1
|
He N, Bao H, Meng J, Song Y, Xu LP, Wang S. Immunomagnetic particles exhibiting programmable hierarchical flower-like nanostructures for enhanced separation of tumor cells. NANOSCALE 2024; 16:19245-19253. [PMID: 39330982 DOI: 10.1039/d4nr02929a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Immunomagnetic particles are extensively used for the separation of biological molecules and particles, and have exhibited great potential in many fields including biosensors, disease diagnosis and biomedical engineering. However, most immunomagnetic particles exhibit a smooth surface, resulting in a limited separation efficiency for biological particles featuring enormous surface nanostructures, such as tumor cells. Here we report flower-like immunomagnetic particles (FIMPs) prepared by streptavidin (SA)-assisted biomineralization and one-step antibody modification, and demonstrate their superior capability for highly efficient and selective separation of circulating tumor cells (CTCs). SA can link inorganic nanosheets and magnetic nanoparticles together to obtain FIMPs with programmable hierarchical flower-like nanostructures and provide enormous binding sites for post-antibody modification. The synergetic effect of nano-sized petals and micro-sized particles in the hierarchical nanostructure enhances the interaction between the cells and the matrix, thus enabling FIMPs to separate CTCs with high selectivity and high efficiency. Our study provides a promising platform for the selective separation of trace biological molecules and particles from complex samples and shows great potential for downstream detection and diagnosis.
Collapse
Affiliation(s)
- Na He
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Han Bao
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jingxin Meng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yongyang Song
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Ping Xu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Pan Y, Cheng J, Zhu Y, Zhang J, Fan W, Chen X. Immunological nanomaterials to combat cancer metastasis. Chem Soc Rev 2024; 53:6399-6444. [PMID: 38745455 DOI: 10.1039/d2cs00968d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Metastasis causes greater than 90% of cancer-associated deaths, presenting huge challenges for detection and efficient treatment of cancer due to its high heterogeneity and widespread dissemination to various organs. Therefore, it is imperative to combat cancer metastasis, which is the key to achieving complete cancer eradication. Immunotherapy as a systemic approach has shown promising potential to combat metastasis. However, current clinical immunotherapies are not effective for all patients or all types of cancer metastases owing to insufficient immune responses. In recent years, immunological nanomaterials with intrinsic immunogenicity or immunomodulatory agents with efficient loading have been shown to enhance immune responses to eliminate metastasis. In this review, we would like to summarize various types of immunological nanomaterials against metastasis. Moreover, this review will summarize a series of immunological nanomaterial-mediated immunotherapy strategies to combat metastasis, including immunogenic cell death, regulation of chemokines and cytokines, improving the immunosuppressive tumour microenvironment, activation of the STING pathway, enhancing cytotoxic natural killer cell activity, enhancing antigen presentation of dendritic cells, and enhancing chimeric antigen receptor T cell therapy. Furthermore, the synergistic anti-metastasis strategies based on the combinational use of immunotherapy and other therapeutic modalities will also be introduced. In addition, the nanomaterial-mediated imaging techniques (e.g., optical imaging, magnetic resonance imaging, computed tomography, photoacoustic imaging, surface-enhanced Raman scattering, radionuclide imaging, etc.) for detecting metastasis and monitoring anti-metastasis efficacy are also summarized. Finally, the current challenges and future prospects of immunological nanomaterial-based anti-metastasis are also elucidated with the intention to accelerate its clinical translation.
Collapse
Affiliation(s)
- Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Junjie Cheng
- Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yang Zhu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China.
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
| |
Collapse
|
3
|
Lyu N, Hassanzadeh-Barforoushi A, Rey Gomez LM, Zhang W, Wang Y. SERS biosensors for liquid biopsy towards cancer diagnosis by detection of various circulating biomarkers: current progress and perspectives. NANO CONVERGENCE 2024; 11:22. [PMID: 38811455 PMCID: PMC11136937 DOI: 10.1186/s40580-024-00428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024]
Abstract
Liquid biopsy has emerged as a promising non-invasive strategy for cancer diagnosis, enabling the detection of various circulating biomarkers, including circulating tumor cells (CTCs), circulating tumor nucleic acids (ctNAs), circulating tumor-derived small extracellular vesicles (sEVs), and circulating proteins. Surface-enhanced Raman scattering (SERS) biosensors have revolutionized liquid biopsy by offering sensitive and specific detection methodologies for these biomarkers. This review comprehensively examines the application of SERS-based biosensors for identification and analysis of various circulating biomarkers including CTCs, ctNAs, sEVs and proteins in liquid biopsy for cancer diagnosis. The discussion encompasses a diverse range of SERS biosensor platforms, including label-free SERS assay, magnetic bead-based SERS assay, microfluidic device-based SERS system, and paper-based SERS assay, each demonstrating unique capabilities in enhancing the sensitivity and specificity for detection of liquid biopsy cancer biomarkers. This review critically assesses the strengths, limitations, and future directions of SERS biosensors in liquid biopsy for cancer diagnosis.
Collapse
Affiliation(s)
- Nana Lyu
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | | | - Laura M Rey Gomez
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Wei Zhang
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Yuling Wang
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
4
|
Ouyang R, Geng C, Li J, Jiang Q, Shen H, Zhang Y, Liu X, Liu B, Wu J, Miao Y. Recent advances in photothermal nanomaterials-mediated detection of circulating tumor cells. RSC Adv 2024; 14:10672-10686. [PMID: 38572345 PMCID: PMC10988362 DOI: 10.1039/d4ra00548a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Photothermal materials have shown great potential for cancer detection and treatment due to their excellent photothermal effects. Circulating tumor cells (CTCs) are tumor cells that are shed from the primary tumor into the blood and metastasize. In contrast to other tumor markers that are free in the blood, CTCs are a collective term for all types of tumor cells present in the peripheral blood, a source of tumor metastasis, and clear evidence of tumor presence. CTCs detection enables early detection, diagnosis and treatment of tumors, and plays an important role in cancer prevention and treatment. This review summarizes the application of various photothermal materials in CTC detection, including gold, carbon, molybdenum, phosphorus, etc. and describes the significance of CTC detection for early tumor diagnosis and tumor prognosis. Focus is also put on how various photothermal materials play their roles in CTCs detection, including CT, imaging and photoacoustic and therapeutic roles. The physicochemical properties, shapes, and photothermal properties of various photothermal materials are discussed to improve the detection sensitivity and efficiency and to reduce the damage to normal cells. These photothermal materials are capable of converting radiant light energy into thermal energy for highly-sensitive CTCs detection and improving their photothermal properties by various methods, and have achieved good results in various experiments. The use of photothermal materials for CTCs detection is becoming more and more widespread and can be of significant help in early cancer screening and later treatment.
