1
|
Ma C, Li Y, Liu B, Deng J, Gao X, Zhang H, Zhang B, Zhou Q, Peng X, Zhang H. Exosomes derived from adipose mesenchymal stem cells promote corneal injury repair and inhibit the formation of scars by anti-apoptosis. Colloids Surf B Biointerfaces 2024; 247:114454. [PMID: 39675062 DOI: 10.1016/j.colsurfb.2024.114454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
In the corneal wound healing process, epithelial cell re-epithelialization and migration are the critical first steps following an injury. As the disease progresses, orderly regeneration of corneal stromal collagen and mild corneal stromal fibrosis are vital for corneal function reconstruction. Exosomes derived from adipose-derived mesenchymal stem cells (ADSCs-Exos) have emerged as a promising therapy due to their anti-oxidant, anti-apoptosis, and tissue repair properties. In this study, we successfully isolated exosomes via differential centrifugation and verified their effective extraction through transmission electron microscopy and nanoparticle tracking analysis. In vitro, ADSCs-Exos increased corneal epithelial cell migration by 20 % and reduced oxidative damage by 50 %. In addition, ADSCs-Exos demonstrated remarkable wound healing properties in corneal tissue. This effect was attributed to their ability to inhibit apoptosis of corneal stroma cells by upregulating Bax and downregulating Bcl2, reducing the Bax/Bcl2 protein expression ratio from 1 to 0.45. This decrease may subsequently inhibit α-SMA expression, thereby preventing corneal scarring. Overall, this research has elucidated the effects and potential targets of ADSCs-Exos in promoting corneal wound repair, offering a novel and promising approach for treating corneal injuries.
Collapse
Affiliation(s)
- Chunli Ma
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; Shandong First Medical University & Shandong Academy of Medical Science, Jinan 271016, China; Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Yixiao Li
- Shandong First Medical University & Shandong Academy of Medical Science, Jinan 271016, China; Shandong University, Jinan 250100, China
| | - Baoling Liu
- Department of Oncology, Linyi People's Hospital, Linyi 276000, China
| | - Junjie Deng
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; Shandong First Medical University & Shandong Academy of Medical Science, Jinan 271016, China
| | - Xue Gao
- Shandong University, Jinan 250100, China; The Second Hospital of Shandong University, Jinan 250033, China
| | - Huixin Zhang
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| | - Bingqiang Zhang
- Qingdao Key Laboratory of Cancer and Immune Cells, Qingdao Restore Medical Testing Laboratory Co., Ltd., Qingdao 266111, China
| | - Qihui Zhou
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Xiaoting Peng
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| | - Han Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; Shandong First Medical University & Shandong Academy of Medical Science, Jinan 271016, China.
| |
Collapse
|
2
|
Brown M, Okuyama H, Yamashita M, Tabrizian M, Li-Jessen NYK. Trends in Injectable Biomaterials for Vocal Fold Regeneration and Long-Term Augmentation. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39212941 DOI: 10.1089/ten.teb.2024.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Human vocal folds (VF), a pair of small, soft tissues in the larynx, have a layered mucosal structure with unique mechanical strength to support high-level tissue deformation by phonation. Severe pathological changes to VF have causes including surgery, trauma, age-related atrophy, and radiation, and lead to partial or complete communication loss and difficulty in breathing and swallowing. VF glottal insufficiency requires injectable VF biomaterials such as hyaluronan, calcium hydroxyapatite, and autologous fat to augment VF functions. Although these biomaterials provide an effective short-term solution, significant variations in patient response and requirements of repeat reinjection remain notable challenges in clinical practice. Tissue engineering strategies have been actively explored in the search of an injectable biomaterial that possesses the capacity to match native tissue's material properties while promoting permanent tissue regeneration. This review aims to assess the current status of biomaterial development in VF tissue engineering. The focus will be on examining state-of-the-art techniques including modification with bioactive molecules, cell encapsulation, composite materials, as well as, in situ crosslinking with click chemistry. We will discuss potential opportunities that can further leverage these engineering techniques in the advancement of VF injectable biomaterials.
