1
|
Zhou L, Zhang C, Shi T, Wu D, Chen H, Han J, Chen D, Lin J, Liu W. Functionalized 3D-printed GelMA/Laponite hydrogel scaffold promotes BMSCs recruitment through osteoimmunomodulatory enhance osteogenic via AMPK/mTOR signaling pathway. Mater Today Bio 2024; 29:101261. [PMID: 39381262 PMCID: PMC11460517 DOI: 10.1016/j.mtbio.2024.101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
The migration and differentiation of bone marrow mesenchymal stem cells (BMSCs) play crucial roles in bone repair processes. However, conventional scaffolds often lack of effectively inducing and recruiting BMSCs. In our study, we present a novel approach by introducing a 3D-bioprinted scaffold composed of hydrogels, with the addition of laponite to the GelMA solution, aimed at enhancing scaffold performance. Both in vivo and in vitro experiments have confirmed the outstanding biocompatibility of the scaffold. Furthermore, for the first time, Apt19s has been chemically modified onto the surface of the hydrogel scaffold, resulting in a remarkable enhancement in the migration and adhesion of BMSCs. Moreover, the scaffold has demonstrated robust osteogenic differentiation capability in both in vivo and in vitro environments. Additionally, the hydrogel scaffold has shown the ability to induce the polarization of macrophages from M1 to M2, thereby facilitating the osteogenic differentiation of BMSCs via the bone immune pathway. Through RNA-seq analysis, it has been revealed that macrophages regulate the osteogenic differentiation of BMSCs through the AMPK/mTOR signaling pathway. In summary, the functionalized GelMA/Laponite scaffold offers a cost-effective approach for tailored in situ bone regeneration.
Collapse
Affiliation(s)
- Linquan Zhou
- Fujian Medical University Union Hospital, Fuzhou, 350000, China
| | - Chengcheng Zhang
- The School of Health, Fujian Medical University, Fuzhou, 350000, China
| | - Tengbin Shi
- Fujian Medical University Union Hospital, Fuzhou, 350000, China
| | - Dingwei Wu
- Fujian Medical University Union Hospital, Fuzhou, 350000, China
| | - Huina Chen
- The School of Health, Fujian Medical University, Fuzhou, 350000, China
| | - Jiaxin Han
- The School of Health, Fujian Medical University, Fuzhou, 350000, China
| | - Dehui Chen
- Fujian Medical University Union Hospital, Fuzhou, 350000, China
| | - Jinxin Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350000, China
| | - Wenge Liu
- Fujian Medical University Union Hospital, Fuzhou, 350000, China
| |
Collapse
|
2
|
Loukelis K, Koutsomarkos N, Mikos AG, Chatzinikolaidou M. Advances in 3D bioprinting for regenerative medicine applications. Regen Biomater 2024; 11:rbae033. [PMID: 38845855 PMCID: PMC11153344 DOI: 10.1093/rb/rbae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 06/09/2024] Open
Abstract
Biofabrication techniques allow for the construction of biocompatible and biofunctional structures composed from biomaterials, cells and biomolecules. Bioprinting is an emerging 3D printing method which utilizes biomaterial-based mixtures with cells and other biological constituents into printable suspensions known as bioinks. Coupled with automated design protocols and based on different modes for droplet deposition, 3D bioprinters are able to fabricate hydrogel-based objects with specific architecture and geometrical properties, providing the necessary environment that promotes cell growth and directs cell differentiation towards application-related lineages. For the preparation of such bioinks, various water-soluble biomaterials have been employed, including natural and synthetic biopolymers, and inorganic materials. Bioprinted constructs are considered to be one of the most promising avenues in regenerative medicine due to their native organ biomimicry. For a successful application, the bioprinted constructs should meet particular criteria such as optimal biological response, mechanical properties similar to the target tissue, high levels of reproducibility and printing fidelity, but also increased upscaling capability. In this review, we highlight the most recent advances in bioprinting, focusing on the regeneration of various tissues including bone, cartilage, cardiovascular, neural, skin and other organs such as liver, kidney, pancreas and lungs. We discuss the rapidly developing co-culture bioprinting systems used to resemble the complexity of tissues and organs and the crosstalk between various cell populations towards regeneration. Moreover, we report on the basic physical principles governing 3D bioprinting, and the ideal bioink properties based on the biomaterials' regenerative potential. We examine and critically discuss the present status of 3D bioprinting regarding its applicability and current limitations that need to be overcome to establish it at the forefront of artificial organ production and transplantation.