Collapse
Affiliation(s)
- Ruizhuo Ouyang
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Chongrui Geng
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Jun Li
- Hunan Shizhuyuan Nonferrous Metals Co., Ltd Chenzhou Hunan 423037 China
| | - Qiliang Jiang
- Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine Shanghai 200030 China
| | - Hongyu Shen
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yulong Zhang
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Xueyu Liu
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Baolin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Jingxiang Wu
- Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine Shanghai 200030 China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| |
Collapse
|
5
|
Kim YJ, Rho WY, Park SM, Jun BH. Optical nanomaterial-based detection of biomarkers in liquid biopsy. J Hematol Oncol 2024; 17:10. [PMID: 38486294 PMCID: PMC10938695 DOI: 10.1186/s13045-024-01531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/02/2024] [Indexed: 03/18/2024] Open
Abstract
Liquid biopsy, which is a minimally invasive procedure as an alternative to tissue biopsy, has been introduced as a new diagnostic/prognostic measure. By screening disease-related markers from the blood or other biofluids, it promises early diagnosis, timely prognostication, and effective treatment of the diseases. However, there will be a long way until its realization due to its conceptual and practical challenges. The biomarkers detected by liquid biopsy, such as circulating tumor cell (CTC) and circulating tumor DNA (ctDNA), are extraordinarily rare and often obscured by an abundance of normal cellular components, necessitating ultra-sensitive and accurate detection methods for the advancement of liquid biopsy techniques. Optical biosensors based on nanomaterials open an important opportunity in liquid biopsy because of their enhanced sensing performance with simple and practical properties. In this review article, we summarized recent innovations in optical nanomaterials to demonstrate the sensitive detection of protein, peptide, ctDNA, miRNA, exosome, and CTCs. Each study prepares the optical nanomaterials with a tailored design to enhance the sensing performance and to meet the requirements of each biomarker. The unique optical characteristics of metallic nanoparticles (NPs), quantum dots, upconversion NPs, silica NPs, polymeric NPs, and carbon nanomaterials are exploited for sensitive detection mechanisms. These recent advances in liquid biopsy using optical nanomaterials give us an opportunity to overcome challenging issues and provide a resource for understanding the unknown characteristics of the biomarkers as well as the mechanism of the disease.
Collapse
Affiliation(s)
- Young Jun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Won-Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, Chonju, 54896, Republic of Korea
| | - Seung-Min Park
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore.
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
6
|
Yang X, Zhang S, Lin N. Application of Metal-Based Nanomaterials in In Vitro Diagnosis of Tumor Markers: Summary and Prospect. Molecules 2023; 28:4370. [PMID: 37298846 PMCID: PMC10254239 DOI: 10.3390/molecules28114370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer, which presents with high incidence and mortality rates, has become a significant health threat worldwide. However, there is currently no effective solution for rapid screening and high-quality treatment of early-stage cancer patients. Metal-based nanoparticles (MNPs), as a new type of compound with stable properties, convenient synthesis, high efficiency, and few adverse reactions, have become highly competitive tools for early cancer diagnosis. Nevertheless, challenges such as the difference between the microenvironment of detected markers and the real-life body fluids remain in achieving widespread clinical application of MNPs. This review provides a comprehensive review of the research progress made in the field of in vitro cancer diagnosis using metal-based nanoparticles. By delving into the characteristics and advantages of these materials, this paper aims to inspire and guide researchers towards fully exploiting the potential of metal-based nanoparticles in the early diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Xiaobo Yang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310019, China; (X.Y.); (S.Z.)
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, China
| | - Shaodian Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310019, China; (X.Y.); (S.Z.)
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, China
| | - Nong Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310019, China; (X.Y.); (S.Z.)
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, China
| |
Collapse
|
7
|
Awiaz G, Lin J, Wu A. Recent advances of Au@Ag core-shell SERS-based biosensors. EXPLORATION (BEIJING, CHINA) 2023; 3:20220072. [PMID: 37323623 PMCID: PMC10190953 DOI: 10.1002/exp.20220072] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/18/2022] [Indexed: 06/17/2023]
Abstract
The methodological advancements in surface-enhanced Raman scattering (SERS) technique with nanoscale materials based on noble metals, Au, Ag, and their bimetallic alloy Au-Ag, has enabled the highly efficient sensing of chemical and biological molecules at very low concentration values. By employing the innovative various type of Au, Ag nanoparticles and especially, high efficiency Au@Ag alloy nanomaterials as substrate in SERS based biosensors have revolutionized the detection of biological components including; proteins, antigens antibodies complex, circulating tumor cells, DNA, and RNA (miRNA), etc. This review is about SERS-based Au/Ag bimetallic biosensors and their Raman enhanced activity by focusing on different factors related to them. The emphasis of this research is to describe the recent developments in this field and conceptual advancements behind them. Furthermore, in this article we apex the understanding of impact by variation in basic features like effects of size, shape varying lengths, thickness of core-shell and their influence of large-scale magnitude and morphology. Moreover, the detailed information about recent biological applications based on these core-shell noble metals, importantly detection of receptor binding domain (RBD) protein of COVID-19 is provided.