Collapse
Affiliation(s)
- Mika Brown
- McGill University, Biomedical Engineering, Montreal, Quebec, Canada
- McGill University, Bioengineering, Montreal, Quebec, Canada;
| | - Hideaki Okuyama
- McGill University, School of Communication Sciences and Disorders, Montreal, Quebec, Canada;
| | - Masaru Yamashita
- Kagoshima University Graduate School of Medicine and Dental Sciences, Kagoshima, Kagoshima, Japan;
| | - Maryam Tabrizian
- McGill University, Biomedical Engineering, Montreal, Quebec, Canada
- McGill University, Bioengineering, Montreal, Quebec, Canada
- McGill University, Faculty of Dentistry, Montreal, Quebec, Canada;
| | - Nicole Y K Li-Jessen
- McGill University, School of Communication Sciences and Disorders, Montreal, Quebec, Canada
- McGill University, Department of Otolaryngology - Head and Neck Surgery, Montreal, Quebec, Canada
- McGill University, Biomedical Engineering, Montreal, Quebec, Canada
- McGill University, Research Institute of McGill University Health Center, Montreal, Quebec, Canada;
| |
Collapse
|
3
|
Liu C, Chen X, Liu Y, Sun L, Yu Z, Ren Y, Zeng C, Li Y. Engineering Extracellular Matrix-Bound Nanovesicles Secreted by Three-Dimensional Human Mesenchymal Stem Cells. Adv Healthc Mater 2023; 12:e2301112. [PMID: 37225144 PMCID: PMC10723826 DOI: 10.1002/adhm.202301112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/19/2023] [Indexed: 05/26/2023]
Abstract
Extracellular matrix (ECM) in the human tissue contains vesicles, which are defined as matrix-bound nanovesicles (MBVs). MBVs serve as one of the functional components in ECM, recapitulating part of the regulatory roles and in vivo microenvironment. In this study, extracellular vesicles from culture supernatants (SuEVs) and MBVs are isolated from the conditioned medium or ECM, respectively, of 3D human mesenchymal stem cells. Nanoparticle tracking analysis shows that MBVs are smaller than SuEVs (100-150 nm). Transmission electron microscopy captures the typical cup shape morphology for both SuEVs and MBVs. Western blot reveals that MBVs have low detection of some SuEV markers such as syntenin-1. miRNA analysis of MBVs shows that 3D microenvironment enhances the expression of miRNAs such as miR-19a and miR-21. In vitro functional analysis shows that MBVs can facilitate human pluripotent stem cell-derived forebrain organoid recovery after starvation and promote high passage fibroblast proliferation. In macrophage polarization, 2D MBVs tend to suppress the pro-inflammatory cytokine IL-12β, while 3D MBVs tend to enhance the anti-inflammatory cytokine IL-10. This study has the significance in advancing the understanding of the bio-interface of nanovesicles with human tissue and the design of cell-free therapy for treating neurological disorders such as ischemic stroke.
