1
|
Ali S, Rinshad VA, Mukherjee PS. Solvent- and Concentration-Induced Topological Transformation of a Ruthenium(II)-Based Trigonal Prism to a Triply Interlocked [2] Catenane. Inorg Chem 2024. [PMID: 39463351 DOI: 10.1021/acs.inorgchem.4c03339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Synthesis of interlocked supramolecular cages has been a growing field of interest due to their structural diversity. Herein, we report the template-free synthesis of a Ru(II) triply interlocked [2] catenane using coordination-driven self-assembly. The self-assembly of a triazine-based tripyridyl donor L (2,4,6-tris(5-(pyridin-4-yl)thiophen-3-yl)-1,3,5-triazine) with a dinuclear Ru(II) acceptor M (Ru2(dhnq)(η6-p-cymene)2)(CF3SO3)2) yielded two distinct structures depending on the solvent and concentration. In methanol, a triply interlocked metalla [2] catenane (MC2) was formed, whereas in nitromethane, a non-interlocked cage (MC1) was obtained. The non-interlocked cage MC1 was gradually converted to MC2 in nitromethane by the increase in the concentration of cage MC1 from 0.5 to 9 mM. The interlocked cage (MC2) was stable after formation and was unaffected by the change in concentration. Notably, the free cage (MC1) exhibited host-guest interactions with polycyclic aromatic aldehydes, stabilizing the non-interlocked structure even at higher concentrations. In contrast, the triply interlocked [2] catenane (MC2) remains stable due to self-penetration and does not encapsulate guest molecules. This work showcases the stimuli-induced irreversible structural transformation of a triangular prismatic cage to its triply interlocked [2] catenane by employing metal-ligand coordination chemistry.
Collapse
Affiliation(s)
- Shamsad Ali
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Valiyakath Abdul Rinshad
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
2
|
Cox CJT, Hale J, Molinska P, Lewis JEM. Supramolecular and molecular capsules, cages and containers. Chem Soc Rev 2024; 53:10380-10408. [PMID: 39351690 DOI: 10.1039/d4cs00761a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Stemming from early seminal notions of molecular recognition and encapsulation, three-dimensional, cavity-containing capsular compounds and assemblies have attracted intense interest due to the ability to modulate chemical and physical properties of species encapsulated within these confined spaces compared to bulk environments. With such a diverse range of covalent motifs and non-covalent (supramolecular) interactions available to assemble building blocks, an incredibly wide-range of capsular-type architectures have been developed. Furthermore, synthetic tunability of the internal environments gives chemists the opportunity to engineer systems for uses in sensing, sequestration, catalysis and transport of molecules, just to name a few. In this tutorial review, an overview is provided into the design principles, synthesis, characterisation, structural facets and properties of coordination cages, porous organic cages, supramolecular capsules, foldamers and mechanically interlocked molecules. Using seminal and recent examples, the advantages and limitations of each system are explored, highlighting their application in various tasks and functions.
Collapse
Affiliation(s)
- Cameron J T Cox
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Jessica Hale
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Paulina Molinska
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - James E M Lewis
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
3
|
Orlando T, Weimer GH, Salbego PRDS, Martinez-Cuezva A, Berna J, Martins MAP. Formation and Stability of Benzylic Amide [2]- and [3]Rotaxanes: An Intercomponent Interactions Study. Chemistry 2024:e202403276. [PMID: 39312443 DOI: 10.1002/chem.202403276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
One of the most recent focuses in supramolecular chemistry is developing molecules designed to exhibit programmable properties at the molecular level. Rotaxanes, which function as molecular machines with movements controlled by external stimuli, are prime candidates for this purpose. However, the controlled synthesis of rotaxanes, especially amide-benzylic rotaxanes with more than two components, remains an area ripe for exploration. In this study, we aim to elucidate the formation of amide-benzylic [3]rotaxanes using a thread that includes a conventional succinamide station and an innovative triazole-carbonyl station. Including the triazole-carbonyl station introduces new perspectives into the chemistry of rotaxanes, influencing their conformation and dynamics. The synthesis of two-station rotaxanes with varying stoppers demonstrated that the macrocycle consistently occupies the succinamide station, providing greater stability as evidenced by NMR and SC-XRD analyses. The presence of a triazole-carbonyl station facilitated the formation of a second macrocycle exclusively when a secondary amide was employed as the stopper group, presumably due to decreased steric hindrance. Moreover, the second macrocycle directly forms at the triazole-carbonyl station. This investigation reveals that slight modifications in the thread structure can dramatically impact the formation, stability, and interactions between components of rotaxanes.
Collapse
Affiliation(s)
- Tainára Orlando
- Departamento Acadêmico de Química, Universidade Tecnológica Federal do Paraná (UTFPR), 85884-000, Medianeira, Paraná, Brasil
| | - Gustavo Henrique Weimer
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria (UFSM), 97105-900, Santa Maria, Rio Grande do Sul, Brasil
| | - Paulo Roberto Dos Santos Salbego
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Engenharia e Tecnologia Ambiental (DETA), Universidade Federal de Santa Maria (UFSM), 98400-000, Frederico Westphalen, Rio Grande do Sul, Brasil
| | - Alberto Martinez-Cuezva
- Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", E-30100, Murcia, Spain
| | - Jose Berna
- Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", E-30100, Murcia, Spain
| | - Marcos Antonio Pinto Martins
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria (UFSM), 97105-900, Santa Maria, Rio Grande do Sul, Brasil
| |
Collapse
|
4
|
Puigcerver J, Zamora-Gallego JM, Marin-Luna M, Martinez-Cuezva A, Berna J. Urea-Based [2]Rotaxanes as Effective Phase-Transfer Organocatalysts: Hydrogen-Bonding Cooperative Activation Enabled by the Mechanical Bond. J Am Chem Soc 2024; 146:22887-22892. [PMID: 38975636 PMCID: PMC11345763 DOI: 10.1021/jacs.4c06630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024]
Abstract
We finely designed a set of [2]rotaxanes with urea threads and tested them as hydrogen-bonding phase-transfer catalysts in two different nucleophilic substitutions requiring the activation of the reactant fluoride anion. The [2]rotaxane bearing a fluorinated macrocycle and a fluorine-containing urea thread displayed significantly enhanced catalytic activity in comparison with the combination of both noninterlocked components. This fact highlights the notably beneficial role of the mechanical bond, cooperatively activating the processes through hydrogen-bonding interactions.
