1
|
Kostelec M, Gatalo M, Hodnik N. Fundamental and Practical Aspects of Break-In/Conditioning of Proton Exchange Membrane Fuel Cells. CHEM REC 2024; 24:e202400114. [PMID: 39380349 DOI: 10.1002/tcr.202400114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/14/2024] [Indexed: 10/10/2024]
Abstract
Proton exchange membrane fuel cells (PEMFCs) have proven to be a promising power source for various applications ranging from portable devices to automotive and stationary power systems. The production of PEMFC involves numerous stages in the value chain, with each stage presenting unique challenges and opportunities to improve the overall performance and durability of the PEMFC stack. These include steps such as manufacturing the key components such as the platinum-based catalyst, processing these components into the membrane electrode assemblies (MEAs), and stacking the MEAs to ultimately produce a PEMFC stack. However, it is also known that the break-in or conditioning phase of the stack plays a crucial role in the final performance as well as durability. It involves several key phenomena such as hydration of the membrane, swelling of the ionomer, redistribution of the catalyst and the creation of suitable electrochemical interfaces - establishment of the triple phase boundary. These improve the proton conductivity, the mass transport of reactants and products, the catalytic activity of the electrode and thus the overall efficiency of the FC. The cruciality of break-in is demonstrated by the improvement in performance, which can even be over 50 % compared to the initial state. The state-of-the-art approach for the break-in of MEAs involves an electrochemical protocol, such as voltage cycling, using a PEMFC testing station. This method is time-consuming, equipment-intensive, and costly. Therefore, new, elegant, and cost-effective solutions are needed. Nevertheless, the primary aim is to achieve maximum/optimal performance so that it is fully operational and ready for the market. It is therefore essential to better understand and deconvolute these complex mechanisms taking place during break-in/conditioning. Strategies include controlled humidity and temperature cycling, novel electrode materials and other advanced break-in methods such as air braking, vacuum activation or steaming. In addition, it is critical to address the challenges associated with standardisation and quantification of protocols to enable interlaboratory comparisons to further advance the field.
Collapse
Affiliation(s)
- Mitja Kostelec
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova ulica 19, 1001, Ljubljana, Slovenia
- University of Nova Gorica, Vipavska 13, SI-5000, Nova Gorica, Slovenia
| | - Matija Gatalo
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova ulica 19, 1001, Ljubljana, Slovenia
- ReCatalyst d.o.o., Hajdrihova ulica 19, 1001, Ljubljana, Slovenia
| | - Nejc Hodnik
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova ulica 19, 1001, Ljubljana, Slovenia
- University of Nova Gorica, Vipavska 13, SI-5000, Nova Gorica, Slovenia
| |
Collapse
|
2
|
Raziq F, Feng C, Hu M, Zuo S, Rahman MZ, Yan Y, Li QH, Gascon J, Zhang H. Isolated Ni Atoms Enable Near-Unity CH 4 Selectivity for Photothermal CO 2 Hydrogenation. J Am Chem Soc 2024. [PMID: 38869376 DOI: 10.1021/jacs.4c05873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Photothermal hydrogenation of carbon dioxide (CO2) into value-added products is an ideal solution for addressing the energy crisis and mitigating CO2 emissions. However, achieving high product selectivity remains challenging due to the simultaneous occurrence of numerous competing intermediate reactions during CO2 hydrogenation. We present a novel approach featuring isolated single-atom nickel (Ni) anchored onto indium oxide (In2O3) nanocrystals, serving as an effective photothermal catalyst for CO2 hydrogenation into methane (CH4) with a remarkable near-unity (∼99%) selectivity. Experiments and theoretical simulations have confirmed that isolated Ni sites on the In2O3 surface can effectively stabilize the intermediate products of the CO2 hydrogenation reaction and reduce the transition state energy barrier, thereby changing the reaction path to achieve ultrahigh selective methanation. This study provides comprehensive insights into the design of single-atom catalysts for the highly selective photothermal catalytic hydrogenation of CO2 to methane.
Collapse
Affiliation(s)
- Fazal Raziq
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Chengyang Feng
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Miao Hu
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Shouwei Zuo
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mohammad Ziaur Rahman
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yayu Yan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Qiao-Hong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Huabin Zhang
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
3
|
Do VH, Lee JM. Surface engineering for stable electrocatalysis. Chem Soc Rev 2024; 53:2693-2737. [PMID: 38318782 DOI: 10.1039/d3cs00292f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
In recent decades, significant progress has been achieved in rational developments of electrocatalysts through constructing novel atomistic structures and modulating catalytic surface topography, realizing substantial enhancement in electrocatalytic activities. Numerous advanced catalysts were developed for electrochemical energy conversion, exhibiting low overpotential, high intrinsic activity, and selectivity. Yet, maintaining the high catalytic performance under working conditions with high polarization and vigorous microkinetics that induce intensive degradation of surface nanostructures presents a significant challenge for commercial applications. Recently, advanced operando and computational techniques have provided comprehensive mechanistic insights into the degradation of surficial functional structures. Additionally, various innovative strategies have been devised and proven effective in sustaining electrocatalytic activity under harsh operating conditions. This review aims to discuss the most recent understanding of the degradation microkinetics of catalysts across an entire range of anodic to cathodic polarizations, encompassing processes such as oxygen evolution and reduction, hydrogen reduction, and carbon dioxide reduction. Subsequently, innovative strategies adopted to stabilize the materials' structure and activity are highlighted with an in-depth discussion of the underlying rationale. Finally, we present conclusions and perspectives regarding future research and development. By identifying the research gaps, this review aims to inspire further exploration of surface degradation mechanisms and rational design of durable electrocatalysts, ultimately contributing to the large-scale utilization of electroconversion technologies.