Collapse
Affiliation(s)
- Chang Liu
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University
- High Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University
| | - Yuan Liu
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University
| | - Li Sun
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University
- Department of Biomedical Sciences, College of Medicine, Florida State University
| | - Zhibin Yu
- High Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University
| | - Yi Ren
- Department of Biomedical Sciences, College of Medicine, Florida State University
| | - Changchun Zeng
- High Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University
| |
Collapse
|
4
|
Brown M, Zhu S, Taylor L, Tabrizian M, Li-Jessen NY. Unraveling the Relevance of Tissue-Specific Decellularized Extracellular Matrix Hydrogels for Vocal Fold Regenerative Biomaterials: A Comprehensive Proteomic and In Vitro Study. ADVANCED NANOBIOMED RESEARCH 2023; 3:2200095. [PMID: 37547672 PMCID: PMC10398787 DOI: 10.1002/anbr.202200095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Decellularized extracellular matrix (dECM) is a promising material for tissue engineering applications. Tissue-specific dECM is often seen as a favorable material that recapitulates a native-like microenvironment for cellular remodeling. However, the minute quantity of dECM derivable from small organs like the vocal fold (VF) hampers manufacturing scalability. Small intestinal submucosa (SIS), a commercial product with proven regenerative capacity, may be a viable option for VF applications. This study aims to compare dECM hydrogels derived from SIS or VF tissue with respect to protein content and functionality using mass spectrometry-based proteomics and in vitro studies. Proteomic analysis reveals that VF and SIS dECM share 75% of core matrisome proteins. Although VF dECM proteins have greater overlap with native VF, SIS dECM shows less cross-sample variability. Following decellularization, significant reductions of soluble collagen (61%), elastin (81%), and hyaluronan (44%) are noted in VF dECM. SIS dECM contains comparable elastin and hyaluronan but 67% greater soluble collagen than VF dECM. Cells deposit more neo-collagen on SIS than VF-dECM hydrogels, whereas neo-elastin (~50 μg/scaffold) and neo-hyaluronan (~ 6 μg/scaffold) are comparable between the two hydrogels. Overall, SIS dECM possesses reasonably similar proteomic profile and regenerative capacity to VF dECM. SIS dECM is considered a promising alternative for dECM-derived biomaterials for VF regeneration.
Collapse
Affiliation(s)
- Mika Brown
- Department of Biomedical Engineering, McGill University 3655 Promenade Sir-William-Osler, Room 1003, Montreal, QC H3A 1A3, Canada
| | - Shirley Zhu
- Department of Microbiology and Immunology 2001 McGill College Ave, 8th Floor, Montreal, Quebec, H3A 1G1, Canada
| | - Lorne Taylor
- The Proteomics Platform, McGill University Health Center 1001 Decarie Boulevard Montreal Suite E01.5056 Montreal, Quebec, H4A 3J1, Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, McGill University 3655 Promenade Sir-William-Osler, Room 1003, Montreal, QC H3A 1A3, Canada
- Department of Bioengineering, McGill University 740 Avenue Dr. Penfield, Room 4300, Montreal, QC H3A 0G1, Canada
- Faculty of Dentistry, McGill University 740 Avenue Dr. Penfield, Room 4300, Montreal, QC H3A 0G1, Canada
| | - Nicole Y.K. Li-Jessen
- Department of Biomedical Engineering, McGill University 3655 Promenade Sir-William-Osler, Room 1003, Montreal, QC H3A 1A3, Canada
- School of Communication Sciences and Disorders, McGill University 2001 McGill College Ave, 8th Floor, Montreal, Quebec, H3A 1G1, Canada
- Department of Otolaryngology - Head and Neck Surgery, McGill University 2001 McGill College Ave, 8th Floor, Montreal, Quebec, H3A 1G1, Canada
- Research Institute of McGill University Health Center, McGill University 2001 McGill College Ave, 8th Floor, Montreal, Quebec, H3A 1G1, Canada
| |
Collapse
|
5
|
Zhang L, Yuan Z, Shafiq M, Cai Y, Wang Z, Nie P, Mo X, Xu Y. An Injectable Integration of Autologous Bioactive Concentrated Growth Factor and Gelatin Methacrylate Hydrogel with Efficient Growth Factor Release and 3D Spatial Structure for Accelerated Wound Healing. Macromol Biosci 2023; 23:e2200500. [PMID: 36788664 DOI: 10.1002/mabi.202200500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/06/2023] [Indexed: 02/16/2023]
Abstract
Growth factors are essential for wound healing owing to their multiple reparative effects. Concentrated growth factor (CGF) is a third-generation platelet extract containing various endogenous growth factors. Here, a CGF extract solution is combined with gelatin methacrylate (GM) by physical blending to produce GM@CGF hydrogels for wound repair. The GM@CGF hydrogels show no immune rejection during autologous transplantation. Compared to CGF, GM@CGF hydrogels not only exhibit excellent plasticity and adhesivity but also prevent rapid release and degradation of growth factors. The GM@CGF hydrogels display good injectability, self-healing, swelling, and degradability along with outstanding cytocompatibility, angiogenic functions, chemotactic functions, and cell migration-promoting capabilities in vitro. The GM@CGF hydrogel can release various effective molecules to rapidly initiate wound repair, stimulate the expressions of type I collagen, transform growth factor β1, epidermal growth factor, and vascular endothelial growth factor, promote the production of granulation tissues, vascular regeneration and reconstruction, collagen deposition, and epidermal cell migration, as well as prevent excessive scar formation. In conclusion, the injectable GM@CGF hydrogel can release various growth factors and provide a 3D spatial structure to accelerate wound repair, thereby providing a foundation for the clinical application and translation of CGF.