Collapse
Affiliation(s)
- Julio Puigcerver
- Departamento
de Quimica Organica, Facultad de Quimica, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Jose M. Zamora-Gallego
- Departamento
de Quimica Organica, Facultad de Quimica, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Marta Marin-Luna
- Departamento
de Quimica Organica, Facultad de Quimica, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Alberto Martinez-Cuezva
- Departamento
de Quimica Organica, Facultad de Quimica, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Jose Berna
- Departamento
de Quimica Organica, Facultad de Quimica, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| |
Collapse
|
5
|
Struth FR, Jansen D, Pairault N, Schumacher M, Uteschil F, Linders J, Mayer C, Gröschel AH, Goldup SM, Niemeyer J. Steric Engineering of Rotaxane Catalysts: Benefits and Limits of Using the Mechanical Bond in Catalyst Design. Chemistry 2024:e202402717. [PMID: 39140421 DOI: 10.1002/chem.202402717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/15/2024]
Abstract
The mechanical bond is emerging as a novel design element in catalyst development. Here, we report a series of 1,1'-binaphthyl-2,2'-diol (BINOL) based catalysts in which the number of interlocked macrocycles is varied. Unsurprisingly, the macrocycles have a profound steric influence on the catalytic performance of these molecules. However, in the enantioselective transformations examined, the macrocycles are detrimental to catalyst stereoselectivity whereas in lactide polymerization, they increase the molecular weight of the polymeric product.
Collapse
Affiliation(s)
- F Robin Struth
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Dennis Jansen
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Noël Pairault
- Institut des Sciences Moléculaires (ISM), CNRS UMR 5255, University of Bordeaux, 33400, Talence, France
| | - Marcel Schumacher
- Institute of Organic Chemistry and Center for Soft Nanoscience (SoN), University of Muenster, Busso-Peus-Strasse 10, 48149, Muenster, Germany
| | - Florian Uteschil
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Jürgen Linders
- Faculty of Chemistry (Physical Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Christian Mayer
- Faculty of Chemistry (Physical Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - André H Gröschel
- Macromolecular Chemistry and Bavarian Centre for Battery Technology (BayBatt), University of Bayreuth, Weiherstrasse 26, 95448, Bayreuth, Germany
| | - Stephen M Goldup
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jochen Niemeyer
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| |
Collapse
|
6
|
Riebe J, Bädorf B, Löffelsender S, Gutierrez Suburu ME, Rivas Aiello MB, Strassert CA, Grimme S, Niemeyer J. Molecular folding governs switchable singlet oxygen photoproduction in porphyrin-decorated bistable rotaxanes. Commun Chem 2024; 7:171. [PMID: 39112693 PMCID: PMC11306352 DOI: 10.1038/s42004-024-01247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
Rotaxanes are mechanically interlocked molecules where a ring (macrocycle) is threaded onto a linear molecule (thread). The position of the macrocycle on different stations on the thread can be controlled in response to external stimuli, making rotaxanes applicable as molecular switches. Here we show that bistable rotaxanes based on the combination of a Zn(II) tetraphenylporphyrin photosensitizer, attached to the macrocycle, and a black-hole-quencher, attached to the thread, are capable of singlet oxygen production which can be switched on/off by the addition of base/acid. However, we found that only a sufficiently long linker between both stations on the thread enabled switchability, and that the direction of switching was inversed with regard to the original design. This unexpected behavior was attributed to intramolecular folding of the rotaxanes, as indicated by extensive theoretical calculations. This evidences the importance to take into account the conformational flexibility of large molecular structures when designing functional switchable systems.
Collapse
Affiliation(s)
- Jan Riebe
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Benedikt Bädorf
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Sarah Löffelsender
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Matias E Gutierrez Suburu
- Institut für Anorganische und Analytische Chemie, CeNTech, CiMIC, SoN, Universität Münster, Heisenbergstr. 11, 48149, Münster, Germany
| | - María Belén Rivas Aiello
- Institut für Anorganische und Analytische Chemie, CeNTech, CiMIC, SoN, Universität Münster, Heisenbergstr. 11, 48149, Münster, Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, CeNTech, CiMIC, SoN, Universität Münster, Heisenbergstr. 11, 48149, Münster, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany.
| | - Jochen Niemeyer
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany.
| |
Collapse
|
7
|
Tang MP, Zhu L, Deng Y, Shi YX, Kin-Man Lai S, Mo X, Pang XY, Liu C, Jiang W, Tse ECM, Au-Yeung HY. Water and Air Stable Copper(I) Complexes of Tetracationic Catenane Ligands for Oxidative C-C Cross-Coupling. Angew Chem Int Ed Engl 2024; 63:e202405971. [PMID: 38661248 DOI: 10.1002/anie.202405971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 04/26/2024]
Abstract
Aqueous soluble and stable Cu(I) molecular catalysts featuring a catenane ligand composed of two dicationic, mutually repelling but mechanically interlocked macrocycles are reported. The ligand interlocking not only fine-tunes the coordination sphere and kinetically stabilizes the Cu(I) against air oxidation and disproportionation, but also buries the hydrophobic portions of the ligands and prevents their dissociation which are necessary for their good water solubility and a sustained activity. These catenane Cu(I) complexes can catalyze the oxidative C-C coupling of indoles and tetrahydroisoquinolines in water, using H2O2 as a green oxidant with a good substrate scope. The successful use of catenane ligands in exploiting aqueous Cu(I) catalysis thus highlights the many unexplored potential of mechanical bond as a design element for exploring transition metal catalysis under challenging conditions.
Collapse
Affiliation(s)
- Man Pang Tang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Lihui Zhu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Yulin Deng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Yi-Xiang Shi
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Samuel Kin-Man Lai
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Xiaoyong Mo
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Xin-Yu Pang
- Department of Chemistry, South University of Science and Technology of China, Xueyuan Blvd 1088, Shenzhen, 518055, P. R. China
| | - Chunyu Liu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 100083, P. R. China
| | - Wei Jiang
- Department of Chemistry, South University of Science and Technology of China, Xueyuan Blvd 1088, Shenzhen, 518055, P. R. China
| | - Edmund Chun Ming Tse
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- CAS-HKU Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Ho Yu Au-Yeung
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- CAS-HKU Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
8
|
Saady A, Malcolm GK, Fitzpatrick MP, Pairault N, Tizzard GJ, Mohammed S, Tavassoli A, Goldup SM. A Platform Approach to Cleavable Macrocycles for the Controlled Disassembly of Mechanically Caged Molecules. Angew Chem Int Ed Engl 2024; 63:e202400344. [PMID: 38276911 DOI: 10.1002/anie.202400344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Inspired by interlocked oligonucleotides, peptides and knotted proteins, synthetic systems where a macrocycle cages a bioactive species that is "switched on" by breaking the mechanical bond have been reported. However, to date, each example uses a bespoke chemical design. Here we present a platform approach to mechanically caged structures wherein a single macrocycle precursor is diversified at a late stage to include a range of trigger units that control ring opening in response to enzymatic, chemical, or photochemical stimuli. We also demonstrate that our approach is applicable to other classes of macrocycles suitable for rotaxane and catenane formation.