Collapse
Affiliation(s)
- Viet-Hung Do
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141
| |
Collapse
|
4
|
Hrnjić A, Kamšek AR, Bijelić L, Logar A, Maselj N, Smiljanić M, Trputec J, Vovk N, Pavko L, Ruiz-Zepeda F, Bele M, Jovanovič P, Hodnik N. Metal-Support Interaction between Titanium Oxynitride and Pt Nanoparticles Enables Efficient Low-Pt-Loaded High-Performance Electrodes at Relevant Oxygen Reduction Reaction Current Densities. ACS Catal 2024; 14:2473-2486. [PMID: 38384942 PMCID: PMC10877567 DOI: 10.1021/acscatal.3c03883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/23/2024]
Abstract
In the present work, we report on a synergistic relationship between platinum nanoparticles and a titanium oxynitride support (TiOxNy/C) in the context of oxygen reduction reaction (ORR) catalysis. As demonstrated herein, this composite configuration results in significantly improved electrocatalytic activity toward the ORR relative to platinum dispersed on carbon support (Pt/C) at high overpotentials. Specifically, the ORR performance was assessed under an elevated mass transport regime using the modified floating electrode configuration, which enabled us to pursue the reaction closer to PEMFC-relevant current densities. A comprehensive investigation attributes the ORR performance increase to a strong interaction between platinum and the TiOxNy/C support. In particular, according to the generated strain maps obtained via scanning transmission electron microscopy (STEM), the Pt-TiOxNy/C analogue exhibits a more localized strain in Pt nanoparticles in comparison to that in the Pt/C sample. The altered Pt structure could explain the measured ORR activity trend via the d-band theory, which lowers the platinum surface coverage with ORR intermediates. In terms of the Pt particle size effect, our observation presents an anomaly as the Pt-TiOxNy/C analogue, despite having almost two times smaller nanoparticles (2.9 nm) compared to the Pt/C benchmark (4.8 nm), manifests higher specific activity. This provides a promising strategy to further lower the Pt loading and increase the ECSA without sacrificing the catalytic activity under fuel cell-relevant potentials. Apart from the ORR, the platinum-TiOxNy/C interaction is of a sufficient magnitude not to follow the typical particle size effect also in the context of other reactions such as CO stripping, hydrogen oxidation reaction, and water discharge. The trend for the latter is ascribed to the lower oxophilicity of Pt-based on electrochemical surface coverage analysis. Namely, a lower surface coverage with oxygenated species is found for the Pt-TiOxNy/C analogue. Further insights were provided by performing a detailed STEM characterization via the identical location mode (IL-STEM) in particular, via 4DSTEM acquisition. This disclosed that Pt particles are partially encapsulated within a thin layer of TiOxNy origin.
Collapse
Affiliation(s)
- Armin Hrnjić
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1000, Slovenia
- University
of Nova Gorica, Vipavska
13, Nova Gorica 5000, Slovenia
| | - Ana Rebeka Kamšek
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1000, Slovenia
- Faculty
of Chemistry and Chemical Engineering, University
of Ljubljana, Večna
pot 113, Ljubljana 1000, Slovenia
| | - Lazar Bijelić
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1000, Slovenia
- University
of Nova Gorica, Vipavska
13, Nova Gorica 5000, Slovenia
| | - Anja Logar
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1000, Slovenia
- University
of Nova Gorica, Vipavska
13, Nova Gorica 5000, Slovenia
| | - Nik Maselj
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1000, Slovenia
- Faculty
of Chemistry and Chemical Engineering, University
of Ljubljana, Večna
pot 113, Ljubljana 1000, Slovenia
| | - Milutin Smiljanić
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1000, Slovenia
| | - Jan Trputec
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1000, Slovenia
- Faculty
of Chemistry and Chemical Engineering, University
of Ljubljana, Večna
pot 113, Ljubljana 1000, Slovenia
| | - Natan Vovk
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1000, Slovenia
- Faculty
of Chemistry and Chemical Engineering, University
of Ljubljana, Večna
pot 113, Ljubljana 1000, Slovenia
| | - Luka Pavko
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1000, Slovenia
- Faculty
of Chemistry and Chemical Engineering, University
of Ljubljana, Večna
pot 113, Ljubljana 1000, Slovenia
| | - Francisco Ruiz-Zepeda
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1000, Slovenia