Collapse
Affiliation(s)
- Lixiang Zhang
- Department of Orthopaedics, Xinqiao Hospital, Army Military Medical University, No. 183, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Zhengchao Yuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Muhammad Shafiq
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China.,Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka, 819-0385, Japan
| | - Youjun Cai
- Department of Orthopaedics, Xinqiao Hospital, Army Military Medical University, No. 183, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Zewen Wang
- Department of Orthopaedics, Xinqiao Hospital, Army Military Medical University, No. 183, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Piming Nie
- Department of Orthopaedics, Xinqiao Hospital, Army Military Medical University, No. 183, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Yuan Xu
- Department of Orthopaedics, Xinqiao Hospital, Army Military Medical University, No. 183, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| |
Collapse
|
6
|
Biehl A, Gracioso Martins AM, Davis ZG, Sze D, Collins L, Mora-Navarro C, Fisher MB, Freytes DO. Towards a standardized multi-tissue decellularization protocol for the derivation of extracellular matrix materials. Biomater Sci 2023; 11:641-654. [PMID: 36504129 PMCID: PMC9844390 DOI: 10.1039/d2bm01012g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022]
Abstract
The goal of tissue decellularization is to efficiently remove unwanted cellular components, such as DNA and cellular debris, while retaining the complex structural and molecular milieu within the extracellular matrix (ECM). Decellularization protocols to date are centered on customized tissue-specific and lab-specific protocols that involve consecutive manual steps which results in variable and protocol-specific ECM material. The differences that result from the inconsistent protocols between decellularized ECMs affect consistency across batches, limit comparisons between results obtained from different laboratories, and could limit the transferability of the material for consistent laboratory or clinical use. The present study is the first proof-of-concept towards the development of a standardized protocol that can be used to derive multiple ECM biomaterials (powders and hydrogels) via a previously established automated system. The automated decellularization method developed by our group was used due to its short decellularization time (4 hours) and its ability to reduce batch-to-batch variability. The ECM obtained using this first iteration of a unified protocol was able to produce ECM hydrogels from skin, lung, muscle, tendons, cartilage, and laryngeal tissues. All hydrogels formed in this study were cytocompatible and showed gelation and rheological properties consistent with previous ECM hydrogels. The ECMs also showed unique proteomic composition. The present study represents the first step towards developing standardized protocols that can be used on multiple tissues in a fast, scalable, and reproducible manner.
Collapse
Affiliation(s)
- Andreea Biehl
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, 4130 Engineering Building III, Campus Box 7115, Raleigh, NC 27695, USA.
- Comparative Medicine Institute, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27606, USA
| | - Ana M Gracioso Martins
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, 4130 Engineering Building III, Campus Box 7115, Raleigh, NC 27695, USA.
- Comparative Medicine Institute, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27606, USA
| | - Zachary G Davis
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, 4130 Engineering Building III, Campus Box 7115, Raleigh, NC 27695, USA.
- Comparative Medicine Institute, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27606, USA
| | - Daphne Sze
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, 4130 Engineering Building III, Campus Box 7115, Raleigh, NC 27695, USA.
- Comparative Medicine Institute, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27606, USA
| | - Leonard Collins
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Dabney Hall, 2620 Yarbrough Drive, Raleigh, NC 27607, USA
| | - Camilo Mora-Navarro
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez, Route 108, Mayaguez, Puerto Rico, USA
| | - Matthew B Fisher
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, 4130 Engineering Building III, Campus Box 7115, Raleigh, NC 27695, USA.