Collapse
Affiliation(s)
- Abed Saady
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Georgia K Malcolm
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Matthew P Fitzpatrick
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Noel Pairault
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Graham J Tizzard
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Soran Mohammed
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Ali Tavassoli
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Stephen M Goldup
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
9
|
McCarthy DR, Xu K, Schenkelberg ME, Balegamire NAN, Liang H, Bellino SA, Li J, Schneebeli ST. Kinetically controlled synthesis of rotaxane geometric isomers. Chem Sci 2024; 15:4860-4870. [PMID: 38550687 PMCID: PMC10967009 DOI: 10.1039/d3sc04412b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/24/2024] [Indexed: 04/30/2024] Open
Abstract
Geometric isomerism in mechanically interlocked systems-which arises when the axle of a mechanically interlocked molecule is oriented, and the macrocyclic component is facially dissymmetric-can provide enhanced functionality for directional transport and polymerization catalysis. We now introduce a kinetically controlled strategy to control geometric isomerism in [2]rotaxanes. Our synthesis provides the major geometric isomer with high selectivity, broadening synthetic access to such interlocked structures. Starting from a readily accessible [2]rotaxane with a symmetrical axle, one of the two stoppers is activated selectively for stopper exchange by the substituents on the ring component. High selectivities are achieved in these reactions, based on coupling the selective formation reactions leading to the major products with inversely selective depletion reactions for the minor products. Specifically, in our reaction system, the desired (major) product forms faster in the first step, while the undesired (minor) product subsequently reacts away faster in the second step. Quantitative 1H NMR data, fit to a detailed kinetic model, demonstrates that this effect (which is conceptually closely related to minor enantiomer recycling and related processes) can significantly improve the intrinsic selectivity of the reactions. Our results serve as proof of principle for how multiple selective reaction steps can work together to enhance the stereoselectivity of synthetic processes forming complex mechanically interlocked molecules.
Collapse
Affiliation(s)
- Dillon R McCarthy
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
| | - Ke Xu
- Departments of Industrial & Molecular Pharmaceutics, Chemistry, and Medicinal Chemistry & Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Mica E Schenkelberg
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
- Departments of Industrial & Molecular Pharmaceutics, Chemistry, and Medicinal Chemistry & Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Nils A N Balegamire
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
- Departments of Industrial & Molecular Pharmaceutics, Chemistry, and Medicinal Chemistry & Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Huiming Liang
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
| | - Shea A Bellino
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
| | - Jianing Li
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
- Departments of Industrial & Molecular Pharmaceutics, Chemistry, and Medicinal Chemistry & Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Severin T Schneebeli
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
- Departments of Industrial & Molecular Pharmaceutics, Chemistry, and Medicinal Chemistry & Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
10
|
Becharguia N, Nierengarten I, Strub JM, Cianférani S, Rémy M, Wasielewski E, Abidi R, Nierengarten JF. Solution and Solvent-Free Stopper Exchange Reactions for the Preparation of Pillar[5]arene-containing [2] and [3]Rotaxanes. Chemistry 2024; 30:e202304131. [PMID: 38165139 DOI: 10.1002/chem.202304131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/03/2024]
Abstract
Diamine reagents have been used to functionalize a [2]rotaxane building block bearing an activated pentafluorophenyl ester stopper. Upon a first acylation, an intermediate host-guest complex with a terminal amine function is obtained. Dissociation of the intermediate occurs in solution and acylation of the released axle generates a [2]rotaxane with an elongated axle subunit. In contrast, the corresponding [3]rotaxane can be obtained if the reaction conditions are appropriate to stabilize the inclusion complex of the mono-amine intermediate and the pillar[5]arene. This is the case when the stopper exchange is performed under mechanochemical solvent-free conditions. Alternatively, if the newly introduced terminal amide group is large enough to prevent the dissociation, the second acylation provides exclusively a [3]rotaxane. On the other hand, detailed conformational analysis has been also carried out by variable temperature NMR investigations. A complete understanding of the shuttling motions of the pillar[5]arene subunit along the axles of the rotaxanes reported therein has been achieved with the help of density functional theory calculations.
Collapse
Affiliation(s)
- Nihed Becharguia
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7042, LIMA), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
- Laboratoire d'Applications de la Chimie aux Ressources et Substances Naturelles et l'Environnement, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna Bizerte, Tunisia
| | - Iwona Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7042, LIMA), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Jean-Marc Strub
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg et CNRS (UMR 7178, IPHC), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg et CNRS (UMR 7178, IPHC), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Marine Rémy
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7042, LIMA), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Emeric Wasielewski
- Plateforme RMN Cronenbourg, Université de Strasbourg et CNRS (UMR 7042, LIMA) Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Rym Abidi
- Laboratoire d'Applications de la Chimie aux Ressources et Substances Naturelles et l'Environnement, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna Bizerte, Tunisia
| | - Jean-François Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7042, LIMA), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| |
Collapse
|
11
|
Kauerhof D, Riebe J, Vonnemann CJ, Thiele M, Jansen D, Niemeyer J. Heterobifunctional rotaxanes featuring two chiral subunits - synthesis and application in asymmetric organocatalysis. Chem Commun (Camb) 2024; 60:2393-2396. [PMID: 38323328 DOI: 10.1039/d3cc05482a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Rotaxanes can serve as scaffolds for the generation of bifunctional catalysts. We have now generated acid-base functionalized rotaxanes featuring two chiral subunits. The mechanical bond leads to increased reaction rates and also to strongly altered enantioselectivites in comparison to the non-interlocked control catalysts.
Collapse
Affiliation(s)
- Dana Kauerhof
- Faculty of Chemistry (Organic Chemistry) and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45141 Essen, Germany.
| | - Jan Riebe
- Faculty of Chemistry (Organic Chemistry) and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45141 Essen, Germany.
| | - Christoph J Vonnemann
- Faculty of Chemistry (Organic Chemistry) and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45141 Essen, Germany.
| | - Maike Thiele
- Faculty of Chemistry (Organic Chemistry) and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45141 Essen, Germany.
| | - Dennis Jansen
- Faculty of Chemistry (Organic Chemistry) and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45141 Essen, Germany.
| | - Jochen Niemeyer
- Faculty of Chemistry (Organic Chemistry) and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45141 Essen, Germany.
| |
Collapse
|
12
|
Puigcerver J, Marin-Luna M, Iglesias-Sigüenza J, Alajarin M, Martinez-Cuezva A, Berna J. Mechanically Planar-to-Point Chirality Transmission in [2]Rotaxanes. J Am Chem Soc 2024; 146:2882-2887. [PMID: 38266249 PMCID: PMC10859924 DOI: 10.1021/jacs.3c11611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Herein we describe an effective transmission of chirality, from mechanically planar chirality to point chirality, in hydrogen-bonded [2]rotaxanes. A highly selective mono-N-methylation of one (out of four) amide N atom at the macrocyclic counterpart of starting achiral rotaxanes generates mechanically planar chirality. Followed by chiral resolution, both enantiomers were subjected to a base-promoted intramolecular cyclization, where their interlocked threads were transformed into new lactam moieties. As a matter of fact, the mechanically planar chiral information was effectively transferred to the resulting stereocenters (covalent chirality) of the newly formed heterocycles. Upon removing the entwined macrocycle, the final lactams were obtained with high enantiopurity.