Collapse
Affiliation(s)
- Konstantinos Loukelis
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | - Nikos Koutsomarkos
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), Heraklion 70013, Greece
| |
Collapse
|
3
|
Khiari Z. Recent Developments in Bio-Ink Formulations Using Marine-Derived Biomaterials for Three-Dimensional (3D) Bioprinting. Mar Drugs 2024; 22:134. [PMID: 38535475 PMCID: PMC10971850 DOI: 10.3390/md22030134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 05/01/2024] Open
Abstract
3D bioprinting is a disruptive, computer-aided, and additive manufacturing technology that allows the obtention, layer-by-layer, of 3D complex structures. This technology is believed to offer tremendous opportunities in several fields including biomedical, pharmaceutical, and food industries. Several bioprinting processes and bio-ink materials have emerged recently. However, there is still a pressing need to develop low-cost sustainable bio-ink materials with superior qualities (excellent mechanical, viscoelastic and thermal properties, biocompatibility, and biodegradability). Marine-derived biomaterials, including polysaccharides and proteins, represent a viable and renewable source for bio-ink formulations. Therefore, the focus of this review centers around the use of marine-derived biomaterials in the formulations of bio-ink. It starts with a general overview of 3D bioprinting processes followed by a description of the most commonly used marine-derived biomaterials for 3D bioprinting, with a special attention paid to chitosan, glycosaminoglycans, alginate, carrageenan, collagen, and gelatin. The challenges facing the application of marine-derived biomaterials in 3D bioprinting within the biomedical and pharmaceutical fields along with future directions are also discussed.
Collapse
Affiliation(s)
- Zied Khiari
- National Research Council of Canada, Aquatic and Crop Resource Development Research Centre, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada
| |
Collapse
|
4
|
Kumari S, Mondal P, Tyeb S, Chatterjee K. Visible light-based 3D bioprinted composite scaffolds of κ-carrageenan for bone tissue engineering applications. J Mater Chem B 2024; 12:1926-1936. [PMID: 38314524 DOI: 10.1039/d3tb02179c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Three-dimensional (3D) printing of bone scaffolds using digital light processing (DLP) bioprinting technology empowers the treatment of patients suffering from bone disorders and defects through the fabrication of cell-laden patient-specific scaffolds. Here, we demonstrate the visible-light-induced photo-crosslinking of methacrylate-κ-carrageenan (MA-κ-CA) mixed with bioactive silica nanoparticles (BSNPs) to fabricate 3D composite hydrogels using digital light processing (DLP) printing. The 3D printing of complex bone structures, such as the gyroid, was demonstrated with high precision and resolution. DLP-printed 3D composite hydrogels of MA-κ-CA-BSNP were prepared and systematically assessed for their macroporous structure, swelling, and degradation characteristics. The viscosity, rheological, and mechanical properties were also investigated for the influence of nanoparticle incorporation in the MA-κ-CA hydrogels. The in vitro study performed with MC3T3-E1 pre-osteoblast-laden scaffolds of MA-κ-CA-BSNP revealed high cell viability, no cytotoxicity, and proliferation over 21 days with markedly enhanced osteogenic differentiation compared to neat polymeric scaffolds. Furthermore, no inflammation was observed in the 21-day study involving the in vivo examination of DLP-printed 3D composite scaffolds in a Wistar rat model. Overall, the observed results for the DLP-printed 3D composite scaffolds of MA-κ-CA and BSNP demonstrate their biocompatibility and suitability for bone tissue engineering.
Collapse
Affiliation(s)
- Sushma Kumari
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India.
| | - Pritiranjan Mondal
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India.
| | - Suhela Tyeb
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India.
