1
|
Saad MA, Hasan T. Spotlight on Photoactivatable Liposomes beyond Drug Delivery: An Enabler of Multitargeting of Molecular Pathways. Bioconjug Chem 2022; 33:2041-2064. [PMID: 36197738 DOI: 10.1021/acs.bioconjchem.2c00376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The potential of photoactivating certain molecules, photosensitizers (PS), resulting in photochemical processes, has long been realized in the form of photodynamic therapy (PDT) for the management of several cancerous and noncancerous pathologies. With an improved understanding of the photoactivation process and its broader implications, efforts are being made to exploit the various facets of photoactivation, PDT, and the associated phenomenon of photodynamic priming in enhancing treatment outcomes, specifically in cancer therapeutics. The parallel emergence of nanomedicine, specifically liposome-based nanoformulations, and the convergence of the two fields of liposome-based drug delivery and PDT have led to the development of unique hybrid systems, which combine the exciting features of liposomes with adequate complementation through the photoactivation process. While initially liposomes carrying photosensitizers (PSs) were developed for enhancing the pharmacokinetics and the general applicability of PSs, more recently, PS-loaded liposomes, apart from their utility in PDT, have found several applications including enhanced targeting of drugs, coloading multiple therapeutic agents to enhance synergistic effects, imaging, priming, triggering drug release, and facilitating the escape of therapeutic agents from the endolysosomal complex. This review discusses the design strategies, potential, and unique attributes of these hybrid systems, with not only photoactivation as an attribute but also the ability to encapsulate multiple agents for imaging, biomodulation, priming, and therapy referred to as photoactivatable multiagent/inhibitor liposomes (PMILS) and their targeted versions─targeted PMILS (TPMILS). While liposomes have formed their own niche in nanotechnology and nanomedicine with several clinically approved formulations, we try to highlight how using PS-loaded liposomes could address some of the limitations and concerns usually associated with liposomes to overcome them and enhance their preclinical and clinical utility in the future.
Collapse
Affiliation(s)
- Mohammad A Saad
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States.,Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Yang E, Yu H, Choi S, Park KM, Jung HS, Chang PS. Controlled rate slow freezing with lyoprotective agent to retain the integrity of lipid nanovesicles during lyophilization. Sci Rep 2021; 11:24354. [PMID: 34934167 PMCID: PMC8692592 DOI: 10.1038/s41598-021-03841-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/08/2021] [Indexed: 12/02/2022] Open
Abstract
We designed a novel lyophilization method using controlled rate slow freezing (CSF) with lyoprotective agent (LPA) to achieve intact lipid nanovesicles after lyophilization. During the freezing step, LPA prevented water supercooling, and the freezing rate was controlled by CSF. Regulating the freezing rate by various liquid media was a crucial determinant of membrane disruption, and isopropanol (freezing rate of 0.933 °C/min) was the optimal medium for the CSF system. Lyophilized lipid nanovesicle using both CSF and LPA retained 92.9% of the core material and had uniform size distributions (Z-average diameter = 133.4 nm, polydispersity index = 0.144), similar to intact vesicles (120.7 nm and 0.159, respectively), after rehydration. Only lyophilized lipid nanovesicle using both CSF and LPA showed no changes in membrane fluidity and polarity. This lyophilization method can be applied to improve storage stability of lipid nanocarriers encapsulating drugs while retaining their original activity.
Collapse
Affiliation(s)
- Eunhye Yang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyunjong Yu
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul, 08826, Republic of Korea
| | - SungHak Choi
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung-Min Park
- Department of Food Science and Biotechnology, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Ho-Sup Jung
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul, 08826, Republic of Korea.
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
3
|
Xu PY, Zheng X, Kankala RK, Wang SB, Chen AZ. Advances in Indocyanine Green-Based Codelivery Nanoplatforms for Combinatorial Therapy. ACS Biomater Sci Eng 2021; 7:939-962. [PMID: 33539071 DOI: 10.1021/acsbiomaterials.0c01644] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Indocyanine green (ICG), a near-infrared (NIR) agent with an excellent imaging performance, has captivated enormous interest from researchers owing to its excellent therapeutic and imaging abilities. Although various nanoplatforms-based drug delivery systems (DDS) with the ability to overcome the clinical limitations of ICG has been reported, ICG-medicated conventional cancer diagnosis and photorelated therapies still lack in exhibiting the therapeutic efficacy, resulting in incomplete or partly tumor elimination. In the view of addressing these concerns, various DDSs have been engineered for the efficient codelivery of combined therapeutic agents with ICG, aiming to achieve promising therapeutic results due to multifunctional imaging-guided synergistic antitumor effects. In this article, we will systematically review currently available nanoplatforms based on polymers, inorganic, proteins, and metal-organic frameworks (MOFs), among others, for codelivery of ICG along with other therapeutic agents, providing a foundation for future clinical development of ICG. In addition, codelivery systems for ICG and different mechanism-based therapeutic agents will be illustrated. In summary, we conclude the review with the challenges and perspectives of ICG-based versatile nanoplatforms in detail.