Collapse
Affiliation(s)
- Julio Puigcerver
- Departamento
de Quimica Organica, Facultad de Quimica, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Marta Marin-Luna
- Departamento
de Quimica Organica, Facultad de Quimica, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Javier Iglesias-Sigüenza
- Departamento
de Quimica Organica and Centro de Innovacion en Quimica Avanzada (ORFEO-CINQA), Universidad de Sevilla, E-41012 Sevilla, Spain
| | - Mateo Alajarin
- Departamento
de Quimica Organica, Facultad de Quimica, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Alberto Martinez-Cuezva
- Departamento
de Quimica Organica, Facultad de Quimica, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Jose Berna
- Departamento
de Quimica Organica, Facultad de Quimica, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| |
Collapse
|
13
|
Bąk KM, Trzaskowski B, Chmielewski MJ. Anion-templated synthesis of a switchable fluorescent [2]catenane with sulfate sensing capability. Chem Sci 2024; 15:1796-1809. [PMID: 38303949 PMCID: PMC10829038 DOI: 10.1039/d3sc05086f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/16/2023] [Indexed: 02/03/2024] Open
Abstract
Anion templation strategies have facilitated the synthesis of various catenane and rotaxane hosts capable of strong and selective binding of anions in competitive solvents. However, this approach has primarily relied on positively charged precursors, limiting the structural diversity and the range of potential applications of the anion-templated mechanically interlocked molecules. Here we demonstrate the synthesis of a rare electroneutral [2]catenane using a powerful, doubly charged sulfate template and a complementary diamidocarbazole-based hydrogen bonding precursor. Owing to the unique three-dimensional hydrogen bonding cavity and the embedded carbazole fluorophores, the resulting catenane receptor functions as a sensitive fluorescent turn-ON sensor for the highly hydrophilic sulfate, even in the presence of a large excess of water. Importantly, the [2]catenane exhibits enhanced binding affinity and selectivity for sulfate over its parent macrocycle and other acyclic diamidocarbazole-based receptors. We demonstrate also, for the first time, that the co-conformation of the catenane may be controlled by reversible acid/base induced protonation and deprotonation of the anionic template, SO42-. This approach pioneers a new strategy to induce molecular motion of interlocked components using switchable anionic templates.
Collapse
Affiliation(s)
- Krzysztof M Bąk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | - Bartosz Trzaskowski
- Centre of New Technologies, University of Warsaw Banacha 2c 02-097 Warsaw Poland
| | - Michał J Chmielewski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| |
Collapse
|
14
|
Tsai CY, Cheng HT, Chiu SH. Improbable Rotaxanes Constructed From Surrogate Malonate Rotaxanes as Encircled Methylene Synthons. Angew Chem Int Ed Engl 2023; 62:e202308974. [PMID: 37712453 DOI: 10.1002/anie.202308974] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
We have developed a new approach for the synthesis of "improbable" rotaxanes by using malonate-centered rotaxanes as interlocked surrogate precursors. Here, the desired dumbbell-shaped structure can be assembled from two different, completely separate, portions, with the only residual structure introduced from the malonate surrogate being a methylene group. We have synthesized improbable [2]- and [3]rotaxanes with all-hydrocarbon dumbbell-shaped components to demonstrate the potential structural flexibility and scope of the guest species that can be interlocked when using this approach.
Collapse
Affiliation(s)
- Chi-You Tsai
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | - Hung-Te Cheng
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | - Sheng-Hsien Chiu
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| |
Collapse
|
15
|
Tseng IC, Zhang MX, Kang SL, Chiu SH. An Anion-Switchable Dual-Function Rotaxane Catalyst. Angew Chem Int Ed Engl 2023; 62:e202309889. [PMID: 37670563 DOI: 10.1002/anie.202309889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
In situ switching of the associated anions of a rotaxane catalyst between Cl- and TFPB- exposes its dialkylammonium and imidazolium stations, respectively, thereby selectively catalyzing the reactions of a mixture of trans-cinnamaldehyde and an aliphatic thiol to yield the Michael adduct and the thioacetal product, respectively.
Collapse
Affiliation(s)
- I-Cheng Tseng
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | - Min-Xuan Zhang
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | - Shih-Lun Kang
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | - Sheng-Hsien Chiu
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| |
Collapse
|
16
|
Saura-Sanmartin A, Lopez-Sanchez J, Lopez-Leonardo C, Pastor A, Berna J. Exploring the Chemistry of the Mechanical Bond: Synthesis of a [2]Rotaxane through Multicomponent Reactions. JOURNAL OF CHEMICAL EDUCATION 2023; 100:3355-3363. [PMID: 37720524 PMCID: PMC10501439 DOI: 10.1021/acs.jchemed.3c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/10/2023] [Indexed: 09/19/2023]
Abstract
The synthesis of a [2]rotaxane through three- or five-component coupling reactions has been adapted to an organic chemistry experiment for upper-division students. The experimental procedure addresses the search for the most favorable reaction conditions for the synthesis of the interlocked compound, which is obtained in a yield of up to 71%. Moreover, the interlocked nature of the rotaxane is proven by NMR spectroscopy. The content of the sessions has been designed on the basis of a proactive methodology whereby upper-division undergraduate students have a dynamic role. The laboratory experience not only introduces students to the chemistry of the mechanical bond but also reinforces their previous knowledge of basic organic laboratory procedures and their skills with structural elucidation techniques such as NMR and FT-IR spectroscopies. The experiment has been designed in such a customizable way that both experimental procedures and laboratory material can be adapted to a wide range of undergraduate course curricula.
Collapse
Affiliation(s)
- Adrian Saura-Sanmartin
- Departamento de Química
Orgánica, Facultad de Química, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Jorge Lopez-Sanchez
- Departamento de Química
Orgánica, Facultad de Química, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Carmen Lopez-Leonardo
- Departamento de Química
Orgánica, Facultad de Química, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Aurelia Pastor
- Departamento de Química
Orgánica, Facultad de Química, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Jose Berna
- Departamento de Química
Orgánica, Facultad de Química, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| |
Collapse
|
17
|
Zhang MX, Cheng HT, Chiu SH. Dual-Way-Switchable Ester Rotaxanes Constructed Using the Recognition of Malonate Diesters. Org Lett 2023. [PMID: 37367218 DOI: 10.1021/acs.orglett.3c01666] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Malonate diesters can thread into the cavity of a di(ethylene glycol)-containing macrocycle under the templating effect of a Na+ ion; the corresponding rotaxanes can be synthesized with good efficiency by applying several stoppering reactions. A molecular switch, in which the interlocked macrocycle was moved between two rarely used stations (i.e., malonate and TAA) through the addition of acid/base and the presence/absence of Na+ ions, was constructed using this new recognition system.
Collapse
Affiliation(s)
- Min-Xuan Zhang
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| | - Hung-Te Cheng
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| | - Sheng-Hsien Chiu
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| |
Collapse
|
18
|
Wilmore JT, Cheong Tse Y, Docker A, Whitehead C, Williams CK, Beer PD. Dynamic Metalloporphyrin-Based [2]Rotaxane Molecular Shuttles Stimulated by Neutral Lewis Base and Anion Coordination. Chemistry 2023; 29:e202300608. [PMID: 36929530 PMCID: PMC10947143 DOI: 10.1002/chem.202300608] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/18/2023]
Abstract
A series of dynamic metalloporphyrin [2]rotaxane molecular shuttles comprising of bis-functionalised Zn(II) porphyrin axle and pyridyl functionalised macrocycle components are prepared in high yield via active metal template synthetic methodology. Extensive variable temperature 1 H NMR and quantitative UV-Vis spectroscopic titration studies demonstrate dynamic macrocycle translocation is governed by an inter-component co-ordination interaction between the macrocycle pyridyl and axle Zn(II) metalloporphyrin, which serves to bias a 'resting state' co-conformation. The dynamic shuttling behaviour of the interlocked structures is dramatically inhibited by the addition of a neutral Lewis base such as pyridine, but can also be tuned via post-synthetic rotaxane demetallation of the porphyrin axle core to give free-base, or upon subsequent metallation, Ni(II) [2]rotaxane analogues. Importantly, the Lewis acidic Zn(II) porphyrin axle component is also capable of coordinating anions which induces mechanical bond shuttling behaviour resulting in a novel optical sensing response.