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India.
| |
Collapse
|
5
|
Zhang X, Cheng F, Islam MR, Li H. The fabrication of the chitosan-based bioink for in vitro tissue repair and regeneration: A review. Int J Biol Macromol 2024; 257:128504. [PMID: 38040155 DOI: 10.1016/j.ijbiomac.2023.128504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
The repair and regeneration of the injured tissues or organs is a major challenge for biomedicine, and the emerging 3D bioprinting technology as a class of promising techniques in biomedical research for the development of tissue engineering and regenerative medicine. Chitosan-based bioinks, as the natural biomaterials, are considered as ideal materials for 3D bioprinting to design and fabricate the various scaffold due to their unique dynamic reversibility and fantastic biological properties. Our review aims to provide an overview of chitosan-based bioinks for in vitro tissue repair and regeneration, starting from modification of chitosan that affect these bioprinting processes. In addition, we summarize the advances in chitosan-based bioinks used in the various 3D printing strategies. Moreover, the biomedical applications of chitosan-based bioinks are discussed, primarily centered on regenerative medicine and tissue modeling engineering. Finally, current challenges and future opportunities in this field are discussed. The combination of chitosan-based bioinks and 3D bioprinting will hold promise for developing novel biomedical scaffolds for tissue or organ repair and regeneration.
Collapse
Affiliation(s)
- Xiao Zhang
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China
| | - Feng Cheng
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China.
| | - Md Rashidul Islam
- College of Light Industry and Textile, Qiqihar University, Qiqihar, Heilongjiang 161000, PR China
| | - Hongbin Li
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China; College of Light Industry and Textile, Qiqihar University, Qiqihar, Heilongjiang 161000, PR China.
| |
Collapse
|
6
|
Ilić-Stojanović S, Nikolić L, Cakić S. A Review of Patents and Innovative Biopolymer-Based Hydrogels. Gels 2023; 9:556. [PMID: 37504436 PMCID: PMC10378757 DOI: 10.3390/gels9070556] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Biopolymers represent a great resource for the development and utilization of new functional materials due to their particular advantages such as biocompatibility, biodegradability and non-toxicity. "Intelligent gels" sensitive to different stimuli (temperature, pH, ionic strength) have different applications in many industries (e.g., pharmacy, biomedicine, food). This review summarizes the research efforts presented in the patent and non-patent literature. A discussion was conducted regarding biopolymer-based hydrogels such as natural proteins (i.e., fibrin, silk fibroin, collagen, keratin, gelatin) and polysaccharides (i.e., chitosan, hyaluronic acid, cellulose, carrageenan, alginate). In this analysis, the latest advances in the modification and characterization of advanced biopolymeric formulations and their state-of-the-art administration in drug delivery, wound healing, tissue engineering and regenerative medicine were addressed.
Collapse
Affiliation(s)
| | - Ljubiša Nikolić
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia
| | - Suzana Cakić
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia
| |
Collapse
|
7
|
Bini F, D'Alessandro S, Pica A, Marinozzi F, Cidonio G. Harnessing Biofabrication Strategies to Re-Surface Osteochondral Defects: Repair, Enhance, and Regenerate. Biomimetics (Basel) 2023; 8:260. [PMID: 37366855 DOI: 10.3390/biomimetics8020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
Osteochondral tissue (OC) is a complex and multiphasic system comprising cartilage and subchondral bone. The discrete OC architecture is layered with specific zones characterized by different compositions, morphology, collagen orientation, and chondrocyte phenotypes. To date, the treatment of osteochondral defects (OCD) remains a major clinical challenge due to the low self-regenerative capacity of damaged skeletal tissue, as well as the critical lack of functional tissue substitutes. Current clinical approaches fail to fully regenerate damaged OC recapitulating the zonal structure while granting long-term stability. Thus, the development of new biomimetic treatment strategies for the functional repair of OCDs is urgently needed. Here, we review recent developments in the preclinical investigation of novel functional approaches for the resurfacing of skeletal defects. The most recent studies on preclinical augmentation of OCDs and highlights on novel studies for the in vivo replacement of diseased cartilage are presented.