Collapse
Affiliation(s)
- Pei-Yao Xu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China.,Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, P. R. China
| | - Xiang Zheng
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China.,Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, P. R. China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China.,Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, P. R. China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China.,Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, P. R. China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China.,Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, P. R. China
| |
Collapse
|
4
|
Li H, Zeng Y, Zhang H, Gu Z, Gong Q, Luo K. Functional gadolinium-based nanoscale systems for cancer theranostics. J Control Release 2020; 329:482-512. [PMID: 32898594 DOI: 10.1016/j.jconrel.2020.08.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Cancer theranostics is a new strategy for combating cancer that integrates cancer imaging and treatment through theranostic agents to provide an efficient and safe way to improve cancer prognosis. Design and synthesis of these cancer theranostic agents are crucial since these agents are required to be biocompatible, tumor-specific, imaging distinguishable and therapeutically efficacious. In this regard, several types of gadolinium (Gd)-based nanomaterials have been introduced to combine different therapeutic agents with Gd to enhance the efficacy of therapeutic agents. At the same time, the entire treatment procedure could be monitored via imaging tools due to incorporation of Gd ions, Gd chelates and Gd/other imaging probes in the theranostic agents. This review aims to overview recent advances in the Gd-based nanomaterials for cancer theranostics and perspectives for Gd nanomaterial-based cancer theranostics are provided.
Collapse
Affiliation(s)
- Haonan Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yujun Zeng
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA 91711, USA
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Guo L, Xin H, Luo X, Zhang C. Phase evolution, mechanical properties and MRI contrast behavior of GdPO4 doped hydroxyapatite for dental applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110858. [DOI: 10.1016/j.msec.2020.110858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 11/30/2022]
|
6
|
Ghosh S, Carter KA, Lovell JF. Liposomal formulations of photosensitizers. Biomaterials 2019; 218:119341. [PMID: 31336279 PMCID: PMC6663636 DOI: 10.1016/j.biomaterials.2019.119341] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 12/29/2022]
Abstract
Photodynamic therapy (PDT) is a clinical ablation modality to treat cancers and other diseases. PDT involves administration of a photosensitizer, followed by irradiation of target tissue with light. As many photosensitizers are small and hydrophobic, solubilization approaches and nanoscale delivery vehicles have been extensively explored. Liposomes and lipid-based formulations have been used for the past 30 years, and in some cases have been developed into well-defined commercial PDT products. This review provides an overview of common liposomal formulation strategies for photosensitizers for PDT and also photothermal therapy. Furthermore, research efforts have examined the impact of co-loading therapeutic cargo along with photosensitizers within liposomes. Additional recent approaches including imaging, overcoming hypoxia, upconversion and activatable liposomal formulations are discussed.
Collapse
Affiliation(s)
- Sanjana Ghosh
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Kevin A Carter
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
7
|
T.S A, Shalumon K, Chen JP. Applications of Magnetic Liposomes in Cancer Therapies. Curr Pharm Des 2019; 25:1490-1504. [DOI: 10.2174/1389203720666190521114936] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/14/2019] [Indexed: 12/30/2022]
Abstract
MNPs find numerous important biomedical applications owing to their high biocompatibility and unique magnetic properties at the bottom level. Among several other biomedical applications, MNPs are gaining importance in treating various kinds of cancer either as a hyperthermia agent alone or as a drug/gene carrier for single or combined therapies. At the same time, another type of nano-carrier with lipid bilayer, i.e. liposomes, has also emerged as a platform for administration of pharmaceutical drugs, which sees increasing importance as a drug/gene carrier in cancer therapy due to its excellent biocompatibility, tunable particle size and the possibility for surface modification to overcome biological barriers and to reach targeted sites. MLs that combine MNPs with liposomes are endowed with advantages of both MNPs and liposomes and are gaining importance for cancer therapy in various modes. Hence, we will start by reviewing the synthesis methods of MNPs and MLs, followed by a comprehensive assessment of current strategies to apply MLs for different types of cancer treatments. These will include thermo-chemotherapy using MLs as a triggered releasing agent to deliver drugs/genes, photothermal/ photodynamic therapy and combined imaging and cancer therapy.
Collapse
Affiliation(s)
- Anilkumar T.S
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan, China
| | - K.T. Shalumon
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan, China
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan, China
| |
Collapse
|
8
|
Zhang C, Liu J, Guo H, Wang W, Xu M, Tan Y, Huang T, Cao Z, Shuai X, Xie X. Theranostic Nanomedicine Carrying L-Menthol and Near-Infrared Dye for Multimodal Imaging-Guided Photothermal Therapy of Cancer. Adv Healthc Mater 2019; 8:e1900409. [PMID: 31148393 DOI: 10.1002/adhm.201900409] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/05/2019] [Indexed: 12/20/2022]
Abstract
Photothermal therapy (PTT) as an emerging technique for cancer treatment has drawn great attention owing to its minimally invasive nature. However, it is difficult to achieve a complete tumor regression due to the heterogeneous heat distribution over the tumor. Application of photothermal conversion agents may enhance PTT efficiency, and a multifunctional imaging may provide guidance for the implementation of PTT. Herein, an L-menthol/IR-780 loaded liposome (MIL) is prepared to achieve NIR-triggered cavitation for enhancing photothermal ablation. The synthesized MIL possesses outstanding colloidal stability and photoacoustic/near infrared fluorescence/ultrasound (PA/NIRF/US) imaging contrast to offer multimodal imaging-guided photothermal therapy of cancer. Upon irradiation, the IR-780 acts as the photoabsorber to convert NIR light into heat energy. More importantly, the produced hyperthermia can not only induce ablation of tumor cells but also trigger vaporization and bubbling of encapsulated L-menthol (menthol). Consequently, the generated menthol bubbles obviously enhance the US imaging signal and promote photothermal ablation of the tumor.