Collapse
Affiliation(s)
- Jamie T. Wilmore
- Department of ChemistryUniversity of Oxford Chemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Yuen Cheong Tse
- Department of ChemistryUniversity of Oxford Chemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Andrew Docker
- Department of ChemistryUniversity of Oxford Chemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Caspar Whitehead
- Department of ChemistryUniversity of Oxford Chemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Charlotte K. Williams
- Department of ChemistryUniversity of Oxford Chemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Paul D. Beer
- Department of ChemistryUniversity of Oxford Chemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
19
|
Mo X, Deng Y, Lai SKM, Gao X, Yu HL, Low KH, Guo Z, Wu HL, Au-Yeung HY, Tse ECM. Mechanical Interlocking Enhances the Electrocatalytic Oxygen Reduction Activity and Selectivity of Molecular Copper Complexes. J Am Chem Soc 2023; 145:6087-6099. [PMID: 36853653 DOI: 10.1021/jacs.2c10988] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Efficient O2 reduction reaction (ORR) for selective H2O generation enables advanced fuel cell technology. Nonprecious metal catalysts are viable and attractive alternatives to state-of-the-art Pt-based materials that are expensive. Cu complexes inspired by Cu-containing O2 reduction enzymes in nature are yet to reach their desired ORR catalytic performance. Here, the concept of mechanical interlocking is introduced to the ligand architecture to enforce dynamic spatial restriction on the Cu coordination site. Interlocked catenane ligands could govern O2 binding mode, promote electron transfer, and facilitate product elimination. Our results show that ligand interlocking as a catenane steers the ORR selectivity to H2O as the major product via the 4e- pathway, rivaling the selectivity of Pt, and boosts the onset potential by 130 mV, the mass activity by 1.8 times, and the turnover frequency by 1.5 fold as compared to the noninterlocked counterpart. Our Cu catenane complex represents one of the first examples to take advantage of mechanical interlocking to afford electrocatalysts with enhanced activity and selectivity. The mechanistic insights gained through this integrated experimental and theoretical study are envisioned to be valuable not just to the area of ORR energy catalysis but also with broad implications on interlocked metal complexes that are of critical importance to the general fields in redox reactions involving proton-coupled electron transfer steps.
Collapse
Affiliation(s)
- Xiaoyong Mo
- Department of Chemistry, HKU-CAS Joint Laboratory of New Materials, University of Hong Kong, Hong Kong, China
| | - Yulin Deng
- Department of Chemistry, HKU-CAS Joint Laboratory of New Materials, University of Hong Kong, Hong Kong, China
| | - Samuel Kin-Man Lai
- Department of Chemistry, HKU-CAS Joint Laboratory of New Materials, University of Hong Kong, Hong Kong, China
| | - Xutao Gao
- Department of Chemistry, HKU-CAS Joint Laboratory of New Materials, University of Hong Kong, Hong Kong, China
| | - Hung-Ling Yu
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei 10617, Taiwan
| | - Kam-Hung Low
- Department of Chemistry, HKU-CAS Joint Laboratory of New Materials, University of Hong Kong, Hong Kong, China
| | - Zhengxiao Guo
- Department of Chemistry, HKU-CAS Joint Laboratory of New Materials, University of Hong Kong, Hong Kong, China
- HKU Zhejiang Institute of Research and Innovation, Hangzhou 311305, People's Republic of China
| | - Heng-Liang Wu
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei 10617, Taiwan
| | - Ho Yu Au-Yeung
- Department of Chemistry, HKU-CAS Joint Laboratory of New Materials, University of Hong Kong, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry, University of Hong Kong, Hong Kong, China
| | - Edmund C M Tse
- Department of Chemistry, HKU-CAS Joint Laboratory of New Materials, University of Hong Kong, Hong Kong, China
- HKU Zhejiang Institute of Research and Innovation, Hangzhou 311305, People's Republic of China
| |
Collapse
|
20
|
Saura‐Sanmartin A, Schalley CA. The Mobility of Homomeric Lasso‐ and Daisy Chain‐Like Rotaxanes in Solution and in the Gas Phase as a means to Study Structure and Switching Behaviour. Isr J Chem 2023. [DOI: 10.1002/ijch.202300022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Adrian Saura‐Sanmartin
- Departamento de Química Orgánica Facultad de Química Universidad de Murcia Calle Campus Universitario, 5 30100 Murcia Spain
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 20 14195 Berlin Germany
| | - Christoph A. Schalley
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 20 14195 Berlin Germany
| |
Collapse
|
21
|
Mondal D, Kundu S, Elramadi E, Valiyev I, Schmittel M. Self-Healing of a Copper(I) [2]Rotaxane Shuttle Monitored by Fluorescence. Org Lett 2023; 25:933-937. [PMID: 36735754 DOI: 10.1021/acs.orglett.2c04237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We demonstrate self-healing of the shuttling dynamics of a molecular machine operating by negative feedback. When zinc(II) was added to the copper(I)-loaded [2]rotaxane shuttle [Cu(R)]+, copper(I) was replaced, thereby generating the static zinc(II)-loaded [2]rotaxane [Zn(R)]2+. Loss of the dynamics was accompanied by a fluorescence enhancement at λ = 364 nm. Notably, the released copper(I) ions catalyzed the formation of a bis-triazole ligand, which selectively captured zinc(II). As a result, the copper(I) was restored in the rotaxane, and the dynamic shuttling motion of [Cu(R)]+ was regained. The healing was conveniently followed by diagnostic fluorescence changes.
Collapse
Affiliation(s)
- Debabrata Mondal
- Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Organische Chemie I, University of Siegen, Adolf Reichwein Str. 2, D-57068 Siegen, Germany
| | - Sohom Kundu
- Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Organische Chemie I, University of Siegen, Adolf Reichwein Str. 2, D-57068 Siegen, Germany
| | - Emad Elramadi
- Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Organische Chemie I, University of Siegen, Adolf Reichwein Str. 2, D-57068 Siegen, Germany
| | - Isa Valiyev
- Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Organische Chemie I, University of Siegen, Adolf Reichwein Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Organische Chemie I, University of Siegen, Adolf Reichwein Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
22
|
Lopez-Leonardo C, Saura-Sanmartin A, Marin-Luna M, Alajarin M, Martinez-Cuezva A, Berna J. Ring-to-Thread Chirality Transfer in [2]Rotaxanes for the Synthesis of Enantioenriched Lactams. Angew Chem Int Ed Engl 2022; 61:e202209904. [PMID: 35916122 DOI: 10.1002/anie.202209904] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 01/07/2023]
Abstract
The synthesis of chiral mechanically interlocked molecules has attracted a lot of attention in the last few years, with applications in different fields, such as asymmetric catalysis or sensing. Herein we describe the synthesis of orientational mechanostereoisomers, which include a benzylic amide macrocycle with a stereogenic center, and nonsymmetric N-(arylmethyl)fumaramides as the axis. The base-promoted cyclization of the initial fumaramide thread allows enantioenriched value-added compounds, such as lactams of different ring sizes and amino acids, to be obtained. The chiral information is effectively transmitted across the mechanical bond from the encircling ring to the interlocked lactam. High levels of enantioselectivity and full control of the regioselectivity of the final cyclic compounds are attained.