Collapse
Affiliation(s)
- Fabiano Bini
- Department of Mechanical and Aerospace Engineering, Sapienza University, 00148 Rome, Italy
| | - Salvatore D'Alessandro
- Department of Mechanical and Aerospace Engineering, Sapienza University, 00148 Rome, Italy
- Center for Life Nano- & Neuro-Science (CLN2S), Fondazione Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Andrada Pica
- Department of Mechanical and Aerospace Engineering, Sapienza University, 00148 Rome, Italy
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Franco Marinozzi
- Department of Mechanical and Aerospace Engineering, Sapienza University, 00148 Rome, Italy
| | - Gianluca Cidonio
- Center for Life Nano- & Neuro-Science (CLN2S), Fondazione Istituto Italiano di Tecnologia, 00161 Rome, Italy
| |
Collapse
|
8
|
Gao J, Liu X, Cheng J, Deng J, Han Z, Li M, Wang X, Liu J, Zhang L. Application of photocrosslinkable hydrogels based on photolithography 3D bioprinting technology in bone tissue engineering. Regen Biomater 2023; 10:rbad037. [PMID: 37250979 PMCID: PMC10219790 DOI: 10.1093/rb/rbad037] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/02/2023] [Accepted: 04/16/2023] [Indexed: 05/31/2023] Open
Abstract
Bone tissue engineering (BTE) has been proven to be an effective method for the treatment of bone defects caused by different musculoskeletal disorders. Photocrosslinkable hydrogels (PCHs) with good biocompatibility and biodegradability can significantly promote the migration, proliferation and differentiation of cells and have been widely used in BTE. Moreover, photolithography 3D bioprinting technology can notably help PCHs-based scaffolds possess a biomimetic structure of natural bone, meeting the structural requirements of bone regeneration. Nanomaterials, cells, drugs and cytokines added into bioinks can enable different functionalization strategies for scaffolds to achieve the desired properties required for BTE. In this review, we demonstrate a brief introduction of the advantages of PCHs and photolithography-based 3D bioprinting technology and summarize their applications in BTE. Finally, the challenges and potential future approaches for bone defects are outlined.
Collapse
Affiliation(s)
| | | | | | - Junhao Deng
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing 100036, China
| | - Zhenchuan Han
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing 100036, China
| | - Ming Li
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing 100036, China
| | - Xiumei Wang
- Correspondence address: E-mail: (X.W); (J.L.); (L.Z.)
| | - Jianheng Liu
- Correspondence address: E-mail: (X.W); (J.L.); (L.Z.)
| | - Licheng Zhang
- Correspondence address: E-mail: (X.W); (J.L.); (L.Z.)
| |
Collapse
|
9
|
Gao J, Li M, Cheng J, Liu X, Liu Z, Liu J, Tang P. 3D-Printed GelMA/PEGDA/F127DA Scaffolds for Bone Regeneration. J Funct Biomater 2023; 14:jfb14020096. [PMID: 36826895 PMCID: PMC9962173 DOI: 10.3390/jfb14020096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Tissue-engineered scaffolds are an effective method for the treatment of bone defects, and their structure and function are essential for bone regeneration. Digital light processing (DLP) printing technology has been widely used in bone tissue engineering (BTE) due to its high printing resolution and gentle printing process. As commonly used bioinks, synthetic polymers such as polyethylene glycol diacrylate (PEGDA) and Pluronic F127 diacrylate (F127DA) have satisfactory printability and mechanical properties but usually lack sufficient adhesion to cells and tissues. Here, a compound BTE scaffold based on PEGDA, F127DA, and gelatin methacrylate (GelMA) was successfully prepared using DLP printing technology. The scaffold not only facilitated the adhesion and proliferation of cells, but also effectively promoted the osteogenic differentiation of mesenchymal stem cells in an osteoinductive environment. Moreover, the bone tissue volume/total tissue volume (BV/TV) of the GelMA/PEGDA/F127DA (GPF) scaffold in vivo was 49.75 ± 8.50%, higher than the value of 37.10 ± 7.27% for the PEGDA/F127DA (PF) scaffold and 20.43 ± 2.08% for the blank group. Therefore, the GPF scaffold prepared using DLP printing technology provides a new approach to the treatment of bone defects.