Collapse
Affiliation(s)
- Chunyang Zhang
- Department of Medical UltrasoundInstitute of Diagnostic and Interventional UltrasoundFirst Affiliated HospitalSun Yat‐Sen University Guangzhou Guangdong 510080 China
| | - Jie Liu
- School of Biomedical EngineeringSun Yat‐Sen University Guangzhou Guangdong 510006 China
| | - Huanling Guo
- Department of Medical UltrasoundInstitute of Diagnostic and Interventional UltrasoundFirst Affiliated HospitalSun Yat‐Sen University Guangzhou Guangdong 510080 China
| | - Wei Wang
- Department of Medical UltrasoundInstitute of Diagnostic and Interventional UltrasoundFirst Affiliated HospitalSun Yat‐Sen University Guangzhou Guangdong 510080 China
| | - Ming Xu
- Department of Medical UltrasoundInstitute of Diagnostic and Interventional UltrasoundFirst Affiliated HospitalSun Yat‐Sen University Guangzhou Guangdong 510080 China
| | - Yang Tan
- Department of Medical UltrasoundInstitute of Diagnostic and Interventional UltrasoundFirst Affiliated HospitalSun Yat‐Sen University Guangzhou Guangdong 510080 China
| | - Tongyi Huang
- Department of Medical UltrasoundInstitute of Diagnostic and Interventional UltrasoundFirst Affiliated HospitalSun Yat‐Sen University Guangzhou Guangdong 510080 China
| | - Zhong Cao
- School of Biomedical EngineeringSun Yat‐Sen University Guangzhou Guangdong 510006 China
| | - Xintao Shuai
- PCFM Lab of Ministry of EducationSchool of Chemistry and Chemical EngineeringSun Yat‐Sen University Guangzhou Guangdong 510275 China
| | - Xiaoyan Xie
- Department of Medical UltrasoundInstitute of Diagnostic and Interventional UltrasoundFirst Affiliated HospitalSun Yat‐Sen University Guangzhou Guangdong 510080 China
| |
Collapse
|
9
|
Li Z, Ma X, Xia Y, Qian K, Akakuru OU, Luo L, Zheng J, Cui P, Shen Z, Wu A. A pH-sensitive polymer based precise tumor targeting strategy with reduced uptake of nanoparticles by non-cancerous cells. J Mater Chem B 2019; 7:5983-5991. [DOI: 10.1039/c9tb01202h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A T2-weighted MRI contrast agent (SPION-AN-FA@mPEG) can precisely target cancer cells with folate receptor α (FRα) diminishing non-specific uptake by normal healthy cells.
Collapse
|
10
|
He Q, He X, Deng B, Shi C, Lin L, Liu P, Yang Z, Yang S, Xu Z. Sorafenib and indocyanine green co-loaded in photothermally sensitive liposomes for diagnosis and treatment of advanced hepatocellular carcinoma. J Mater Chem B 2018; 6:5823-5834. [PMID: 32254989 DOI: 10.1039/c8tb01641k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sorafenib (SF), as an irreplaceable first-line drug to help advanced hepatocellular carcinoma (HCC) patients to prolong their lives, has already been used in clinical practice for several years. However, this treatment causes several side effects, and few alternatives to SF treatment exist. Herein, we designed NIR fluorescence imaging-guided photothermally sensitive nanoliposomes based on co-encapsulation of SF and the clinical photothermal and photodynamic therapy agent Indocyanine Green (ICG) to solve the problems of SF-based treatment in advanced HCC. As expected, in vitro and in vivo drug release studies on SF-ICG liposomes (SILs) demonstrated SF release from SILs compared with free SF at the same concentration. In addition, in vivo NIR fluorescence imaging and anti-tumor treatment using SILs have been demonstrated by using Hep3B tumor-bearing xenograft nude mice. All detailed experimental evidence suggested that biocompatibility, biotoxicity, and anti-tumor effects were improved by using SILs instead of free SF. In conclusion, our designed SILs could present a novel and suitable SF-based treatment strategy for advanced HCC therapy in the future.
Collapse
Affiliation(s)
- Qianyuan He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for The Green Preparation and Application of Functional Material, Hubei University, Wuhan, Hubei 430062, China.
| | | | | | | | | | | | | | | | | |
Collapse
|