Collapse
Affiliation(s)
- Carmen Lopez-Leonardo
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain
| | - Adrian Saura-Sanmartin
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain
| | - Marta Marin-Luna
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain
| | - Mateo Alajarin
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain
| | - Alberto Martinez-Cuezva
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain
| | - Jose Berna
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain
| |
Collapse
|
23
|
Maynard JR, Gallagher P, Lozano D, Butler P, Goldup SM. Mechanically axially chiral catenanes and noncanonical mechanically axially chiral rotaxanes. Nat Chem 2022; 14:1038-1044. [PMID: 35760959 PMCID: PMC7613450 DOI: 10.1038/s41557-022-00973-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/12/2022] [Indexed: 12/30/2022]
Abstract
Chirality typically arises in molecules because of a rigidly chiral arrangement of covalently bonded atoms. Less generally appreciated is that chirality can arise when molecules are threaded through one another to create a mechanical bond. For example, when two macrocycles with chemically distinct faces are joined to form a catenane, the structure is chiral, although the rings themselves are not. However, enantiopure mechanically axially chiral catenanes in which the mechanical bond provides the sole source of stereochemistry have not been reported. Here we re-examine the symmetry properties of these molecules and in doing so identify a straightforward route to access them from simple chiral building blocks. Our analysis also led us to identify an analogous but previously unremarked upon rotaxane stereogenic unit, which also yielded to our co-conformational auxiliary approach. With methods to access mechanically axially chiral molecules in hand, their properties and applications can now be explored.
Collapse
|
24
|
Lopez-Leonardo C, Saura-Sanmartin A, Marin-Luna M, Alajarin M, Martinez-Cuezva A, Berna J. Ring‐to‐Thread Chirality Transfer in [2]Rotaxanes for the Synthesis of Enantioenriched Lactams. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Marta Marin-Luna
- Universidad de Murcia Química Orgánica Campus de Espinardo 30100 Murcia SPAIN
| | - Mateo Alajarin
- Universidad de Murcia Química Orgánica Campus de Espinardo 30100 Murcia SPAIN
| | | | - Jose Berna
- Universidad de Murcia Quimica Organica Campus de Espinardo 30100 Murcia SPAIN
| |
Collapse
|
25
|
Rodríguez-Rubio A, Savoini A, Modicom F, Butler P, Goldup SM. A Co-conformationally "Topologically" Chiral Catenane. J Am Chem Soc 2022; 144:11927-11932. [PMID: 35763555 PMCID: PMC9348828 DOI: 10.1021/jacs.2c02029] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Catenanes composed of two achiral rings that are oriented (Cnh symmetry) because of the sequence of atoms they contain are referred to as topologically chiral. Here, we present the synthesis of a highly enantioenriched catenane containing a related but overlooked "co-conformationally 'topologically' chiral" stereogenic unit, which arises when a bilaterally symmetric Cnv ring is desymmetrized by the position of an oriented macrocycle.
Collapse
Affiliation(s)
- Arnau Rodríguez-Rubio
- Chemistry, University
of Southampton, Highfield,
Southampton SO17 1BJ, United
Kingdom
| | - Andrea Savoini
- Chemistry, University
of Southampton, Highfield,
Southampton SO17 1BJ, United
Kingdom
| | - Florian Modicom
- Chemistry, University
of Southampton, Highfield,
Southampton SO17 1BJ, United
Kingdom
| | - Patrick Butler
- Chemistry, University
of Southampton, Highfield,
Southampton SO17 1BJ, United
Kingdom
| | - Stephen M. Goldup
- Chemistry, University
of Southampton, Highfield,
Southampton SO17 1BJ, United
Kingdom
| |
Collapse
|
26
|
Saura-Sanmartin A, Pastor A, Martinez-Cuezva A, Cutillas-Font G, Alajarin M, Berna J. Mechanically interlocked molecules in metal-organic frameworks. Chem Soc Rev 2022; 51:4949-4976. [PMID: 35612363 DOI: 10.1039/d2cs00167e] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanically interlocked molecules (MIMs) have great potential in the development of molecular machinery due to their intercomponent dynamics. The incorporation of these molecules in a condensed phase makes it possible to take advantage of the control of the motion of the components at the macroscopic level. Metal-organic frameworks (MOFs) are postulated as ideal supports for intertwined molecules. This review covers the chemistry of the mechanical bond incorporated into metal-organic frameworks from the seminal studies to the latest published advances. We first describe some fundamental concepts of MIMs and MOFs. Next, we summarize the advances in the incorporation of rotaxanes and catenanes inside MOF matrices. Finally, we conclude by showing the study of the rotaxane dynamics in MOFs and the operation of some stimuli-responsive MIMs within MOFs. In addition to emphasising some selected examples, we offer a critical opinion on the state of the art of this research field, remarking the key points on which the future of these systems should be focused.
Collapse
Affiliation(s)
- Adrian Saura-Sanmartin
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| | - Aurelia Pastor
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| | - Alberto Martinez-Cuezva
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| | - Guillermo Cutillas-Font
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| | - Mateo Alajarin
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| | - Jose Berna
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| |
Collapse
|
27
|
Li X, Xie J, Du Z, Yu R, Jia J, Chen Z, Zhu K. 2D and 3D metal-organic frameworks constructed with a mechanically rigidified [3]rotaxane ligand. Chem Commun (Camb) 2022; 58:5829-5832. [PMID: 35388851 DOI: 10.1039/d2cc01198k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mechanically interlocked [3]rotaxane was newly designed, synthesized, and employed as a ligand for constructing metal-organic frameworks (MOFs). The nano-confinement by macrocycles forces the soft bis-isophthalate axle into a pseudo-rigid conformation and coordinates to zinc(II) ions, affording a two- or three-dimensional MOF under controlled conditions. The 2D MOF exhibits a neutral framework with a periodic puckering sheet structure, while an anionic framework with a pts topology was observed for the 3D MOF. The phase purity of both bulk materials was confirmed by powder X-ray diffraction. Thermogravimetric analysis reveals that both materials are stable up to 250 °C. The success of applying mechanical bonds to rigidify flexible ligands provides new insights for the design of metal-organic frameworks.