Collapse
Affiliation(s)
- Jianpeng Gao
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing 100039, China
- Medical School of Chinese PLA, Beijing 100039, China
| | - Ming Li
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing 100039, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Junyao Cheng
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing 100039, China
- Medical School of Chinese PLA, Beijing 100039, China
| | - Xiao Liu
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing 100039, China
- Medical School of Chinese PLA, Beijing 100039, China
| | - Zhongyang Liu
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing 100039, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Jianheng Liu
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing 100039, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
- Correspondence: (J.L.); (P.T.)
| | - Peifu Tang
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing 100039, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
- Correspondence: (J.L.); (P.T.)
| |
Collapse
|
10
|
Easy and Affordable: A New Method for the Studying of Bacterial Biofilm Formation. Cells 2022; 11:cells11244119. [PMID: 36552883 PMCID: PMC9777215 DOI: 10.3390/cells11244119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Bacterial biofilm formation (BBF) proves itself to be in the spotlight of microbiology research due to the wide variety of infections that it can be associated with, the involvement in food spoilage, industrial biofouling and perhaps sewage treatment. However, BBF remains difficult to study due to the lack of standardization of the existing methods and the expensive equipment needed. We aim to describe a new inexpensive and easy to reproduce protocol for a 3D-printed microfluidic device that can be used to study BBF in a dynamic manner. METHODS We used the SolidWorks 3D CAD Software (EducationEdition 2019-2020, Dassault Systèmes, Vélizy-Villacoublay, France) to design the device and the Creality3D Ender 5 printer (Shenzhen Creality 3D Technology Co., Ltd., Shenzhen, China) for its manufacture. We cultivated strains of Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa. For the biofilm evaluation we used optical coherence tomography (OCT), scanning electron microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy and crystal violet staining technique. RESULTS Based on the analysis, Enterococcus faecalis seems to produce more biofilm in the first hours while Pseudomonas aeruginosa started to take the lead on biofilm production after 24 h. CONCLUSIONS With an estimated cost around €0.1285 for one microfluidic device, a relatively inexpensive and easy alternative for the study of BBF was developed.
Collapse
|
11
|
Xu HQ, Liu JC, Zhang ZY, Xu CX. A review on cell damage, viability, and functionality during 3D bioprinting. Mil Med Res 2022; 9:70. [PMID: 36522661 PMCID: PMC9756521 DOI: 10.1186/s40779-022-00429-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
Three-dimensional (3D) bioprinting fabricates 3D functional tissues/organs by accurately depositing the bioink composed of the biological materials and living cells. Even though 3D bioprinting techniques have experienced significant advancement over the past decades, it remains challenging for 3D bioprinting to artificially fabricate functional tissues/organs with high post-printing cell viability and functionality since cells endure various types of stress during the bioprinting process. Generally, cell viability which is affected by several factors including the stress and the environmental factors, such as pH and temperature, is mainly determined by the magnitude and duration of the stress imposed on the cells with poorer cell viability under a higher stress and a longer duration condition. The maintenance of high cell viability especially for those vulnerable cells, such as stem cells which are more sensitive to multiple stresses, is a key initial step to ensure the functionality of the artificial tissues/organs. In addition, maintaining the pluripotency of the cells such as proliferation and differentiation abilities is also essential for the 3D-bioprinted tissues/organs to be similar to native tissues/organs. This review discusses various pathways triggering cell damage and the major factors affecting cell viability during different bioprinting processes, summarizes the studies on cell viabilities and functionalities in different bioprinting processes, and presents several potential approaches to protect cells from injuries to ensure high cell viability and functionality.
Collapse
Affiliation(s)
- He-Qi Xu
- Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jia-Chen Liu
- Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Zheng-Yi Zhang
- School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Chang-Xue Xu
- Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
12
|
Thangavel M, Elsen Selvam R. Review of Physical, Mechanical, and Biological Characteristics of 3D-Printed Bioceramic Scaffolds for Bone Tissue Engineering Applications. ACS Biomater Sci Eng 2022; 8:5060-5093. [PMID: 36415173 DOI: 10.1021/acsbiomaterials.2c00793] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This review focuses on the advancements in additive manufacturing techniques that are utilized for fabricating bioceramic scaffolds and their characterizations leading to bone tissue regeneration. Bioscaffolds are made by mimicking the human bone structure, material composition, and properties. Calcium phosphate apatite materials are the most commonly used scaffold materials as they closely resemble live bone in their inorganic composition. The functionally graded scaffolds are fabricated by utilizing the right choice of the 3D printing method and material combinations to achieve the requirement of the bioscaffold. To tailor the physical, mechanical, and biological properties of the scaffold, certain materials are reinforced, doped, or coated to incorporate the functionality. The biomechanical loading conditions that involve flexion, torsion, and tension exerted on the implanted scaffold are discussed. The finite element analysis (FEA) technique is used to investigate the mechanical property of the scaffold before fabrication. This helps in reducing the actual number of samples used for testing. The FEA simulated results and the experimental result are compared. This review also highlights some of the challenges associated while processing the scaffold such as shrinkage, mechanical instability, cytotoxicity, and printability. In the end, the new materials that are evolved for tissue engineering applications are compiled and discussed.