| | - Marjan Bele
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1000, Slovenia
| | - Primož Jovanovič
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1000, Slovenia
| | - Nejc Hodnik
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1000, Slovenia
- University
of Nova Gorica, Vipavska
13, Nova Gorica 5000, Slovenia
| |
Collapse
|
5
|
Wang Z, Chen S, Wu W, Chen R, Zhu Y, Jiang H, Yu L, Cheng N. Tailored Lattice Compressive Strain of Pt-Skins by the L1 2 -Pt 3 M Intermetallic Core for Highly Efficient Oxygen Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301310. [PMID: 37196181 DOI: 10.1002/adma.202301310] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/07/2023] [Indexed: 05/19/2023]
Abstract
The sluggish kinetics of oxygen reduction reaction (ORR) and unsatisfactory durability of Pt-based catalysts are severely hindering the commercialization of proton-exchange-membrane fuel cells (PEMFCs). In this work, the lattice compressive strain of Pt-skins imposed by Pt-based intermetallic cores is tailored for highly effective ORR through the confinement effect of the activated nitrogen-doped porous carbon (a-NPC). The modulated pores of a-NPC not only promote Pt-based intermetallics with ultrasmall size (average size of <4 nm), but also efficiently stabilizes intermetallic nanoparticles and sufficient exposure of active sites during the ORR process. The optimized catalyst (L12 -Pt3 Co@ML-Pt/NPC10 ) achieves excellent mass activity (1.72 A mgPt -1 ) and specific activity (3.49 mA cmPt -2 ), which are 11- and 15-fold that of commercial Pt/C, respectively. Besides, owing to the confinement effect of a-NPC and protection of Pt-skins, L12 -Pt3 Co@ML-Pt/NPC10 retains 98.1% mass activity after 30 000 cycles, and even 95% for 100 000 cycles, while Pt/C retains only 51.2% for 30 000 cycles. Rationalized by density functional theory, compared with other metals (Cr, Mn, Fe, and Zn), L12 -Pt3 Co closer to the top of "volcano" induces a more suitable compressive strain and electronic structure on Pt-skin, leading to an optimal oxygen adsorption energy and a remarkable ORR performance.
Collapse
Affiliation(s)
- Zichen Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Suhao Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Wei Wu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Runzhe Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yu Zhu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Haoran Jiang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Liyue Yu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Niancai Cheng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
- Key Laboratory of Fuel Cell Technology of Guangdong Province, Guangzhou, 510641, P. R. China
| |
Collapse
|
6
|
Luo X, Yuan P, Luo J, Xiao H, Li J, Zheng H, Du B, Li D, Chen Y. The Enhancing Effect of Stable Oxygen Functional Groups on Porous-Carbon-Supported Pt Catalysts for Alkaline Hydrogen Evolution. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1415. [PMID: 37111000 PMCID: PMC10145733 DOI: 10.3390/nano13081415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
The oxygen functionalization of carbon materials has widely been employed to improve the catalytic performance of carbon-supported Pt (Pt/C) catalysts. Hydrochloric acid (HCl) has often been employed to clean carbons during the preparation of carbon materials. However, the effect of oxygen functionalization through a HCl treatment of porous carbon (PC) supports on the performance of the alkaline hydrogen evolution reaction (HER) has rarely been investigated. Herein, the impact of HCl combined with the heat treatment of PC supports on the HER performance of Pt/C catalysts has been comprehensively investigated. The structural characterizations revealed similar structures of pristine and modified PC. Nevertheless, the HCl treatment resulted in abundant hydroxyl and carboxyl groups and the further heat treatment formed thermally stable carbonyl and ether groups. Among the catalysts, Pt loading on the HCl-treated PC followed by a heat treatment at 700 °C (Pt/PC-H-700) exhibited elevated HER activity with a lower overpotential of 50 mV at 10 mA cm-2 when compared to the unmodified Pt/PC (89 mV). Pt/PC-H-700 also exhibited better durability than the Pt/PC. Overall, novel insights into the impact of the surface chemistry properties of porous carbon supports on the HER performance of Pt/C catalysts were provided, which were useful for highlighting the feasible improvement of HER performances by regulating the surface oxygen species of porous carbon supports.