- Comparative Medicine Institute, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27606, USA
- Department of Orthopaedics, University of North Carolina School of Medicine, 102 Mason Farm Road Second Floor, Chapel Hill, NC 27514, USA
| | - Donald O Freytes
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, 4130 Engineering Building III, Campus Box 7115, Raleigh, NC 27695, USA.
- Comparative Medicine Institute, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27606, USA
| |
Collapse
|
7
|
Aaryasree K, Yagnik A, Chordiya PK, Choudhury K, Kumar P. Nature-Inspired Vascularised Materials and Devices for Biomedical Engineering. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Ng WC, Lokanathan Y, Baki MM, Fauzi MB, Zainuddin AA, Azman M. Tissue Engineering as a Promising Treatment for Glottic Insufficiency: A Review on Biomolecules and Cell-Laden Hydrogel. Biomedicines 2022; 10:3082. [PMID: 36551838 PMCID: PMC9775346 DOI: 10.3390/biomedicines10123082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Glottic insufficiency is widespread in the elderly population and occurs as a result of secondary damage or systemic disease. Tissue engineering is a viable treatment for glottic insufficiency since it aims to restore damaged nerve tissue and revitalize aging muscle. After injection into the biological system, injectable biomaterial delivers cost- and time-effectiveness while acting as a protective shield for cells and biomolecules. This article focuses on injectable biomaterials that transport cells and biomolecules in regenerated tissue, particularly adipose, muscle, and nerve tissue. We propose Wharton's Jelly mesenchymal stem cells (WJMSCs), induced pluripotent stem cells (IP-SCs), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), insulin growth factor-1 (IGF-1) and extracellular vesicle (EV) as potential cells and macromolecules to be included into biomaterials, with some particular testing to support them as a promising translational medicine for vocal fold regeneration.
Collapse
Affiliation(s)
- Wan-Chiew Ng
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Marina Mat Baki
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ani Amelia Zainuddin
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mawaddah Azman
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
9
|
Brown M, Li J, Moraes C, Tabrizian M, Li-Jessen NY. Decellularized extracellular matrix: New promising and challenging biomaterials for regenerative medicine. Biomaterials 2022; 289:121786. [DOI: 10.1016/j.biomaterials.2022.121786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022]
|
10
|
Gracioso Martins AM, Biehl A, Sze D, Freytes DO. Bioreactors for Vocal Fold Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:182-205. [PMID: 33446061 PMCID: PMC8892964 DOI: 10.1089/ten.teb.2020.0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/14/2021] [Indexed: 02/03/2023]
Abstract
It is estimated that almost one-third of the United States population will be affected by a vocal fold (VF) disorder during their lifespan. Promising therapies to treat VF injury and scarring are mostly centered on VF tissue engineering strategies such as the injection of engineered biomaterials and cell therapy. VF tissue engineering, however, is a challenging field as the biomechanical properties, structure, and composition of the VF tissue change upon exposure to mechanical stimulation. As a result, the development of long-term VF treatment strategies relies on the characterization of engineered tissues under a controlled mechanical environment. In this review, we highlight the importance of bioreactors as a powerful tool for VF tissue engineering with a focus on the current state of the art of bioreactors designed to mimic phonation in vitro. We discuss the influence of the phonatory environment on the development, function, injury, and healing of the VF tissue and its importance for the development of efficient therapeutic strategies. A concise and comprehensive overview of bioreactor designs, principles, operating parameters, and scalability are presented. An in-depth analysis of VF bioreactor data to date reveals that mechanical stimulation significantly influences cell viability and the expression of proinflammatory and profibrotic genes in vitro. Although the precision and accuracy of bioreactors contribute to generating reliable results, diverse gene expression profiles across the literature suggest that future efforts should focus on the standardization of bioreactor parameters to enable direct comparisons between studies. Impact statement We present a comprehensive review of bioreactors for vocal fold (VF) tissue engineering with a focus on the influence of the phonatory environment on the development, function, injury, and healing of the VFs and the importance of mimicking phonation on engineered VF tissues in vitro. Furthermore, we put forward a strong argument for the continued development of bioreactors in this area with an emphasis on the standardization of bioreactor designs, principles, operating parameters, and oscillatory regimes to enable comparisons between studies.