Collapse
Affiliation(s)
- Mahendran Thangavel
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Renold Elsen Selvam
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
13
|
The application of 3D bioprinting in urological diseases. Mater Today Bio 2022; 16:100388. [PMID: 35967737 PMCID: PMC9364106 DOI: 10.1016/j.mtbio.2022.100388] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
Urologic diseases are commonly diagnosed health problems affecting people around the world. More than 26 million people suffer from urologic diseases and the annual expenditure was more than 11 billion US dollars. The urologic cancers, like bladder cancer, prostate cancer and kidney cancer are always the leading causes of death worldwide, which account for approximately 22% and 10% of the new cancer cases and death, respectively. Organ transplantation is one of the major clinical treatments for urological diseases like end-stage renal disease and urethral stricture, albeit strongly limited by the availability of matching donor organs. Tissue engineering has been recognized as a highly promising strategy to solve the problems of organ donor shortage by the fabrication of artificial organs/tissue. This includes the prospective technology of three-dimensional (3D) bioprinting, which has been adapted to various cell types and biomaterials to replicate the heterogeneity of urological organs for the investigation of organ transplantation and disease progression. This review discusses various types of 3D bioprinting methodologies and commonly used biomaterials for urological diseases. The literature shows that advances in this field toward the development of functional urological organs or disease models have progressively increased. Although numerous challenges still need to be tackled, like the technical difficulties of replicating the heterogeneity of urologic organs and the limited biomaterial choices to recapitulate the complicated extracellular matrix components, it has been proved by numerous studies that 3D bioprinting has the potential to fabricate functional urological organs for clinical transplantation and in vitro disease models. Outline the advantages and characteristics of 3D printing compared with traditional methods for urological diseases. Guide the selection of 3D bioprinting technology and material in urological tissue engineering. Discuss the challenges and future perspectives of 3D bioprinting in urological diseases and clinical translation.
Collapse
|
14
|
Bhushan S, Singh S, Maiti TK, Sharma C, Dutt D, Sharma S, Li C, Tag Eldin EM. Scaffold Fabrication Techniques of Biomaterials for Bone Tissue Engineering: A Critical Review. Bioengineering (Basel) 2022; 9:728. [PMID: 36550933 PMCID: PMC9774188 DOI: 10.3390/bioengineering9120728] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/27/2022] Open
Abstract
Bone tissue engineering (BTE) is a promising alternative to repair bone defects using biomaterial scaffolds, cells, and growth factors to attain satisfactory outcomes. This review targets the fabrication of bone scaffolds, such as the conventional and electrohydrodynamic techniques, for the treatment of bone defects as an alternative to autograft, allograft, and xenograft sources. Additionally, the modern approaches to fabricating bone constructs by additive manufacturing, injection molding, microsphere-based sintering, and 4D printing techniques, providing a favorable environment for bone regeneration, function, and viability, are thoroughly discussed. The polymers used, fabrication methods, advantages, and limitations in bone tissue engineering application are also emphasized. This review also provides a future outlook regarding the potential of BTE as well as its possibilities in clinical trials.