Collapse
Affiliation(s)
- Xianyou Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Ping Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| | - Junhui Luo
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Haoming Xiao
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Junyi Li
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Heng Zheng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| | - Baodong Du
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| | - De Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| | - Yong Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| |
Collapse
|
7
|
Cheng J, Lyu C, Dong G, Liu Y, Hu Y, Han B, Geng D, Zhao D. The Underlying Mechanism Trade-Off between Particle Proximity Effect and Low-Pt Loading for Oxygen Reduction and Methanol Oxidation Reaction Activity. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
8
|
Xiao F, Wang Y, Xu GL, Yang F, Zhu S, Sun CJ, Cui Y, Xu Z, Zhao Q, Jang J, Qiu X, Liu E, Drisdell WS, Wei Z, Gu M, Amine K, Shao M. Fe–N–C Boosts the Stability of Supported Platinum Nanoparticles for Fuel Cells. J Am Chem Soc 2022; 144:20372-20384. [DOI: 10.1021/jacs.2c08305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fei Xiao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon999077, Hong Kong, China
| | - Yian Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon999077, Hong Kong, China
| | - Gui-Liang Xu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois60439, United States
| | - Fei Yang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon999077, Hong Kong, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon999077, Hong Kong, China
| | - Cheng-Jun Sun
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois60439, United States
| | - Yingdan Cui
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon999077, Hong Kong, China
| | - Zhiwen Xu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon999077, Hong Kong, China
| | - Qinglan Zhao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon999077, Hong Kong, China
| | - Juhee Jang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon999077, Hong Kong, China
| | - Xiaoyi Qiu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon999077, Hong Kong, China
| | - Ershuai Liu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Walter S. Drisdell
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Zidong Wei
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing400044, China
| | - Meng Gu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Khalil Amine
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois60439, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California94305, United States
- Materials Science and Nano-engineering, Mohammed VI Polytechnic University, Ben Guerir43150, Morocco
- Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University (IAU), Dammam34221, Saudi Arabia
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon999077, Hong Kong, China
- Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou511458, China
- Energy Institute, Hong Kong Brach of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon999077, Hong Kong, China
| |
Collapse
|
9
|
Pt3Ni alloy catalyst coupled with three-dimensional nitrogen-doped graphene for enhancing the alkaline hydrogen evolution. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Hodgetts RY, Du HL, Nguyen TD, MacFarlane D, Simonov AN. Electrocatalytic Oxidation of Hydrogen as an Anode Reaction for the Li-Mediated N 2 Reduction to Ammonia. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rebecca Y. Hodgetts
- School of Chemistry and the ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton, Victoria 3800, Australia
| | - Hoang-Long Du
- School of Chemistry and the ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton, Victoria 3800, Australia
| | - Tam D. Nguyen
- School of Chemistry and the ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton, Victoria 3800, Australia
| | - Douglas MacFarlane
- School of Chemistry and the ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton, Victoria 3800, Australia
| | - Alexandr N. Simonov
- School of Chemistry and the ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
11
|
Ranninger J, Nikolaienko P, Mayrhofer KJJ, Berkes BB. On-line Electrode Dissolution Monitoring during Organic Electrosynthesis: Direct Evidence of Electrode Dissolution during Kolbe Electrolysis. CHEMSUSCHEM 2022; 15:e202102228. [PMID: 35114080 PMCID: PMC9304240 DOI: 10.1002/cssc.202102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Electrode dissolution was monitored in real-time during Kolbe electrolysis along with the characteristic products. The fast determination of appropriate reaction conditions in electro-organic chemistry enables the minimization of electrode degradation while keeping an eye on the optimal formation rate and distribution of products. Herein, essential parameters influencing the dissolution of the electrode material platinum in a Kolbe electrolysis were pinpointed. The formation of reaction products and soluble platinum species were monitored during potentiodynamic and potentiostatic experiments using an electroanalytical flow cell coupled to two different mass spectrometers. The approach opens new vistas in the field of electro-organic chemistry because it enables precise and quick quantification of dissolved metals during electrosynthesis, also involving electrode materials other than platinum. Furthermore, it draws attention to the vital topic of electrode stability in electro-organic synthesis, which becomes increasingly important for the implementation of green chemical processes utilizing renewable energy.
Collapse
Affiliation(s)
- Johanna Ranninger
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11)Forschungszentrum Jülich GmbHEgerlandstr. 391058ErlangenGermany
- Department of Chemical and Biological EngineeringFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Pavlo Nikolaienko
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11)Forschungszentrum Jülich GmbHEgerlandstr. 391058ErlangenGermany
| | - Karl J. J. Mayrhofer
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11)Forschungszentrum Jülich GmbHEgerlandstr. 391058ErlangenGermany
- Department of Chemical and Biological EngineeringFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Balázs B. Berkes
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11)Forschungszentrum Jülich GmbHEgerlandstr. 391058ErlangenGermany
| |
Collapse
|
12
|
Mashindi V, Mente P, Phaahlamohlaka TN, Mpofu N, Makgae OA, Moreno BD, Barrett DH, Forbes RP, Levecque PB, Ozoemena KI, Coville NJ. Platinum Nanocatalysts Supported on Defective Hollow Carbon Spheres: Oxygen Reduction Reaction Durability Studies. Front Chem 2022; 10:839867. [PMID: 35265587 PMCID: PMC8899172 DOI: 10.3389/fchem.2022.839867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
The durability and long-term applicability of catalysts are critical parameters for the commercialization and adoption of fuel cells. Even though a few studies have been conducted on hollow carbon spheres (HCSs) as supports for Pt in oxygen reduction reactions (ORR) catalysis, in-depth durability studies have not been conducted thus far. In this study, Pt/HCSs and Pt/nitrogen-doped HCSs (Pt/NHCSs) were prepared using a reflux deposition technique. Small Pt particles were formed with deposition on the outside of the shell and inside the pores of the shell. The new catalysts demonstrated high activity (>380 μA cm−2 and 240 mA g−1) surpassing the commercial Pt/C by more than 10%. The catalysts demonstrated excellent durability compared to a commercial Pt/C in load cycling, experiencing less than 50% changes in the mass-specific activity (MA) and surface area-specific activity (SA). In stop-start durability cycling, the new materials demonstrated high stability with more than 50% retention of electrochemical active surface areas (ECSAs). The results can be rationalised by the high BET surface areas coupled with an array of meso and micropores that led to Pt confinement. Further, pair distribution function (PDF) analysis of the catalysts confirmed that the nitrogen and oxygen functional groups, as well as the shell curvature/roughness provided defects and nucleation sites for the deposition of the small Pt nanoparticles. The balance between graphitic and diamond-like carbon was critical for the electronic conductivity and to provide strong Pt-support anchoring.