Collapse
Affiliation(s)
- Ana M. Gracioso Martins
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Andreea Biehl
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Daphne Sze
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Donald O. Freytes
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Vocal fold (VF) fibrosis remains an insoluble problem in most cases, with a severe impact on vocal quality and effort. This review examines current investigations and research strands that explore the understanding of VF wound healing and applied treatments for the management of VF scar. RECENT FINDINGS Recent work focused on VF fibrosis has examined wound healing in the glottis, fibrosis-modifying medication, and tissue engineering approaches that span cytokine and growth factor therapy, scaffold and cell delivery platforms, seeded scaffolds, conditioned media and stem cell therapy. Many show promise and may deliver improvements in the wound bed favouring less fibrogenic healing patterns, ultimately with the goal of preserving or restoring VF vibration. Further collaborative research is required that examines combined approaches, long term outcomes, better three-dimensional modelling of cell-cell interactions and delivery modalities for molecular therapies. SUMMARY VF fibrosis research continues to expand and explore a variety of mechanistic pathways in order to understand VF healing and identify novel and complementary targets for manipulation. Many different approaches show promise and may also offer synergistic benefits. Research continues to strive for healing that more closely resembles true VF architecture and function.
Collapse
|
12
|
Tarafdar A, Gaur VK, Rawat N, Wankhade PR, Gaur GK, Awasthi MK, Sagar NA, Sirohi R. Advances in biomaterial production from animal derived waste. Bioengineered 2021; 12:8247-8258. [PMID: 34814795 PMCID: PMC8806998 DOI: 10.1080/21655979.2021.1982321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Animal derived waste, if not disposed properly, could pose a threat to the environment and its inhabitants. Recent advancements in biotechnological and biomedical interventions have enabled us to bioengineer these valuable waste substrates into biomaterials with diversified applications. Rearing and processing of poultry, cattle, sheep, goat, pig, and slaughterhouse waste can aid in effective waste valorization for the fabrication of biopolymers, composites, heart valves, collagen, scaffolds, pigments and lipids, among other industrially important biomaterials. Feathers and eggshell waste from the poultry industry can be used for producing keratinous proteins and biocomposites, respectively. Cattle dung, hoofs and cattle hide can be used for producing hydroxyapatite for developing scaffolds and drug delivery systems. Porcine derived collagen can be used for developing skin grafts, while porcine urinary bladder has antiangiogenic, neurotrophic, tumor-suppressive and wound healing properties. Sheep teeth can be used for the production of low-cost hydroxyapatite while goat tissue is still underutilized and requires more in-depth investigation. However, hydrolyzed tannery fleshings show promising potential for antioxidant rich animal feed production. In this review, the recent developments in the production and application of biomaterials from animal waste have been critically analyzed. Standardized protocols for biomaterial synthesis on a pilot scale, and government policy framework for establishing an animal waste supply chain for end users seem to be lacking and require urgent attention. Moreover, circular bioeconomy concepts for animal derived biomaterial production need to be developed for creating a sustainable system.