Collapse
Affiliation(s)
- Sakchi Bhushan
- Department of Paper Technology, IIT Roorkee, Saharanpur 247001, India
| | - Sandhya Singh
- Department of Paper Technology, IIT Roorkee, Saharanpur 247001, India
| | - Tushar Kanti Maiti
- Department of Polymer and Process Engineering, IIT Roorkee, Saharanpur 247001, India
| | - Chhavi Sharma
- Department of Polymer and Process Engineering, IIT Roorkee, Saharanpur 247001, India
| | - Dharm Dutt
- Department of Paper Technology, IIT Roorkee, Saharanpur 247001, India
| | - Shubham Sharma
- Mechanical Engineering Department, University Center for Research & Development, Chandigarh University, Mohali 140413, India
- School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Changhe Li
- School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China
| | | |
Collapse
|
15
|
Lee SY, Ma J, Khoo TS, Abdullah N, Nik Md Noordin Kahar NNF, Abdul Hamid ZA, Mustapha M. Polysaccharide-Based Hydrogels for Microencapsulation of Stem Cells in Regenerative Medicine. Front Bioeng Biotechnol 2021; 9:735090. [PMID: 34733829 PMCID: PMC8558675 DOI: 10.3389/fbioe.2021.735090] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
Stem cell-based therapy appears as a promising strategy to induce regeneration of damaged and diseased tissues. However, low survival, poor engraftment and a lack of site-specificity are major drawbacks. Polysaccharide hydrogels can address these issues and offer several advantages as cell delivery vehicles. They have become very popular due to their unique properties such as high-water content, biocompatibility, biodegradability and flexibility. Polysaccharide polymers can be physically or chemically crosslinked to construct biomimetic hydrogels. Their resemblance to living tissues mimics the native three-dimensional extracellular matrix and supports stem cell survival, proliferation and differentiation. Given the intricate nature of communication between hydrogels and stem cells, understanding their interaction is crucial. Cells are incorporated with polysaccharide hydrogels using various microencapsulation techniques, allowing generation of more relevant models and further enhancement of stem cell therapies. This paper provides a comprehensive review of human stem cells and polysaccharide hydrogels most used in regenerative medicine. The recent and advanced stem cell microencapsulation techniques, which include extrusion, emulsion, lithography, microfluidics, superhydrophobic surfaces and bioprinting, are described. This review also discusses current progress in clinical translation of stem-cell encapsulated polysaccharide hydrogels for cell delivery and disease modeling (drug testing and discovery) with focuses on musculoskeletal, nervous, cardiac and cancerous tissues.
Collapse
Affiliation(s)
- Si-Yuen Lee
- Department of Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Jingyi Ma
- Duke-NUS Medical School, Singapore, Singapore
| | - Tze Sean Khoo
- UKM Medical Molecular Biology Institute, National University of Malaysia, Bangi, Malaysia
| | - Norfadhilatuladha Abdullah
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | | | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| |
Collapse
|
16
|
Sheng L, Li M, Zheng S, Qi J. Adjusting the accuracy of PEGDA-GelMA vascular network by dark pigments via digital light processing printing. J Biomater Appl 2021; 36:1173-1187. [PMID: 34738507 DOI: 10.1177/08853282211053081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vascularization is one of the most important factors greatly influencing scaffold regeneration. In this study, a precise network of hollow vessels was printed by digital light processing (DLP) with poly(ethylene glycol) diacrylate (PEGDA)/gelatin-methacryloyl (GelMA), and dark pigmentation absorbers were added to ensure printing accuracy. First, the compound bio-inks of the PEGDA-GelMA hydrogel were prepared for direct vascular printing, and a high-precision DLP system was established. Second, the printing effects of three dark absorbers, namely, nigrosin, brilliant black, and brilliant blue, on the x-, y-, and z-axes were studied. By printing models with different densities, it was determined that 0.2% nigrosin, 0.1% brilliant black, and 0.3% brilliant blue had better effects on the x- and y-axes accuracy, and the absorbance of the absorbers played a decisive role in adjusting the accuracy. Additionally, to solve the problem of uneven curing on the upper and lower surfaces caused by the addition of an absorber with high absorbance, a model of the difference in curing width between the upper and lower surfaces of a unit-layer slice based on high-absorbance absorbers was established, and the reference value for the slice thickness was calculated. Third, the biological and mechanical properties of the bio-inks were verified with scanning electron microscopy and Fourier transform infrared, and by tensile, swelling, degradation, and cytotoxicity tests on different concentrations of PEGDA-GelMA hydrogel and absorbers. The results showed that 30% PEGDA-7% GelMA/0.1% brilliant black was the optimal preparation to print a hollow vascular network. The error of the printing tube wall and cavity was between 1% and 3%, which demonstrates the high precision of the method. Human umbilical vein endothelial cells were planted in the lumen, and the survival rate achieved 107% on the seventh day, demonstrating the good biocompatibility of the composite hydrogel.