Collapse
Affiliation(s)
- Victor Mashindi
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - Pumza Mente
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - Tumelo N. Phaahlamohlaka
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - Nobuhle Mpofu
- HySA Catalysis Centre of Competence, Department of Chemical Engineering, Catalysis Institute, University of Cape Town, Cape Town, South Africa
| | - Ofentse A. Makgae
- National Centre for High-resolution Electron-microscopy (nCHREM), Centre for Analysis and Synthesis NanoLund, Lund University, Lund, Sweden
| | | | - Dean H. Barrett
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - Roy P. Forbes
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - Pieter B. Levecque
- HySA Catalysis Centre of Competence, Department of Chemical Engineering, Catalysis Institute, University of Cape Town, Cape Town, South Africa
| | - Kenneth I. Ozoemena
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - Neil J. Coville
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
- *Correspondence: Neil J. Coville,
| |
Collapse
|
13
|
Xia YF, Guo P, Li JZ, Zhao L, Sui XL, Wang Y, Wang ZB. How to appropriately assess the oxygen reduction reaction activity of platinum group metal catalysts with rotating disk electrode. iScience 2021; 24:103024. [PMID: 34585108 PMCID: PMC8450266 DOI: 10.1016/j.isci.2021.103024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/19/2021] [Accepted: 08/19/2021] [Indexed: 11/20/2022] Open
Abstract
The sluggish oxygen reduction reaction (ORR) has becoming the bottleneck of largescale implementation of proton exchange membrane fuel cells. However, when it comes to the ORR activity assessing of platinum group metals (PGMs) with rotating disk electrode, the corresponding potential conversion vs. reversible hydrogen electrode, test protocols, and activity calculation processes are still in chaos in many published literatures. In this work, two standard calculation processes for PGM ORR activities are demonstrated, followed by a specification for the usage of reference electrodes. Then a 4-fold discrepancy in ORR activities obtained via different test protocols is found for the same Pt/C, and an average adsorption model and the "coverage effects" are proposed to illustrate the hysteresis loop between negative and positive-going ORR polarization plots. Finally, four motions over appropriate assessment of PGM ORR activity are emphasized, hoping to bring a fair communication platform for researchers from different groups.
Collapse
Affiliation(s)
- Yun-Fei Xia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resources and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Pan Guo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resources and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jia-Zhan Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lei Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resources and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xu-Lei Sui
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yan Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhen-Bo Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resources and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
14
|
Stumm C, Kastenmeier M, Waidhas F, Bertram M, Sandbeck DJ, Bochmann S, Mayrhofer KJ, Bachmann J, Cherevko S, Brummel O, Libuda J. Model electrocatalysts for the oxidation of rechargeable electrofuels - carbon supported Pt nanoparticles prepared in UHV. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Pt-Based Intermetallic Nanocrystals in Cathode Catalysts for Proton Exchange Membrane Fuel Cells: From Precise Synthesis to Oxygen Reduction Reaction Strategy. Catalysts 2021. [DOI: 10.3390/catal11091050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Although oxygen reduction reaction (ORR) catalysts have been extensively investigated and developed, there is a lack of clarity on catalysts that can balance high performance and low cost. Pt-based intermetallic nanocrystals are of special interest in the commercialization of proton exchange membrane fuel cells (PEMFCs) due to their excellent ORR activity and stability. This review summarizes the wide range of applications of Pt-based intermetallic nanocrystals in cathode catalysts for PEMFCs and their unique advantages in the field of ORR. Firstly, we introduce the fundamental understanding of Pt-based intermetallic nanocrystals, and highlight the difficulties and countermeasures in their synthesis. Then, the progress of theoretical and experimental studies related to the ORR activity and stability of Pt-based intermetallic nanocrystals in recent years are reviewed, especially the integrated strategies for enhancing the stability of ORR. Finally, the challenges faced by Pt-based intermetallic nanocrystals are summarized and future research directions are proposed. In addition, numerous design ideas of Pt-based intermetallic nanocrystals as ORR catalysts are summarized, aiming to promote further development of commercialization of PEMFC catalysts while fully understanding Pt-based intermetallic nanocrystals.
