes of Physical Science
- Chinese Academy of Sciences
- Hefei 230031
| | - Hui Wang
- The Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions
- High Magnetic Field Laboratory
- Hefei Institutes of Physical Science
- Chinese Academy of Sciences
- Hefei 230031
| | - Rongrong Nie
- Nanjing Stomatological Hospital
- Medical School of Nanjing University
- Nanjing
- P. R. China
| |
Collapse
|
48
|
Zhang W, Dong J, Dang G, Ji H, Jiao P, Sun B, Yang M, Li Y, Liu L, Dong L. Multifunctional nanocarriers based on graphitic-C3N4 quantum dots for tumor-targeted, traceable and pH-responsive drug delivery. NEW J CHEM 2019. [DOI: 10.1039/c9nj03081f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multifunctional nanocarrier is developed for simultaneous targeted delivery, efficient tracking and cancer treatment at the cellular level.
Collapse
Affiliation(s)
- Wenxian Zhang
- School of Chemistry and Pharmaceutical Engineering
- Shandong First Medical University & Shandong Academy of Medical Science
- Taian
- P. R. China
| | - Jian Dong
- School of Chemistry and Pharmaceutical Engineering
- Shandong First Medical University & Shandong Academy of Medical Science
- Taian
- P. R. China
| | - Guangyao Dang
- School of Chemistry and Pharmaceutical Engineering
- Shandong First Medical University & Shandong Academy of Medical Science
- Taian
- P. R. China
| | - Haiwei Ji
- School of Chemistry and Pharmaceutical Engineering
- Shandong First Medical University & Shandong Academy of Medical Science
- Taian
- P. R. China
| | - Peng Jiao
- Life Science Research Center
- Shandong First Medical University & Shandong Academy of Medical Science
- Taian
- P. R. China
| | - Baoliang Sun
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong
- Shandong First Medical University & Shandong
- Academy of Medical Science
- Taian
- P. R. China
| | - Mingfeng Yang
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong
- Shandong First Medical University & Shandong
- Academy of Medical Science
- Taian
- P. R. China
| | - Yanyan Li
- School of Chemistry and Pharmaceutical Engineering
- Shandong First Medical University & Shandong Academy of Medical Science
- Taian
- P. R. China
| | - Li Liu
- School of Chemistry and Pharmaceutical Engineering
- Shandong First Medical University & Shandong Academy of Medical Science
- Taian
- P. R. China
| | - Lifeng Dong
- School of Chemistry and Pharmaceutical Engineering
- Shandong First Medical University & Shandong Academy of Medical Science
- Taian
- P. R. China
| |
Collapse
|
49
|
Dong J, Zhao Y, Wang K, Chen H, Liu L, Sun B, Yang M, Sun L, Wang Y, Yu X, Dong L. Fabrication of Graphitic Carbon Nitride Quantum Dots and Their Application for Simultaneous Fluorescence Imaging and pH-Responsive Drug Release. ChemistrySelect 2018. [DOI: 10.1002/slct.201802492] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jian Dong
- School of Chemistry and Pharmaceutical Engineering; Taishan Medical University, Taian; Shandong 271016 P. R. China
| | - Yanli Zhao
- School of Chemistry and Pharmaceutical Engineering; Taishan Medical University, Taian; Shandong 271016 P. R. China
| | - Kaiqi Wang
- School of Chemistry and Pharmaceutical Engineering; Taishan Medical University, Taian; Shandong 271016 P. R. China
| | - Hongyu Chen
- School of Chemistry and Pharmaceutical Engineering; Taishan Medical University, Taian; Shandong 271016 P. R. China
| | - Li Liu
- School of Chemistry and Pharmaceutical Engineering; Taishan Medical University, Taian; Shandong 271016 P. R. China
| | - Baoliang Sun
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong and Department of Neurology of Affiliated Hospital; Taishan Medical University, Taian; Shandong 271016 P. R. China
| | - Mingfeng Yang
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong and Department of Neurology of Affiliated Hospital; Taishan Medical University, Taian; Shandong 271016 P. R. China
| | - Liping Sun
- School of Chemistry and Pharmaceutical Engineering; Taishan Medical University, Taian; Shandong 271016 P. R. China
| | - Yi Wang
- Institute of Optometry and Department of Ophthalmology of Affiliated Hospital; Taishan Medical University, Taian; Shandong 271016 P. R. China
| | - Xuegang Yu
- College of Materials Science and Engineering; Qingdao University of Science and Technology, Qingdao; Shandong 266042 P.R. China
| | - Lifeng Dong
- School of Chemistry and Pharmaceutical Engineering; Taishan Medical University, Taian; Shandong 271016 P. R. China
| |
Collapse
|
50
|
Luo Y, Li Z, Zhu C, Cai X, Qu L, Du D, Lin Y. Graphene-like Metal-Free 2D Nanosheets for Cancer Imaging and Theranostics. Trends Biotechnol 2018; 36:1145-1156. [DOI: 10.1016/j.tibtech.2018.05.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 11/28/2022]
|