Collapse
Affiliation(s)
- Gul Awiaz
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jie Lin
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| |
Collapse
|
8
|
Isolation, Detection and Analysis of Circulating Tumour Cells: A Nanotechnological Bioscope. Pharmaceutics 2023; 15:pharmaceutics15010280. [PMID: 36678908 PMCID: PMC9864919 DOI: 10.3390/pharmaceutics15010280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/17/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Cancer is one of the dreaded diseases to which a sizeable proportion of the population succumbs every year. Despite the tremendous growth of the health sector, spanning diagnostics to treatment, early diagnosis is still in its infancy. In this regard, circulating tumour cells (CTCs) have of late grabbed the attention of researchers in the detection of metastasis and there has been a huge surge in the surrounding research activities. Acting as a biomarker, CTCs prove beneficial in a variety of aspects. Nanomaterial-based strategies have been devised to have a tremendous impact on the early and rapid examination of tumor cells. This review provides a panoramic overview of the different nanotechnological methodologies employed along with the pharmaceutical purview of cancer. Initiating from fundamentals, the recent nanotechnological developments toward the detection, isolation, and analysis of CTCs are comprehensively delineated. The review also includes state-of-the-art implementations of nanotechnological advances in the enumeration of CTCs, along with future challenges and recommendations thereof.
Collapse
|
9
|
Guo M, Nei R, Wang J, Ai J, Dong Y, Zhao H, Gao Q. Sensitive detection of folate receptor-positive circulating tumor cells based on intracellular uptake of the PbS nanoparticle cluster-loaded phospholipid micelles decorated with folic acid in combination with E-DNA sensor. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
AWIAZ G, WU X, ZHANG C, PAN T, XU X, LIN J, WU A. Au@Ag-Au core@double shell SERS bioprobes for high-resolution tumor cells imaging. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Preparation of multiple-spectra encoded polyphosphazene microspheres and application for antibody detection. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03811-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Perveen S, Nadeem R, Rehman SU, Afzal N, Anjum S, Noreen S, Saeed R, Amami M, Al-Mijalli SH, Iqbal M. Green synthesis of iron (Fe) nanoparticles using Plumeria obtusa extract as a reducing and stabilizing agent: Antimicrobial, antioxidant and biocompatibility studies. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
13
|
Xu Y, Zhang D, Lin J, Wu X, Xu X, Akakuru OU, Zhang H, Zhang Z, Xie Y, Wu A, Shao G. Ultrahigh SERS Activity of TiO2@Ag Nanostructure leveraged for Accurately Detecting CTCs in peripheral blood. Biomater Sci 2022; 10:1812-1820. [PMID: 35234756 DOI: 10.1039/d1bm01821c] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circulating tumor cells (CTCs) usually shed from primary and metastatic tumors serve as an important tumor marker, and easily cause fatal distant metastasis in cancer patients. Accurately and effectively detecting...
Collapse
Affiliation(s)
- Yanping Xu
- Second clinical college, Zhejiang Chinese Medical University, Hang Zhou 310053, China
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China.
- Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Dinghu Zhang
- Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Jie Lin
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P.R. China
| | - Xiaoxia Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China.
- Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Xiawei Xu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P.R. China
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P.R. China
| | - Hao Zhang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P.R. China
| | - Zhewei Zhang
- Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Yujiao Xie
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P.R. China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P.R. China
| | - Guoliang Shao
- Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China.
| |
Collapse
|
14
|
Li F, Xu H, Zhao Y. Magnetic particles as promising circulating tumor cell catchers assisting liquid biopsy in cancer diagnosis: A review. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
He S, Wei J, Ding L, Yang X, Wu Y. State-of-the-arts techniques and current evolving approaches in the separation and detection of circulating tumor cell. Talanta 2021; 239:123024. [PMID: 34952370 DOI: 10.1016/j.talanta.2021.123024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 01/01/2023]
Abstract
Circulating tumor cells (CTCs) are cancer cells that shed from the primary tumor and then enter the circulatory system, a small part of which may evolve into metastatic cancer under appropriate microenvironment conditions. The detection of CTCs is a truly noninvasive, dynamic monitor for disease changes, which has considerable clinical implications in the selection of targeted drugs. However, their inherent rarity and heterogeneity pose significant challenges to their isolation and detection. Even the "gold standard", CellSearch™, suffers from high expenses, low capture efficiency, and the consumption of time. With the advancement of CTCs analysis technologies in recent years, the yield and efficiency of CTCs enrichment have gradually been improved, as well as detection sensitivity. In this review, the isolation and detection strategies of CTCs have been completely described and the potential directions for future research and development have also been highlighted through analyzing the challenges faced by current strategies.
Collapse
Affiliation(s)
- Sitian He
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jinlan Wei
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaonan Yang
- School of Information Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
16
|
Lin T, Song YL, Kuang P, Chen S, Mao Z, Zeng TT. Nanostructure-based surface-enhanced Raman scattering for diagnosis of cancer. Nanomedicine (Lond) 2021; 16:2389-2406. [PMID: 34530631 DOI: 10.2217/nnm-2021-0298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cancer is a malignant disease that seriously affects human health and life. Early diagnosis and timely treatment can significantly improve the survival rate of cancer patients. Surface-enhanced Raman scattering (SERS) is an optical technology that can detect and image samples at the single-molecule level. It has the advantages of rapidity, high specificity, high sensitivity and no damage to the sample. The performance of SERS is highly dependent on the properties, size and morphology of the SERS substrate. Preparation of SERS substrates with good reproducibility and chemical stability is a key factor in realizing the wide application of SERS technology in cancer diagnosis. In this review we provide a detailed presentation of the latest research on SERS in cancer diagnosis and the detection of cancer biomarkers, mainly focusing on nanotechnological approaches in cancer diagnosis by using SERS. We also consider the future development of nanostructure-based SERS in cancer diagnosis.
Collapse
Affiliation(s)
- Ting Lin
- Department of Hematology, Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ya-Li Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pu Kuang
- Department of Hematology, Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Si Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhigang Mao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting-Ting Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
17
|
Recent Development of Nanomaterials-Based Cytosensors for the Detection of Circulating Tumor Cells. BIOSENSORS-BASEL 2021; 11:bios11080281. [PMID: 34436082 PMCID: PMC8391755 DOI: 10.3390/bios11080281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
The accurate analysis of circulating tumor cells (CTCs) holds great promise in early diagnosis and prognosis of cancers. However, the extremely low abundance of CTCs in peripheral blood samples limits the practical utility of the traditional methods for CTCs detection. Thus, novel and powerful strategies have been proposed for sensitive detection of CTCs. In particular, nanomaterials with exceptional physical and chemical properties have been used to fabricate cytosensors for amplifying the signal and enhancing the sensitivity. In this review, we summarize the recent development of nanomaterials-based optical and electrochemical analytical techniques for CTCs detection, including fluorescence, colorimetry, surface-enhanced Raman scattering, chemiluminescence, electrochemistry, electrochemiluminescence, photoelectrochemistry and so on.