Collapse
|
16
|
Speck FD, Kim JH, Bae G, Joo SH, Mayrhofer KJJ, Choi CH, Cherevko S. Single-Atom Catalysts: A Perspective toward Application in Electrochemical Energy Conversion. JACS AU 2021; 1:1086-1100. [PMID: 34467351 PMCID: PMC8397360 DOI: 10.1021/jacsau.1c00121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 05/29/2023]
Abstract
Single-atom catalysts (SACs) hold great promise for maximized metal utilization, exceptional tunability of the catalytic site, and selectivity. Moreover, they can substantially contribute to lower the cost and abundancy challenges associated with raw materials. Significant breakthroughs have been achieved over the past decade, for instance, in terms of synthesis methods for SACs, their catalytic activity, and the mechanistic understanding of their functionality. Still, great challenges lie ahead in order to render them viable for application in important fields such as electrochemical energy conversion of renewable electrical energy. We have identified three particular development fields for advanced SACs that we consider crucial, namely, the scale-up of the synthesis, the understanding of their performance in real devices such as fuel cells and electrolyzers, and the understanding and mitigation of their degradation. In this Perspective, we review recent activities of the community and provide our outlook with respect to the aspects required to bring SACs toward application.
Collapse
Affiliation(s)
- Florian D. Speck
- Helmholtz-Institute
Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Jae Hyung Kim
- Clean
Energy Research Center, Korea Institute
of Science and Technology (KIST), 5 Hwarangro 14-gil, Seoul 02792, Republic of Korea
| | - Geunsu Bae
- School
of Materials Science and Engineering, Gwangju
Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Sang Hoon Joo
- Department
of Chemistry, Ulsan National Institute of
Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Karl J. J. Mayrhofer
- Helmholtz-Institute
Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Egerlandstr. 3, 91058 Erlangen, Germany
- Department
of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstr. 3, Erlangen 91058, Germany
| | - Chang Hyuck Choi
- School
of Materials Science and Engineering, Gwangju
Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Serhiy Cherevko
- Helmholtz-Institute
Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Egerlandstr. 3, 91058 Erlangen, Germany
| |
Collapse
|
17
|
Peng D, Wang Y, Lv L, Zhou Z, Wang Y, Lv A, Lin TW, Xin Z, Zhang B, Qian X. Insight into degradation mechanism of Pd nanoparticles on NCNTs catalyst for ethanol electrooxidation: A combined identical-location transmission electron microscopy and X-ray photoelectron spectroscopy study. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Observing, tracking and analysing electrochemically induced atomic-scale structural changes of an individual Pt-Co nanoparticle as a fuel cell electrocatalyst by combining modified floating electrode and identical location electron microscopy. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Hersbach TJP, Garcia AC, Kroll T, Sokaras D, Koper MTM, Garcia-Esparza AT. Base-Accelerated Degradation of Nanosized Platinum Electrocatalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thomas J. P. Hersbach
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States of America
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Amanda C. Garcia
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States of America
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States of America
| | - Marc T. M. Koper
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Angel T. Garcia-Esparza
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States of America
| |
Collapse
|
20
|
Speck FD, Zagalskaya A, Alexandrov V, Cherevko S. Periodicity in the Electrochemical Dissolution of Transition Metals. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Florian D. Speck
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy, (IEK-11) Forschungszentrum Jülich Egerlandstr. 3 91058 Erlangen Germany
- Department of Chemical and Biological Engineering Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstr. 3 91058 Erlangen Germany
| | - Alexandra Zagalskaya
- Department of Chemical and Biomolecular Engineering University of Nebraska-Lincoln 207E Othmer Hall Lincoln NE 68588 USA
| | - Vitaly Alexandrov
- Department of Chemical and Biomolecular Engineering University of Nebraska-Lincoln 207E Othmer Hall Lincoln NE 68588 USA
- Nebraska Center for Materials and Nanoscience University of Nebraska-Lincoln Lincoln NE 68588 USA
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy, (IEK-11) Forschungszentrum Jülich Egerlandstr. 3 91058 Erlangen Germany
| |
Collapse
|
21
|
Xue Q, Huang JB, Yang DJ, Li B, Zhang CM. Enhanced PEMFC durability with graphitized carbon black cathode catalyst supports under accelerated stress testing. RSC Adv 2021; 11:19417-19425. [PMID: 35479214 PMCID: PMC9036403 DOI: 10.1039/d1ra01468d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
The anti-corrosion properties of the carbon substrates of cathode catalysts play a vital role in the commercialization of fuel cell vehicles. Our report reveals the enhanced durability of graphitized carbon black catalyst substrates in polymer electrolyte membrane fuel cells (PEMFCs), tested under simulated start-stop cycling and high potential holding conditions. Graphitized carbon treated at various temperatures is used as the support for Pt catalysts. The catalyst utilizing graphitized carbon treated at 1800 °C demonstrates superior antioxidation properties and the inhibition of Pt particle coarsening. The decay ratio of the potential at 1000 mA cm-2 has been reduced from 34.9% (commercial Pt/C) to 0.5% during high potential holding accelerated stress testing. Correspondingly, the growth of Pt particles is reduced from 0.95 nm (commercial Pt/C) to 0.08 nm; that is, the coalescence of Pt particles is effectively alleviated upon using graphitized carbon black.