Collapse
Affiliation(s)
- Lin Sheng
- 12605Tianjin Key Laboratory of Equipment Design and Manufacturing Technology, School of Mechanical Engineering, Tianjin University, Tianjin, China
| | - Mo Li
- 12605Tianjin Key Laboratory of Equipment Design and Manufacturing Technology, School of Mechanical Engineering, Tianjin University, Tianjin, China
| | - Shuxian Zheng
- 12605Tianjin Key Laboratory of Equipment Design and Manufacturing Technology, School of Mechanical Engineering, Tianjin University, Tianjin, China
| | - Jian Qi
- 66270School of Mechanical Engineering, Tianjin University of Technology and Education, China
| |
Collapse
|
17
|
Tong A, Pham QL, Abatemarco P, Mathew A, Gupta D, Iyer S, Voronov R. Review of Low-Cost 3D Bioprinters: State of the Market and Observed Future Trends. SLAS Technol 2021; 26:333-366. [PMID: 34137286 DOI: 10.1177/24726303211020297] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Three-dimensional (3D) bioprinting has become mainstream for precise and repeatable high-throughput fabrication of complex cell cultures and tissue constructs in drug testing and regenerative medicine, food products, dental and medical implants, biosensors, and so forth. Due to this tremendous growth in demand, an overwhelming amount of hardware manufacturers have recently flooded the market with different types of low-cost bioprinter models-a price segment that is most affordable to typical-sized laboratories. These machines range in sophistication, type of the underlying printing technology, and possible add-ons/features, which makes the selection process rather daunting (especially for a nonexpert customer). Yet, the review articles available in the literature mostly focus on the technical aspects of the printer technologies under development, as opposed to explaining the differences in what is already on the market. In contrast, this paper provides a snapshot of the fast-evolving low-cost bioprinter niche, as well as reputation profiles (relevant to delivery time, part quality, adherence to specifications, warranty, maintenance, etc.) of the companies selling these machines. Specifically, models spanning three dominant technologies-microextrusion, droplet-based/inkjet, and light-based/crosslinking-are reviewed. Additionally, representative examples of high-end competitors (including up-and-coming microfluidics-based bioprinters) are discussed to highlight their major differences and advantages relative to the low-cost models. Finally, forecasts are made based on the trends observed during this survey, as to the anticipated trickling down of the high-end technologies to the low-cost printers. Overall, this paper provides insight for guiding buyers on a limited budget toward making informed purchasing decisions in this fast-paced market.
Collapse
Affiliation(s)
- Anh Tong
- The Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| | - Quang Long Pham
- The Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| | - Paul Abatemarco
- The Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| | - Austin Mathew
- Department of Biomedical Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| | - Dhruv Gupta
- The Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| | - Siddharth Iyer
- The Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| | - Roman Voronov
- The Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA.,Department of Biomedical Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| |
Collapse
|
18
|
Echeverria Molina MI, Malollari KG, Komvopoulos K. Design Challenges in Polymeric Scaffolds for Tissue Engineering. Front Bioeng Biotechnol 2021; 9:617141. [PMID: 34195178 PMCID: PMC8236583 DOI: 10.3389/fbioe.2021.617141] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Numerous surgical procedures are daily performed worldwide to replace and repair damaged tissue. Tissue engineering is the field devoted to the regeneration of damaged tissue through the incorporation of cells in biocompatible and biodegradable porous constructs, known as scaffolds. The scaffolds act as host biomaterials of the incubating cells, guiding their attachment, growth, differentiation, proliferation, phenotype, and migration for the development of new tissue. Furthermore, cellular behavior and fate are bound to the biodegradation of the scaffold during tissue generation. This article provides a critical appraisal of how key biomaterial scaffold parameters, such as structure architecture, biochemistry, mechanical behavior, and biodegradability, impart the needed morphological, structural, and biochemical cues for eliciting cell behavior in various tissue engineering applications. Particular emphasis is given on specific scaffold attributes pertaining to skin and brain tissue generation, where further progress is needed (skin) or the research is at a relatively primitive stage (brain), and the enumeration of some of the most important challenges regarding scaffold constructs for tissue engineering.
Collapse
Affiliation(s)
- Maria I Echeverria Molina
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Katerina G Malollari
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Kyriakos Komvopoulos
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
19
|
Ouyang H. Innovations in Orthopedic Biomaterials and Regenerative Medicine in China. ACS Biomater Sci Eng 2021; 7:804-805. [DOI: 10.1021/acsbiomaterials.1c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|