Collapse
|
18
|
Reza KK, Dey S, Wuethrich A, Behren A, Antaw F, Wang Y, Sina AAI, Trau M. In Situ Single Cell Proteomics Reveals Circulating Tumor Cell Heterogeneity during Treatment. ACS NANO 2021; 15:11231-11243. [PMID: 34225455 DOI: 10.1021/acsnano.0c10008] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cancer is a dynamic disease with heterogenic molecular signatures and constantly evolves during the course of the disease. Single cell proteomic analysis could offer a suitable pathway to monitor cancer cell heterogeneity and deliver critical information for the diagnosis, recurrence, and drug-resistant mechanisms in cancer. Current standard techniques for proteomic analysis such as ELISA, mass spectrometry, and Western blots are time-consuming, expensive, and often require fluorescence labeling that fails to provide accurate information about the multiple protein expression changes at the single cell level. Herein, we report a surface-enhanced Raman spectroscopy-based simple microfluidic device that enables the screening of single circulating tumor cells (CTC) in a dynamic state to precisely understand the heterogeneous expression of multiple protein biomarkers in response to therapy. It further enables identifying intercellular heterogeneous expression of CTC surface proteins which would be highly informative to identify the cancer cells surviving treatment and potentially responsible for drug resistance. Using a bead and cell line-based model system, we successfully detect single bead and single cell spectra when flowed through the device. Using SK-MEL-28 melanoma cells, we demonstrate that our system is capable of monitoring heterogeneous expressions of multiple surface protein markers (MCSP, MCAM, and LNGFR) before and during drug treatment. Integrating a label-free electrochemical system with the device, we also monitor the expression of an intracellular protein (here, BRAFV600E) under drug treatment. Finally, we perform a longitudinal study with 15 samples from five different melanoma patients who underwent therapy. We find that the average expression of receptor proteins in a patient fails to determine the therapy response particularly when the disease progresses. However, single CTC analysis with our device shows a high level of intercellular heterogeneity in the receptor expression profiles of patient-derived CTCs and identifies heterogeneity within CTCs. More importantly, we find that a fraction of CTCs still shows a high expression of these receptor proteins during and after therapy, indicating the presence of resistant CTCs which may evolve after a certain time and progress the disease. We believe this automated assay will have high clinical importance in disease diagnosis and monitoring treatment and will significantly advance the understanding of cancer heterogeneity on the single cell level.
Collapse
Affiliation(s)
- K Kamil Reza
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Bldg 75), Brisbane, Queensland 4072, Australia
| | - Shuvashis Dey
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Bldg 75), Brisbane, Queensland 4072, Australia
| | - Alain Wuethrich
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Bldg 75), Brisbane, Queensland 4072, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Fiach Antaw
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Bldg 75), Brisbane, Queensland 4072, Australia
| | - Yuling Wang
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Abu Ali Ibn Sina
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Bldg 75), Brisbane, Queensland 4072, Australia
| | - Matt Trau
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Bldg 75), Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
19
|
Garcia-Hernando M, Saez J, Savva A, Basabe-Desmonts L, Owens RM, Benito-Lopez F. An electroactive and thermo-responsive material for the capture and release of cells. Biosens Bioelectron 2021; 191:113405. [PMID: 34144472 DOI: 10.1016/j.bios.2021.113405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/13/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023]
Abstract
Non-invasive collection of target cells is crucial for research in biology and medicine. In this work, we combine a thermo-responsive material, poly(N-isopropylacrylamide), with an electroactive material, poly(3,4-ethylene-dioxythiopene):poly(styrene sulfonate), to generate a smart and conductive copolymer for the label-free and non-invasive detection of the capture and release of cells on gold electrodes by electrochemical impedance spectroscopy. The copolymer is functionalized with fibronectin to capture tumor cells, and undergoes a conformational change in response to temperature, causing the release of cells. Simultaneously, the copolymer acts as a sensor, monitoring the capture and release of cancer cells by electrochemical impedance spectroscopy. This platform has the potential to play a role in top-notch label-free electrical monitoring of human cells in clinical settings.
Collapse
Affiliation(s)
- Maite Garcia-Hernando
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, Barrio Sarriena S/n, 48940, Leioa, Spain; Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Avenida Miguel de Unamuno, 3, 01006, Vitoria-Gasteiz, Spain.
| | - Janire Saez
- Department of Chemical Engineering and Biotechnology, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
| | - Achilleas Savva
- Department of Chemical Engineering and Biotechnology, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
| | - Lourdes Basabe-Desmonts
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Avenida Miguel de Unamuno, 3, 01006, Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Microfluidics Cluster UPV/EHU, Vitoria-Gasteiz, Spain; BCMaterials, Basque Centre for Materials, Micro and Nanodevices, UPV/EHU Science Park, 48940, Leioa, Spain; Basque Foundation of Science, IKERBASQUE, María Díaz Haroko Kalea, 3, 48013, Bilbao, Spain.
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
| | - Fernando Benito-Lopez
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, Barrio Sarriena S/n, 48940, Leioa, Spain; Bioaraba Health Research Institute, Microfluidics Cluster UPV/EHU, Vitoria-Gasteiz, Spain; BCMaterials, Basque Centre for Materials, Micro and Nanodevices, UPV/EHU Science Park, 48940, Leioa, Spain.
| |
Collapse
|
20
|
Mourdikoudis S, Kostopoulou A, LaGrow AP. Magnetic Nanoparticle Composites: Synergistic Effects and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004951. [PMID: 34194936 PMCID: PMC8224446 DOI: 10.1002/advs.202004951] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 05/17/2023]
Abstract
Composite materials are made from two or more constituent materials with distinct physical or chemical properties that, when combined, produce a material with characteristics which are at least to some degree different from its individual components. Nanocomposite materials are composed of different materials of which at least one has nanoscale dimensions. Common types of nanocomposites consist of a combination of two different elements, with a nanoparticle that is linked to, or surrounded by, another organic or inorganic material, for example in a core-shell or heterostructure configuration. A general family of nanoparticle composites concerns the coating of a nanoscale material by a polymer, SiO2 or carbon. Other materials, such as graphene or graphene oxide (GO), are used as supports forming composites when nanoscale materials are deposited onto them. In this Review we focus on magnetic nanocomposites, describing their synthetic methods, physical properties and applications. Several types of nanocomposites are presented, according to their composition, morphology or surface functionalization. Their applications are largely due to the synergistic effects that appear thanks to the co-existence of two different materials and to their interface, resulting in properties often better than those of their single-phase components. Applications discussed concern magnetically separable catalysts, water treatment, diagnostics-sensing and biomedicine.