Collapse
Affiliation(s)
- Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Vivek Kumar Gaur
- Environment Toxicology Division, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Neha Rawat
- Department of Food Science and Technology, College of Agriculture, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Pratik Ramesh Wankhade
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Gyanendra Kumar Gaur
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&f University, Yangling, Shaanxi Province, China
| | - Narashans Alok Sagar
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
13
|
Gaffney L, Davis Z, Mora-Navarro C, Fisher MB, Freytes DO. Extracellular Matrix Hydrogels Promote Expression of Muscle-Tendon Junction Proteins. Tissue Eng Part A 2021; 28:270-282. [PMID: 34375125 DOI: 10.1089/ten.tea.2021.0070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Muscle and tendon injuries are prevalent and range from minor sprains and strains to traumatic, debilitating injuries. However, the interactions between these tissues during injury and recovery remain unclear. Three-dimensional tissue models that incorporate both tissues and a physiologically relevant junction between muscle and tendon may help understand how the two tissues interact. Here, we use tissue specific extracellular matrix (ECM) derived from muscle and tendon to determine how cells of each tissue interact with the microenvironment of the opposite tissue resulting in junction specific features. ECM materials were derived from the Achilles tendon and gastrocnemius muscle, decellularized, and processed to form tissue specific pre-hydrogel digests. ECM materials were unique in respect to protein composition and included many types of ECM proteins, not just collagens. After digestion and gelation, ECM hydrogels had similar complex viscosities which were less than type I collagen hydrogels at the same concentration. C2C12 myoblasts and tendon fibroblasts were cultured in tissue-specific ECM conditioned media or encapsulated in tissue-specific ECM hydrogels to determine cell-matrix interactions and the effects on a muscle-tendon junction marker, paxillin. ECM conditioned media had only a minor effect on upregulation of paxillin in cells cultured in monolayer. However, cells cultured within ECM hydrogels had 50-70% higher paxillin expression than cells cultured in type I collagen hydrogels. Contraction of the ECM hydrogels varied by the type of ECM used. Subsequent experiments with varying density of type I collagen (and thus contraction) showed no correlation between paxillin expression and the amount of gel contraction, suggesting that a constituent of the ECM was the driver of paxillin expression in the ECM hydrogels. In addition, the extracellular matrix protein type XXII collagen had similar expression patterns as paxillin, with smaller effect sizes. Using tissue specific ECM allowed for the de-construction of the cell-matrix interactions similar to muscle-tendon junctions to study the expression of MTJ specific proteins.
Collapse
Affiliation(s)
- Lewis Gaffney
- University of North Carolina at Chapel Hill & North Carolina State University, Biomedical Engineering, Raleigh, North Carolina, United States;
| | - Zachary Davis
- University of North Carolina at Chapel Hill & North Carolina State University, Biomedical Engineering, Raleigh, North Carolina, United States;
| | - Camilo Mora-Navarro
- University of North Carolina at Chapel Hill & North Carolina State University, Biomedical Engineering, Raleigh, North Carolina, United States.,North Carolina State University, 6798, Comparative Medicine Institute, Raleigh, North Carolina, United States;
| | - Matthew B Fisher
- University of North Carolina at Chapel Hill & North Carolina State University, Biomedical Engineering, Raleigh, North Carolina, United States.,University of North Carolina at Chapel Hill School of Medicine, 6797, Department of Orthopaedics, Chapel Hill, North Carolina, United States;
| | - Donald O Freytes
- University of North Carolina at Chapel Hill & North Carolina State University, Biomedical Engineering, Raleigh, North Carolina, United States;
| |
Collapse
|
14
|
Ozpinar EW, Frey AL, Arthur GK, Mora-Navarro C, Biehl A, Snider DB, Cruse G, Freytes DO. Dermal Extracellular Matrix-Derived Hydrogels as an In Vitro Substrate to Study Mast Cell Maturation. Tissue Eng Part A 2020; 27:1008-1022. [PMID: 33003982 DOI: 10.1089/ten.tea.2020.0142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mast cells (MCs) are pro-inflammatory tissue-resident immune cells that play a key role in inflammation. MCs circulate in peripheral blood as progenitors and undergo terminal differentiation in the tissue microenvironment where they can remain for many years. This in situ maturation results in tissue- and species-specific MC phenotypes, culminating in significant variability in response to environmental stimuli. There are many challenges associated with studying mature tissue-derived MCs, particularly in humans. In cases where cultured MCs are able to differentiate in two-dimensional in vitro cultures, there remains an inability for full maturation. Extracellular matrix (ECM) scaffolds provide for a more physiologically relevant environment for cells in vitro and have been shown to modulate the response of other immune cells such as T cells, monocytes, and macrophages. To improve current in vitro testing platforms of MCs and to assess future use of ECM scaffolds for MC regulation, we studied the in vitro response of human MCs cultured on decellularized porcine