Collapse
Affiliation(s)
- Qiong Xue
- Clean Energy Automotive Engineering Center, School of Automotive Studies, Tongji University Shanghai 201804 China
| | - Jian-Biao Huang
- Clean Energy Automotive Engineering Center, School of Automotive Studies, Tongji University Shanghai 201804 China
| | - Dai-Jun Yang
- Clean Energy Automotive Engineering Center, School of Automotive Studies, Tongji University Shanghai 201804 China
| | - Bing Li
- Clean Energy Automotive Engineering Center, School of Automotive Studies, Tongji University Shanghai 201804 China
| | - Cun-Man Zhang
- Clean Energy Automotive Engineering Center, School of Automotive Studies, Tongji University Shanghai 201804 China
| |
Collapse
|
22
|
Speck FD, Zagalskaya A, Alexandrov V, Cherevko S. Periodicity in the Electrochemical Dissolution of Transition Metals. Angew Chem Int Ed Engl 2021; 60:13343-13349. [PMID: 33687762 PMCID: PMC8252536 DOI: 10.1002/anie.202100337] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Indexed: 12/18/2022]
Abstract
Extensive research efforts are currently dedicated to the search for new electrocatalyst materials in which expensive and rare noble metals are replaced with cheaper and more abundant transition metals. Recently, numerous alloys, oxides, and composites with such metals have been identified as highly active electrocatalysts through the use of high‐throughput screening methods with the help of activity descriptors. Up to this point, stability has lacked such descriptors. Hence, we elucidate the role of intrinsic metal/oxide properties on the corrosion behavior of representative 3d, 4d, and 5d transition metals. Electrochemical dissolution of nine transition metals is quantified using online inductively coupled plasma mass spectrometry (ICP‐MS). Based on the obtained dissolution data in alkaline and acidic media, we establish clear periodic correlations between the amount of dissolved metal, the cohesive energy of the metal atoms (Ecoh), and the energy of oxygen adsorption on the metal (ΔHO,ads). Such correlations can support the knowledge‐driven search for more stable electrocatalysts.
Collapse
Affiliation(s)
- Florian D Speck
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy, (IEK-11), Forschungszentrum Jülich, Egerlandstr. 3, 91058, Erlangen, Germany.,Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Alexandra Zagalskaya
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, 207E Othmer Hall, Lincoln, NE, 68588, USA
| | - Vitaly Alexandrov
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, 207E Othmer Hall, Lincoln, NE, 68588, USA.,Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy, (IEK-11), Forschungszentrum Jülich, Egerlandstr. 3, 91058, Erlangen, Germany
| |
Collapse
|
23
|
Electrocatalytic oxidation of 2-propanol on PtxIr100-x bifunctional electrocatalysts – A thin-film materials library study. J Catal 2021. [DOI: 10.1016/j.jcat.2021.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Schmies H, Bergmann A, Hornberger E, Drnec J, Wang G, Dionigi F, Kühl S, Sandbeck DJS, Mayrhofer KJJ, Ramani V, Cherevko S, Strasser P. Anisotropy of Pt nanoparticles on carbon- and oxide-support and their structural response to electrochemical oxidation probed by in situ techniques. Phys Chem Chem Phys 2020; 22:22260-22270. [PMID: 33001131 DOI: 10.1039/d0cp03233f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Identifying the structural response of nanoparticle-support ensembles to the reaction conditions is essential to determine their structure in the catalytically active state as well as to unravel the possible degradation pathways. In this work, we investigate the (electronic) structure of carbon- and oxide-supported Pt nanoparticles during electrochemical oxidation by in situ X-ray diffraction, absorption spectroscopy as well as the Pt dissolution rate by in situ mass spectrometry. We prepared ellipsoidal Pt nanoparticles by impregnation of the carbon and titanium-based oxide support as well as spherical Pt nanoparticles on an indium-based oxide support by a surfactant-assisted synthesis route. During electrochemical oxidation, we show that the oxide-supported Pt nanoparticles resist (bulk) oxide formation and Pt dissolution. The lattice of smaller Pt nanoparticles exhibits a size-induced lattice contraction in the as-prepared state with respect to bulk Pt but it expands reversibly during electrochemical oxidation. This expansion is suppressed for the Pt nanoparticles with a bulk-like relaxed lattice. We could correlate the formation of d-band vacancies in the metallic Pt with Pt lattice expansion. PtOx formation is strongest for platelet-like nanoparticles and we explain this with a higher fraction of exposed Pt(100) facets. Of all investigated nanoparticle-support ensembles, the structural response of RuO2/TiO2-supported Pt nanoparticles is the most promising with respect to their morphological and structural integrity under electrochemical reaction conditions.