Collapse
Affiliation(s)
- Stefanos Mourdikoudis
- Biophysics GroupDepartment of Physics and AstronomyUniversity College LondonLondonWC1E 6BTUK
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories21 Albemarle StreetLondonW1S 4BSUK
| | - Athanasia Kostopoulou
- Institute of Electronic Structure and Laser (IESL)Foundation for Research and Technology‐Hellas (FORTH)100 Nikolaou PlastiraHeraklionCrete70013Greece
| | - Alec P. LaGrow
- International Iberian Nanotechnology LaboratoryBraga4715‐330Portugal
| |
Collapse
|
21
|
SHEN CC, WU CK, CHEN YH, WANG JX, YANG MH, ZHANG H. Advance in Novel Methods for Enrichment and Precise Analysis of Circulating Tumor Cells. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60089-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Li F, Wang M, Cai H, He Y, Xu H, Liu Y, Zhao Y. Nondestructive capture, release, and detection of circulating tumor cells with cystamine-mediated folic acid decorated magnetic nanospheres. J Mater Chem B 2021; 8:9971-9979. [PMID: 33174893 DOI: 10.1039/d0tb01091j] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Circulating tumor cell (CTC) detection and enumeration have been considered as a noninvasive biopsy method for the diagnosis, characterization, and monitoring of various types of cancers. However, CTCs are exceptionally rare, which makes CTC detection technologically challenging. In the past few decades, much effort has been focused on highly efficient CTC capture, while the activity of CTCs has often been ignored. Here, we develop an effective method for nondestructive CTC capture, release, and detection. Folic acid (FA), as a targeting molecule, is conjugated on magnetic nanospheres through a cleavable disulfide bond-containing linker (cystamine) and a polyethylene glycol (PEG2k) linker, forming MN@Cys@PEG2k-FA nanoprobes, which can bind with folate receptor (FR) positive CTCs specifically and efficiently, leading to the capture of CTCs with an external magnetic field. When approximately 150 and 10 model CTCs were spiked in 1 mL of lysis blood, 93.1 ± 2.9% and 80.0 ± 9.7% CTCs were recovered, respectively. In total, 81.3 ± 2.6% captured CTCs can be released from MN@Cys@PEG2k-FA magnetic nanospheres by treatment with dithiothreitol. The released CTCs are easily identified from blood cells for specific detection and enumeration combined with immunofluorescence staining with a limit of detection of 10 CTC mL-1 lysed blood. Moreover, the released cells remain healthy with high viability (98.6 ± 0.78%) and can be cultured in vitro without detectable changes in morphology or behavior compared with healthy untreated cells. The high viability of the released CTCs may provide the possibility for downstream proteomics research of CTCs; therefore, cultured CTCs were collected for proteomics. As a result, 3504 proteins were identified. In conclusion, the MN@Cys@PEG2k-FA magnetic nanospheres prepared in this study may be a promising tool for early-stage cancer diagnosis and provide the possibility for downstream analysis of CTCs.
Collapse
Affiliation(s)
- Fulai Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China. and Department of Chemical Biology, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Minning Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China. and Department of Chemical Biology, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Huahuan Cai
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China. and Department of Chemical Biology, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Yaohui He
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, P. R. China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P. R. China
| | - Yan Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China. and Department of Chemical Biology, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Yufen Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China. and Department of Chemical Biology, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China and Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315221, P. R. China
| |
Collapse
|
23
|
Lin J, Zheng J, Wu A. An efficient strategy for circulating tumor cell detection: surface-enhanced Raman spectroscopy. J Mater Chem B 2021; 8:3316-3326. [PMID: 31833526 DOI: 10.1039/c9tb02327e] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Circulating tumor cells (CTCs) are circulating cancer cells that shed from tumor tissue into blood vessels and circulate in the blood to invade other organs, which results in fatal metastases. The CTCs in human peripheral blood are the main cause of death in most cancer patients. The detection of CTCs is of great scientific significance and clinical application value for early diagnosis, rapid evaluation of the treatment effect, in vivo drug resistance testing, individualized treatment, tumor recurrence detection and survival time judgment, etc. The surface-enhanced Raman scattering (SERS) method possesses the features of remarkable detection sensitivity, a non-destructive nature, label-free detection, a quick spectrum response and a molecular fingerprint spectrum, which give it great potential in the detection field. In the past decade, SERS technology serving as a bioprobe has been increasingly applied to detect and analyze biological components due to its unique detection advantages. Here, we present an overview of SERS biosensing substrates and recent achievements in detecting CTCs using high-sensitivity SERS platforms, and provide a unique perspective on the design and application of high-performance SERS platforms for CTC detection, especially using non-metal materials.
Collapse
Affiliation(s)
- Jie Lin
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, 315201, China.