dermis hydrogels (dermis extracellular matrix hydrogel [dECM-H]). This study investigated the effect of dECM-H on cellular metabolic activity, cell viability, and receptor expression compared to collagen type I hydrogel (Collagen-H). Human MCs showed different metabolic activity when cultured in the dECM-H and also upregulated immunoglobulin E (IgE) receptors associated with MC maturation/activation compared to collagen type I. These results suggest an overall benefit in the long-term culture of human MCs in the dECM-H compared to Collagen-H providing important steps toward a model that is more representative of in vivo conditions. Graphical abstract [Formula: see text] Impact statement Mast cells (MCs) are difficult to culture in vitro as current culture conditions and substrates fail to promote similar phenotypic features observed in vivo. Extracellular matrix (ECM)-based biomaterials offer three-dimensional, tissue-specific environments that more closely resemble in vivo conditions. Our study explores the use of dermal ECM hydrogels for MC culture and shows significant upregulation of metabolic activity, cell viability, and gene expression of markers associated with MC maturation or activation compared to collagen type I-hydrogel and tissue culture plastic controls at 7 days. These results are among the first to describe MC behavior in response to ECM hydrogels.
Collapse
Affiliation(s)
- Emily W Ozpinar
- The Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA.,The Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Ariana L Frey
- The Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
| | - Greer K Arthur
- The Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA.,Department of Population Heath and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Camilo Mora-Navarro
- The Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA.,The Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Andreea Biehl
- The Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA.,The Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Douglas B Snider
- The Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA.,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Glenn Cruse
- The Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA.,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Donald O Freytes
- The Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA.,The Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
15
|
Badileanu A, Mora-Navarro C, Gracioso Martins AM, Garcia ME, Sze D, Ozpinar EW, Gaffney L, Enders JR, Branski RC, Freytes DO. Fast Automated Approach for the Derivation of Acellular Extracellular Matrix Scaffolds from Porcine Soft Tissues. ACS Biomater Sci Eng 2020; 6:4200-4213. [PMID: 33463339 DOI: 10.1021/acsbiomaterials.0c00265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Decellularized extracellular matrix (ECM) scaffolds derived from tissues and organs are complex biomaterials used in clinical and research applications. A number of decellularization protocols have been described for ECM biomaterials derivation, each adapted to a particular tissue and use, restricting comparisons among materials. One of the major sources of variability in ECM products comes from the tissue source and animal age. Although this variability could be minimized using established tissue sources, other sources arise from the decellularization process itself. Overall, current protocols require manual work and are poorly standardized with regard to the choice of reagents, the order by which they are added, and exposure times. The combination of these factors adds variability affecting the uniformity of the final product between batches. Furthermore, each protocol needs to be optimized for each tissue and tissue source making tissue-to-tissue comparisons difficult. Automation and standardization of ECM scaffold development constitute a significant improvement to current biomanufacturing techniques but remains poorly explored. This study aimed to develop a biofabrication method for fast and automated derivation of raw material for ECM hydrogel production while preserving ECM composition and controlling lot-to-lot variability. The main result was a closed semibatch bioreactor system with automated dosing of decellularization reagents capable of deriving ECM material from pretreated soft tissues. The ECM was further processed into hydrogels to demonstrate gelation and cytocompatibility. This work presents a versatile, scalable, and automated platform for the rapid production of ECM scaffolds.
Collapse
Affiliation(s)
- Andreea Badileanu
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Camilo Mora-Navarro
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ana M Gracioso Martins
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Mario E Garcia
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States
| | - Daphne Sze
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Emily W Ozpinar
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Lewis Gaffney
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jeffrey R Enders
- Molecular Education, Technology and Research Innovation Center, North Carolina State University, Raleigh, North Carolina 27695, United States.,The Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ryan C Branski
- Departments of Rehabilitation Medicine, Otolaryngology-Head and Neck Surgery, and Pathology, New York University Grossman School of Medicine, New York, New York 10003, United States
| | - Donald O Freytes
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|