Collapse
Affiliation(s)
- Henrike Schmies
- Department of Chemistry, Chemical Engineering Division, Technical University of Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bertram M, Prössl C, Ronovský M, Knöppel J, Matvija P, Fusek L, Skála T, Tsud N, Kastenmeier M, Matolín V, Mayrhofer KJJ, Johánek V, Mysliveček J, Cherevko S, Lykhach Y, Brummel O, Libuda J. Cobalt Oxide-Supported Pt Electrocatalysts: Intimate Correlation between Particle Size, Electronic Metal-Support Interaction and Stability. J Phys Chem Lett 2020; 11:8365-8371. [PMID: 32909431 DOI: 10.1021/acs.jpclett.0c02233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oxide supports can modify and stabilize platinum nanoparticles (NPs) in electrocatalytic materials. We studied related phenomena on model systems consisting of Pt NPs on atomically defined Co3O4(111) thin films. Chemical states and dissolution behavior of model catalysts were investigated as a function of the particle size and the electrochemical potential by ex situ emersion synchrotron radiation photoelectron spectroscopy and by online inductively coupled plasma mass spectrometry. Electronic metal-support interaction (EMSI) yields partially oxidized Ptδ+ species at the metal/support interface of metallic nanometer-sized Pt NPs. In contrast, subnanometer particles form Ptδ+ aggregates that are exclusively accompanied by subsurface Pt4+ species. Dissolution of Cox+ ions is strongly coupled to the presence of Ptδ+ and the reduction of subsurface Pt4+ species. Our findings suggest that EMSI directly affects the integrity of oxide-based electrocatalysts and may be employed to stabilize Pt NPs against sintering and dissolution.
Collapse
Affiliation(s)
- Manon Bertram
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Carolin Prössl
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstraße 3, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Michal Ronovský
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University,V Hole šovičkách 2, 18000 Prague, Czech Republic
| | - Julius Knöppel
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstraße 3, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Peter Matvija
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University,V Hole šovičkách 2, 18000 Prague, Czech Republic
| | - Lukáš Fusek
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University,V Hole šovičkách 2, 18000 Prague, Czech Republic
| | - Tomáš Skála
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University,V Hole šovičkách 2, 18000 Prague, Czech Republic
| | - Nataliya Tsud
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University,V Hole šovičkách 2, 18000 Prague, Czech Republic
| | - Maximilian Kastenmeier
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Vladimír Matolín
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University,V Hole šovičkách 2, 18000 Prague, Czech Republic
| | - Karl J J Mayrhofer
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Viktor Johánek
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University,V Hole šovičkách 2, 18000 Prague, Czech Republic
| | - Josef Mysliveček
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University,V Hole šovičkách 2, 18000 Prague, Czech Republic
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Yaroslava Lykhach
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Olaf Brummel
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Jörg Libuda
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| |
Collapse
|
26
|
Speck FD, Paul MTY, Ruiz-Zepeda F, Gatalo M, Kim H, Kwon HC, Mayrhofer KJJ, Choi M, Choi CH, Hodnik N, Cherevko S. Atomistic Insights into the Stability of Pt Single-Atom Electrocatalysts. J Am Chem Soc 2020; 142:15496-15504. [PMID: 32794757 DOI: 10.1021/jacs.0c07138] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Single-atom catalysts (SACs) have quickly emerged as a new class of catalytic materials. When confronted with classical carbon-supported nanoparticulated catalysts (Pt/C), SACs are often claimed to have superior electrocatalytic properties, e.g., stability. In this study, we critically assess this statement by investigating S-doped carbon-supported Pt SACs as a representative example of noble-metal-based SACs. We use a set of complementary techniques, which includes online inductively coupled plasma mass spectrometry (online ICP-MS), identical location transmission electron microscopy (IL-TEM), and X-ray photoelectron spectroscopy (XPS). It is shown by online ICP-MS that the dissolution behavior of as-synthesized Pt SACs is significantly different from that of metallic Pt/C. Moreover, Pt SACs are, indeed, confirmed to be more stable toward Pt dissolution. When cycled to potentials of up to 1.5 VRHE, however, the dissolution profiles of Pt SACs and Pt/C become similar. IL-TEM and XPS show that this transition is due to morphological and chemical changes caused by cycling. The latter, in turn, is a consequence of the relatively poor stability of S ligands. As monitored by online ICP-MS and XPS, significant amounts of sulfur leave the catalyst during oxidation. Hence, in case catalysts with improved stability in the anodic potential region are desired, more robust supports and ligands must be developed.
Collapse
Affiliation(s)
- Florian D Speck
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy, Forschungszentrum Jülich, Egerlandstrasse, 91058 Erlangen, Germany.,Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Michael T Y Paul
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy, Forschungszentrum Jülich, Egerlandstrasse, 91058 Erlangen, Germany
| | - Francisco Ruiz-Zepeda
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Matija Gatalo
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Haesol Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Han Chang Kwon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Karl J J Mayrhofer
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy, Forschungszentrum Jülich, Egerlandstrasse, 91058 Erlangen, Germany.,Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Minkee Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Chang Hyuck Choi
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Nejc Hodnik
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy, Forschungszentrum Jülich, Egerlandstrasse, 91058 Erlangen, Germany
| |
Collapse
|