| | | | | |
Collapse
|
24
|
Wang J, Zhang R, Ji X, Wang P, Ding C. SERS and fluorescence detection of circulating tumor cells (CTCs) with specific capture-release mode based on multifunctional gold nanomaterials and dual-selective recognition. Anal Chim Acta 2021; 1141:206-213. [PMID: 33248653 DOI: 10.1016/j.aca.2020.10.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/16/2020] [Indexed: 01/05/2023]
Abstract
Herein, a dual-selective recognition and multi-enhanced surface-enhanced Raman scattering (SERS)-fluorescence dual mode detection platform is designed for the detection of circulating tumor cells (CTCs). The gold nanoflowers (AuNFs) substrate was synthesized and the CTCs were captured on the surface area of AuNFs/ITO substrate by aptamers modified. At the same time, the novel nanoprobe was designed, anti-EpCAM (AE) and trigger DNA were modified onto the surface of gold nanostars (AuNSs) through a PEG linker. The novel nanoprobe identified CTCs through the specific recognition reaction between AE and the cell epithelial adhesion molecule of the CTCs. The dual-recognition cellular mechanism of the aptamers and AE improves selectivity. Then, the complementary sequence (CS) hybridize with aptamers to release the captured CTCs into the culture medium. The number of CTCs released was detected by SERS and fluorescence. The limit of SERS detection was 5 cells/mL with a linear relationship from 5 to 200 cells/mL. The limit of fluorescence detection was 10 cells/mL with a linear relationship from 10 to 200 cells/mL. Thus, the developed CTCs detection platform demonstrates promising applications for clinical diagnosis.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Ruiyuan Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xiaoting Ji
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Peipei Wang
- Qingdao Central Hospital, Qingdao, 266042, China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
25
|
Dell'Olio F, Su J, Huser T, Sottile V, Cortés-Hernández LE, Alix-Panabières C. Photonic technologies for liquid biopsies: recent advances and open research challenges. LASER & PHOTONICS REVIEWS 2021; 15:2000255. [PMID: 35360260 PMCID: PMC8966629 DOI: 10.1002/lpor.202000255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 05/15/2023]
Abstract
The recent development of sophisticated techniques capable of detecting extremely low concentrations of circulating tumor biomarkers in accessible body fluids, such as blood or urine, could contribute to a paradigm shift in cancer diagnosis and treatment. By applying such techniques, clinicians can carry out liquid biopsies, providing information on tumor presence, evolution, and response to therapy. The implementation of biosensing platforms for liquid biopsies is particularly complex because this application domain demands high selectivity/specificity and challenging limit-of-detection (LoD) values. The interest in photonics as an enabling technology for liquid biopsies is growing owing to the well-known advantages of photonic biosensors over competing technologies in terms of compactness, immunity to external disturbance, and ultra-high spatial resolution. Some encouraging experimental results in the field of photonic devices and systems for liquid biopsy have already been achieved by using fluorescent labels and label-free techniques and by exploiting super-resolution microscopy, surface plasmon resonance, surface-enhanced Raman scattering, and whispering gallery mode resonators. This paper critically reviews the current state-of-the-art, starting from the requirements imposed by the detection of the most common circulating biomarkers. Open research challenges are considered together with competing technologies, and the most promising paths of improvement are discussed for future applications.
Collapse
Affiliation(s)
- Francesco Dell'Olio
- Department of Electrical and Information Engineering, Polytechnic University of Bari, 70125, Italy
| | - Judith Su
- Department of Biomedical Engineering, College of Optical Sciences, and BIO5 Institute, University of Arizona, 85721, USA
| | - Thomas Huser
- Biomolecular Photonics, Department of Physics, University of Bielefeld, 33615 Germany
| | - Virginie Sottile
- Department of Molecular Medicine, University of Pavia, 27100, Italy
| | | | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Center of Montpellier, 34093 CEDEX 5, France
| |
Collapse
|
26
|
Haldavnekar R, Vijayakumar SC, Venkatakrishnan K, Tan B. Prediction of Cancer Stem Cell Fate by Surface-Enhanced Raman Scattering Functionalized Nanoprobes. ACS NANO 2020; 14:15468-15491. [PMID: 33175514 DOI: 10.1021/acsnano.0c06104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cancer stem cells (CSCs) are the fundamental building blocks of cancer dissemination, so it is desirable to develop a technique to predict the behavior of CSCs during tumor initiation and relapse. It will provide a powerful tool for pathological prognosis. Currently, there exists no method of such prediction. Here, we introduce nickel-based functionalized nanoprobe facilitated surface enhanced Raman scattering (SERS) for prediction of cancer dissemination by undertaking CSC-based surveillance. SERS profiling of CSCs of various cell lines (breast cancer, cervical cancer, and lung cancer) was compared with their cancer counterparts for the prediction of prognosis, with statistical significance of single-cell sensitivity. The single-cell sensitivity is critical as even a few CSCs are capable of initiating a tumor. Intermediate states of CSC transmutation to cancer cells and its reverse were monitored, and nanoprobe-assisted SERS profiling was undertaken. We experimentally demonstrated that the quasi-intermediate CSC states have dissimilar profiles during the transformation from cancer to CSC and vice versa enabling statistical differentiation without ambiguity. It was also observed that molecular signatures of these opposite pathways are cancer-type specific. This observation provided additional clarity to the current understanding of relatively unfamiliar quasi-intermediate states; making it possible to predict CSC dissemination for variety of cancers with ∼99% accuracy. Nano probe-based prediction of CSC fate is a powerful prediction tool for ultrasensitive prognosis of malignancy in a complex environment. Such CSC-based cancer prognosis has never been proposed before. This prediction technique has potential to provide insights for cancer diagnosis and prognosis as well as for obtaining information instrumental in designing of meaningful CSC-based cancer therapeutics.
Collapse
Affiliation(s)
- Rupa Haldavnekar
- Institute for Biomedical Engineering, Science and Technology (iBEST), Li Ka-Shing Knowledge Institute, 209 Victoria Street, Toronto, ON, Canada M5B 1T8
- Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
- BioNanoInterface Facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
- Nanocharacterization Laboratory, Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
- Department of Biomedical Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
| | - Sivaprasad Chinnakkannu Vijayakumar
- Institute for Biomedical Engineering, Science and Technology (iBEST), Li Ka-Shing Knowledge Institute, 209 Victoria Street, Toronto, ON, Canada M5B 1T8
- Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
- BioNanoInterface Facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
- Nanocharacterization Laboratory, Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
| | - Krishnan Venkatakrishnan
- Keenan Research Center for Biomedical Science, St. Michael's Hospital, 30 Bond Street, Toronto, ON, Canada M5B 1W8
- Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
- BioNanoInterface Facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
- Nanocharacterization Laboratory, Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
| | - Bo Tan
- Keenan Research Center for Biomedical Science, St. Michael's Hospital, 30 Bond Street, Toronto, ON, Canada M5B 1W8
- Nanocharacterization Laboratory, Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
| |
Collapse
|
27
|
Lin T, Song YL, Liao J, Liu F, Zeng TT. Applications of surface-enhanced Raman spectroscopy in detection fields. Nanomedicine (Lond) 2020; 15:2971-2989. [PMID: 33140686 DOI: 10.2217/nnm-2020-0361] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a Raman spectroscopy technique that has been widely used in food safety, environmental monitoring, medical diagnosis and treatment and drug monitoring because of its high selectivity, sensitivity, rapidness, simplicity and specificity in identifying molecular structures. This review introduces the detection mechanism of SERS and summarizes the most recent progress concerning the use of SERS for the detection and characterization of molecules, providing references for the later research of SERS in detection fields.