Collapse
Affiliation(s)
- Xia Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Jialin Xie
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Zhenglin Du
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Ruiyang Yu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Jianhua Jia
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Zhong Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
| | - Kelong Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| |
Collapse
|
28
|
Tang Y, Luo Y, Xiang J, He Y, Fan Q. Rhodium‐Catalyzed ON‐OFF Switchable Hydrogenation Using a Molecular Shuttle Based on a [2]Rotaxane with a Phosphine Ligand. Angew Chem Int Ed Engl 2022; 61:e202200638. [DOI: 10.1002/anie.202200638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Yu‐Ping Tang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yi‐Er Luo
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jun‐Feng Xiang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan‐Mei He
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
| | - Qing‐Hua Fan
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
29
|
Au-Yeung HY, Deng Y. Distinctive features and challenges in catenane chemistry. Chem Sci 2022; 13:3315-3334. [PMID: 35432874 PMCID: PMC8943846 DOI: 10.1039/d1sc05391d] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/04/2022] [Indexed: 11/21/2022] Open
Abstract
From being an aesthetic molecular object to a building block for the construction of molecular machines, catenanes and related mechanically interlocked molecules (MIMs) continue to attract immense interest in many research areas. Catenane chemistry is closely tied to that of rotaxanes and knots, and involves concepts like mechanical bonds, chemical topology and co-conformation that are unique to these molecules. Yet, because of their different topological structures and mechanical bond properties, there are some fundamental differences between the chemistry of catenanes and that of rotaxanes and knots although the boundary is sometimes blurred. Clearly distinguishing these differences, in aspects of bonding, structure, synthesis and properties, between catenanes and other MIMs is therefore of fundamental importance to understand their chemistry and explore the new opportunities from mechanical bonds.
Collapse
Affiliation(s)
- Ho Yu Au-Yeung
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Yulin Deng
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
30
|
Tang Y, Luo Y, Xiang J, He Y, Fan Q. Rhodium‐Catalyzed ON‐OFF Switchable Hydrogenation Using a Molecular Shuttle Based on a [2]Rotaxane with a Phosphine Ligand. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yu‐Ping Tang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yi‐Er Luo
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jun‐Feng Xiang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan‐Mei He
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
| | - Qing‐Hua Fan
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
31
|
Cui Z, Gao X, Lin YJ, Jin GX. Stereoselective Self-Assembly of Complex Chiral Radial [5]Catenanes Using Half-Sandwich Rhodium/Iridium Building Blocks. J Am Chem Soc 2022; 144:2379-2386. [PMID: 35080385 DOI: 10.1021/jacs.1c13168] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, we have successfully achieved the stereoselective synthesis of two chiral radial [5]catenanes in a single step through the self-assembly of bidentate ligands containing l-alanine residues and binuclear half-sandwich organometallic rhodium(III)/iridium(III) clips. Remarkably, these two chiral radial [5]catenanes exhibit complex stereochemical structures as revealed by single-crystal X-ray diffraction. The eight binuclear units and eight bidentate ligands in their solid-state structures all exhibit a single planar chirality, and the interlocking between molecular macrocycles exhibits a single co-conformational mechanical helical chirality. This indicates that the introduction of the point chirality in the ligands enables the efficient stereoselective construction of mechanically interlocked molecules. Furthermore, by using ligands containing d-alanine residues, radial [5]catenanes with the opposite planar chirality and opposite co-conformational mechanical helical chirality have also been obtained.
Collapse
Affiliation(s)
- Zheng Cui
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Xiang Gao
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Yue-Jian Lin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
32
|
Heard AW, Suárez JM, Goldup SM. Controlling catalyst activity, chemoselectivity and stereoselectivity with the mechanical bond. Nat Rev Chem 2022; 6:182-196. [PMID: 37117433 DOI: 10.1038/s41570-021-00348-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2021] [Indexed: 12/16/2022]
Abstract
Mechanically interlocked molecules, such as rotaxanes and catenanes, are receiving increased attention as scaffolds for the development of new catalysts, driven by both their increasing accessibility and high-profile examples of the mechanical bond delivering desirable behaviours and properties. In this Review, we survey recent advances in the catalytic applications of mechanically interlocked molecules organized by the effect of the mechanical bond on key catalytic properties, namely, activity, chemoselectivity and stereoselectivity, and focus on how the mechanically bonded structure leads to the observed behaviour. Our aim is to inspire future investigations of mechanically interlocked catalysts, including those outside of the supramolecular community.
Collapse
|
33
|
Al-Azemi TF, Vinodh M. External-stimulus-triggered conformational inversion of mechanically self-locked pseudo[1]catenane and gemini-catenanes based on A1/A2-alkyne-azide-difunctionalized pillar[5]arenes. RSC Adv 2022; 12:1797-1806. [PMID: 35425178 PMCID: PMC8979204 DOI: 10.1039/d1ra09043g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/04/2022] [Indexed: 11/21/2022] Open
Abstract
Herein, we report a methodology for constructing mechanically self-locked molecules (MSMs) through the efficient intramolecular copper(i)-catalyzed alkyne–azide cycloaddition (CuAAC) of self-threaded A1/A2-azido-propargyl-difunctionalized pillar[5]arenes. The obtained monomeric “pseudo[1]catenane” and dimeric “gemini-catenane” were isolated and fully characterized using mass spectrometry, nuclear magnetic resonance (NMR) spectroscopy, and X-ray crystallography. Upon investigation by 1H NMR spectroscopy in chloroform, the observed motion for the threaded ring in the pseudo[1]catenane was reversibly controlled by the temperature, as demonstrated by variable-temperature 1H NMR studies. Two gemini-catenane stereoisomers were also isolated in which the two pillar[5]arene moieties threaded by two decyl chains were aligned in different topologies. Furthermore, the conformational inversion of pseudo[1]catenane and the gemini-catenanes triggered by solvents and guests was investigated and probed using 1H NMR spectroscopy, isothermal titration calorimetry, and single-crystal X-ray analysis. Mechanically self-locked molecules (MSMs) through the efficient intramolecular copper(i)-catalyzed alkyne–azide cycloaddition (CuAAC) of self-threaded A1/A2-azido-propargyl-difunctionalized pillar[5]arenes.![]()
Collapse
Affiliation(s)
- Talal F Al-Azemi
- Chemistry Department, Kuwait University P.O. Box 5969, Safat 13060 Kuwait +965-2481-6482 +965-2498-554
| | - Mickey Vinodh
- Chemistry Department, Kuwait University P.O. Box 5969, Safat 13060 Kuwait +965-2481-6482 +965-2498-554
| |
Collapse
|
34
|
Perez JDM, Alajarin M, Martinez-Cuezva A, Berna J. Modulating the Catalytic Activity by the Mechanical Bond: Organocatalysis with Polyamide [2]Rotaxanes bearing a Secondary Amino Function at the Thread. Org Chem Front 2022. [DOI: 10.1039/d2qo00481j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The modulation of the catalytic activity of degenerate succinamide-based [2]rotaxanes by changes at their macrocyclic component is disclosed herein. These systems, bearing an acyclic secondary amine function at the thread...