Collapse
Affiliation(s)
- Ting Lin
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Ya-Li Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Juan Liao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Fang Liu
- Department of Laboratory Pathology, Xijing Hospital, Fourth Military Medical University, Xian, 710054, PR China
| | - Ting-Ting Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| |
Collapse
|
28
|
Park JE, Oh N, Nam H, Park JH, Kim S, Jeon JS, Yang M. Efficient Capture and Raman Analysis of Circulating Tumor Cells by Nano-Undulated AgNPs-rGO Composite SERS Substrates. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5089. [PMID: 32906807 PMCID: PMC7570931 DOI: 10.3390/s20185089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 12/12/2022]
Abstract
The analysis of circulating tumor cells (CTCs) in the peripheral blood of cancer patients is critical in clinical research for further investigation of tumor progression and metastasis. In this study, we present a novel surface-enhanced Raman scattering (SERS) substrate for the efficient capture and characterization of cancer cells using silver nanoparticles-reduced graphene oxide (AgNPs-rGO) composites. A pulsed laser reduction of silver nanowire-graphene oxide (AgNW-GO) mixture films induces hot-spot formations among AgNPs and artificial biointerfaces consisting of rGOs. We also use in situ electric field-assisted fabrication methods to enhance the roughness of the SERS substrate. The AgNW-GO mixture films, well suited for the proposed process due to its inherent electrophoretic motion, is adjusted between indium tin oxide (ITO) transparent electrodes and the nano-undulated surface is generated by applying direct-current (DC) electric fields during the laser process. As a result, MCF7 breast cancer cells are efficiently captured on the AgNPs-rGO substrates, about four times higher than the AgNWs-GO films, and the captured living cells are successfully analyzed by SERS spectroscopy. Our newly designed bifunctional substrate can be applied as an effective system for the capture and characterization of CTCs.
Collapse
Affiliation(s)
- Jong-Eun Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (J.-E.P.); (H.N.); (S.K.)
| | - Nuri Oh
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (N.O.); (J.-H.P.)
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hyeono Nam
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (J.-E.P.); (H.N.); (S.K.)
| | - Ji-Ho Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (N.O.); (J.-H.P.)
| | - Sanha Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (J.-E.P.); (H.N.); (S.K.)
| | - Jessie S. Jeon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (J.-E.P.); (H.N.); (S.K.)
| | - Minyang Yang
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (J.-E.P.); (H.N.); (S.K.)
- Department of Mechanical Engineering, State University of New York Korea, Incheon 21985, Korea
| |
Collapse
|
29
|
Tang Z, Huang J, He H, Ma C, Wang K. Contributing to liquid biopsy: Optical and electrochemical methods in cancer biomarker analysis. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213317] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Li D, Yu H, Guo Z, Li S, Li Y, Guo Y, Zhong H, Xiong H, Liu Z. SERS analysis of carcinoma-associated fibroblasts in a tumor microenvironment based on targeted 2D nanosheets. NANOSCALE 2020; 12:2133-2141. [PMID: 31913376 DOI: 10.1039/c9nr08754k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Carcinoma-associated fibroblasts (CAFs), one of the most important components of a tumor microenvironment (TME), play a significant role in the complex tumorigenesis process. Herein, the evolution of CAFs in TME is elaborately investigated by surface-enhanced Raman spectroscopy (SERS), a molecular fingerprint technique. Two-dimensional (2D) nanocomposites consisting of gold nanoparticles and a supramolecular "PCsheet" self-assembled between 2D nanosheets and oxidized phosphatidylcholine (PC) are fabricated as SERS-active probes to specifically recognize the CD36 receptor on the cytomembrane of the fibroblasts, a reliable landmark of CAF development. The 2D SERS substrates can also illuminate the fingerprint information around the CD36 protein with high detection sensitivity, which helps elucidate the biochemical component transition in the protein mini-domain during carcinoma progression. Visualized data are then supplied by label-free SERS imaging to exploit the distribution of biomolecules on the plasma membrane. In addition, the repressed expression of CD36 in TME is detected in lung metastasis tumor-bearing mice. This study based on the 2D SERS technique opens up an alternative avenue for unveiling carcinoma-associated molecular events.
Collapse
Affiliation(s)
- Dongling Li
- SATCM Third Grade Laboratory of Chinese Medicine and Photonics Technology & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Iqbal J, Abbasi BA, Ahmad R, Shahbaz A, Zahra SA, Kanwal S, Munir A, Rabbani A, Mahmood T. Biogenic synthesis of green and cost effective iron nanoparticles and evaluation of their potential biomedical properties. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.126979] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Wang J, Koo KM, Wang Y, Trau M. Engineering State-of-the-Art Plasmonic Nanomaterials for SERS-Based Clinical Liquid Biopsy Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900730. [PMID: 31832306 PMCID: PMC6891916 DOI: 10.1002/advs.201900730] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/26/2019] [Indexed: 05/23/2023]
Abstract
Precision oncology, defined as the use of the molecular understanding of cancer to implement personalized patient treatment, is currently at the heart of revolutionizing oncology practice. Due to the need for repeated molecular tumor analyses in facilitating precision oncology, liquid biopsies, which involve the detection of noninvasive cancer biomarkers in circulation, may be a critical key. Yet, existing liquid biopsy analysis technologies are still undergoing an evolution to address the challenges of analyzing trace quantities of circulating tumor biomarkers reliably and cost effectively. Consequently, the recent emergence of cutting-edge plasmonic nanomaterials represents a paradigm shift in harnessing the unique merits of surface-enhanced Raman scattering (SERS) biosensing platforms for clinical liquid biopsy applications. Herein, an expansive review on the design/synthesis of a new generation of diverse plasmonic nanomaterials, and an updated evaluation of their demonstrated SERS-based uses in liquid biopsies, such as circulating tumor cells, tumor-derived extracellular vesicles, as well as circulating cancer proteins, and tumor nucleic acids is presented. Existing challenges impeding the clinical translation of plasmonic nanomaterials for SERS-based liquid biopsy applications are also identified, and outlooks and insights into advancing this rapidly growing field for practical patient use are provided.
Collapse
Affiliation(s)
- Jing Wang
- Centre for Personalized NanomedicineAustralian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQLD4072Australia
| | - Kevin M. Koo
- Centre for Personalized NanomedicineAustralian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQLD4072Australia
| | - Yuling Wang
- Department of Molecular SciencesARC Excellence Centre for Nanoscale BioPhotonicsFaculty of Science and EngineeringMacquarie UniversitySydneyNSW2109Australia
| | - Matt Trau
- Centre for Personalized NanomedicineAustralian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQLD4072Australia
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQLD4072Australia
| |
Collapse
|
33
|
Abstract
In recent years, various reports related to sensing application research have suggested that combining the synergistic impacts of optical, electrical or magnetic properties in a single technique can lead to a new multitasking platform. Owing to their unique features of the magnetic moment, biocompatibility, ease of surface modification, chemical stability, high surface area, high mass transference, magnetic nanoparticles have found a wide range of applications in various fields, especially in sensing systems. The present review is comprehensive information about magnetic nanoparticles utilized in the optical sensing platform, broadly categorized into four types: surface plasmon resonance (SPR), surface-enhanced Raman spectroscopy (SERS), fluorescence spectroscopy and near-infrared spectroscopy and imaging (NIRS) that are commonly used in various (bio) analytical applications. The review also includes some conclusions on the state of the art in this field and future aspects.
Collapse
|
34
|
Wang Y, Zong S, Li N, Wang Z, Chen B, Cui Y. SERS-based dynamic monitoring of minimal residual disease markers with high sensitivity for clinical applications. NANOSCALE 2019; 11:2460-2467. [PMID: 30671571 DOI: 10.1039/c8nr06929h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Minimal residual disease (MRD) measurement is important for the diagnosis and prognosis of B cell hematological malignancies in the clinic. Thus, a sensitive and accurate method for monitoring the corresponding surface markers is in high demand for early diagnosis and treatment instruction. Herein, we developed a surface enhanced Raman scattering (SERS)-based sandwich-type immunoassay for the simultaneous detection of two surface markers (i.e., CD19 and CD20) in Raji cell lines as well as in clinical blood samples. First, to compare with the results obtained by flow cytometry, we evaluated the sensitivity and reproducibility of the SERS immunoassay for real-time detection of CD19 and CD20 expressions in Raji cells and blood samples. Then, we conducted follow-up tests on 13 B cell hematological malignancy patients for one month and dynamically monitored their CD19 and CD20 expressions by the SERS immunoassay. In addition to the improved sensitivity of the SERS method, good linear correlations between the SERS intensities and flow cytometry results were also observed for both CD19 and CD20, which indicated the accuracy of this SERS-based strategy. Therefore, this SERS-based simultaneous detection approach shows great potential for accurate and early diagnosis of MRD in B cell hematological malignancies.
Collapse
Affiliation(s)
- Yujie Wang
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | | | | | | | | | | |
Collapse
|
35
|
Wang Y, Zong S, Wu L, Zhang Y, Wang Z, Wang Z, Chen B, Cui Y. Evaluation of Multidrug Resistance of Leukemia Using Surface-Enhanced Raman Scattering Method for Clinical Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24999-25005. [PMID: 29996649 DOI: 10.1021/acsami.8b02917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
P-glycoprotein (P-gp) is an important multidrug resistance (MDR) regulator for leukemia to mediate its development and thus can be considered as a powerful reference for the diagnosis of MDR. The detection of P-gp is of vital significance and has attracted considerable concerns. In this study, we proposed a surface-enhanced Raman scattering (SERS) method for the evaluation of P-gp expression levels in leukemia cell lines. Basically, we utilized an aqueous phase sandwich-type immunoassay to analyze the expression of P-gp. First, anti-CD45-decorated magnetic beads (MBs) and P-gp antibody-decorated SERS probes were fabricated. CD45 is a common protein expressed in all leukemia cells. As a result, a sandwich immunocomplex can be formed by the MBs, P-gp-overexpressed leukemia cells, and SERS probes. The expression level of P-gp determines the amount of SERS probes that can be captured. Consequently, the SERS intensity of the immunocomplex can be used to evaluate the expression level of P-gp. In a typical procedure, we measured the P-gp expression of an MDR leukemia cell line (K562/ADM) as well as unprocessed whole-blood samples. The SERS intensity of K562/ADM cells was highly correlated with the extent of MDR or the incubation time of adriamycin (which is an MDR inducing drug). In addition, the SERS intensity of the refractory/relapsing group was about sixfolds of that of the control group ( P < 0.01). These results demonstrated that the proposed method holds excellent sensitivity, specificity, reliability, and application potential in assessing both cultured cells and clinical samples. With these outstanding features, we anticipated that such a SERS-based method could be very helpful for the clinical diagnosis of early-stage MDR in leukemia.
Collapse
Affiliation(s)
- Yujie Wang
- Advanced Photonics Center , Southeast University , Nanjing 210096 , Jiangsu , China
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine , Southeast University , Nanjing 210009 , China
| | - Shenfei Zong
- Advanced Photonics Center , Southeast University , Nanjing 210096 , Jiangsu , China
| | - Lei Wu
- Advanced Photonics Center , Southeast University , Nanjing 210096 , Jiangsu , China
| | - Yizhi Zhang
- Advanced Photonics Center , Southeast University , Nanjing 210096 , Jiangsu , China
| | - Zhile Wang
- Advanced Photonics Center , Southeast University , Nanjing 210096 , Jiangsu , China
| | - Zhuyuan Wang
- Advanced Photonics Center , Southeast University , Nanjing 210096 , Jiangsu , China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine , Southeast University , Nanjing 210009 , China
| | - Yiping Cui
- Advanced Photonics Center , Southeast University , Nanjing 210096 , Jiangsu , China
| |
Collapse
|