Collapse
|
35
|
Spring S, Goggins S, Frost CG. Stimuli Responsive Asymmetric Catalysis by Triggered Pseudo-Enantiomeric Proligand Release. Org Biomol Chem 2022; 20:2194-2199. [DOI: 10.1039/d2ob00196a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Complex stimuli responsive systems are synthetic analogues of natural cell environments, and the basis for molecular machines and computing. A dual psuedo-enantiomer system was concieved, where the combination of two...
Collapse
|
36
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
37
|
Masai H, Oka Y, Terao J. Precision synthesis of linear oligorotaxanes and polyrotaxanes achieving well-defined positions and numbers of cyclic components on the axle. Chem Commun (Camb) 2021; 58:1644-1660. [PMID: 34927653 DOI: 10.1039/d1cc03507j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Interest in macromolecules has increased because of their functional properties, which can be tuned using precise organic synthetic methods. For example, desired functions have been imparted by controlling the nanoscale structures of such macromolecules. In particular, compounds with interlocked structures, including rotaxanes, have attracted attention because of their unique supramolecular structures. In such supramolecular structures, the mobility and freedom of the macrocycles are restricted by an axle and dependent on those of other macrocycles, which imparts unique functions to these threaded structures. Recently, methods for the ultrafine engineering and synthesis, as well as functions, of "defined" rotaxane structures that are not statistically dispersed on the axle (i.e., control over the number and position of cyclic molecules) have been reported. Various synthetic strategies allow access to such well-defined linear oligo- and polyrotaxanes, including [1]rotaxanes and [n]rotaxanes (mostly n > 3). These state-of-the-art synthetic methods have resulted in unique functions of these oligo-and polyrotaxane materials. Herein, we review the effective synthetic protocols and functions of precisely constructed one-dimensional oligomers and polymers bearing defined threaded structures, and discuss the latest reports and trends.
Collapse
Affiliation(s)
- Hiroshi Masai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Japan.
| | - Yuki Oka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Japan.
| | - Jun Terao
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Japan.
| |
Collapse
|
38
|
A chiral interlocking auxiliary strategy for the synthesis of mechanically planar chiral rotaxanes. Nat Chem 2021; 14:179-187. [PMID: 34845345 PMCID: PMC7612332 DOI: 10.1038/s41557-021-00825-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/23/2021] [Indexed: 12/03/2022]
Abstract
Rotaxanes can display molecular chirality solely due to the mechanical bond between the axle and encircling macrocycle without the presence of covalent stereogenic units. However, the synthesis of such molecules remains challenging. We have discovered a combination of reaction partners that function as a chiral interlocking auxiliary to both orientate a macrocycle and, effectively, load it onto a new axle. Here we use these substrates to demonstrate the potential of a chiral interlocking auxiliary strategy for the synthesis of mechanically planar chiral rotaxanes by producing a range of examples in high enantiopurity (93–99% e.e.), including so-called ‘impossible’ rotaxanes whose axles lack any functional groups that would allow their direct synthesis by other means. Intriguingly, by varying the order of bond-forming steps, we can effectively choose which end of an axle the macrocycle is loaded onto, enabling the synthesis of both hands of a single target using the same reactions and building blocks.
Collapse
|
39
|
Gauthier M, Waelès P, Coutrot F. Post-Synthetic Macrocyclization of Rotaxane Building Blocks. Chempluschem 2021; 87:e202100458. [PMID: 34811956 DOI: 10.1002/cplu.202100458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/11/2021] [Indexed: 11/06/2022]
Abstract
Although not often encountered, cyclic interlocked molecules are appealing molecular targets because of their restrained tridimensional structure which is related to both the cyclic and interlocked shapes. Interlocked molecules such as rotaxane building blocks may be good candidates for post-synthetic intramolecular cyclization if the preservation of the mechanical bond ensures the interlocked architecture throughout the reaction. This is obviously the case if the modification does not involve the cleavage of either the macrocycle's main chain or the encircled part of the axle. However, among the post-synthetic reactions, the chemical linkage between two reactive sites belonging to embedded elements of rotaxanes still consists of an underexploited route to interlocked cyclic molecules. This Review lists the rare examples of macrocyclization through chemical connection between reactive sites belonging to a surrounding macrocycle and/or an encircled axle of interlocked rotaxanes.
Collapse
Affiliation(s)
- Maxime Gauthier
- Supramolecular Machines and Architectures Team, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Philip Waelès
- Supramolecular Machines and Architectures Team, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Frédéric Coutrot
- Supramolecular Machines and Architectures Team, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
40
|
Borodin O, Shchukin Y, Robertson CC, Richter S, von Delius M. Self-Assembly of Stimuli-Responsive [2]Rotaxanes by Amidinium Exchange. J Am Chem Soc 2021; 143:16448-16457. [PMID: 34559523 PMCID: PMC8517971 DOI: 10.1021/jacs.1c05230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 01/29/2023]
Abstract
Advances in supramolecular chemistry are often underpinned by the development of fundamental building blocks and methods enabling their interconversion. In this work, we report the use of an underexplored dynamic covalent reaction for the synthesis of stimuli-responsive [2]rotaxanes. The formamidinium moiety lies at the heart of these mechanically interlocked architectures, because it enables both dynamic covalent exchange and the binding of simple crown ethers. We demonstrated that the rotaxane self-assembly follows a unique reaction pathway and that the complex interplay between crown ether and thread can be controlled in a transient fashion by addition of base and fuel acid. Dynamic combinatorial libraries, when exposed to diverse nucleophiles, revealed a profound stabilizing effect of the mechanical bond as well as intriguing reactivity differences between seemingly similar [2]rotaxanes.
Collapse
Affiliation(s)
- Oleg Borodin
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Yevhenii Shchukin
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Craig C. Robertson
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Stefan Richter
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Max von Delius
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
41
|
Affiliation(s)
- Arthur H. G. David
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
| | - J. Fraser Stoddart
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
- Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310021 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
| |
Collapse
|
42
|
McCarney EP, Lovitt JI, Gunnlaugsson T. Mechanically Interlocked Chiral Self-Templated [2]Catenanes from 2,6-Bis(1,2,3-triazol-4-yl)pyridine (btp) Ligands. Chemistry 2021; 27:12052-12057. [PMID: 34106499 PMCID: PMC8457180 DOI: 10.1002/chem.202101773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 12/24/2022]
Abstract
We report the efficient self-templated formation of optically active 2,6-bis(1,2,3-triazol-4-yl)pyridine (btp) derived homocircuit [2]catenane enantiomers. This represents the first example of the enantiopure formation of chiral btp homocircuit [2]catenanes from starting materials consisting of a classical chiral element; X-ray diffraction crystallography enabled the structural characterization of the [2]catenane. The self-assembly reaction was monitored closely in solution facilitating the characterization of the pseudo-rotaxane reaction intermediate prior to mechanically interlocking the pre-organised system via ring-closing metathesis.
Collapse
Affiliation(s)
- Eoin P. McCarney
- School of Chemistryand SFI Synthesis and Solid State Pharmaceutical Centre (SSPC)Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin 2Ireland
| | - June I. Lovitt
- School of Chemistryand SFI Synthesis and Solid State Pharmaceutical Centre (SSPC)Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin 2Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistryand SFI Synthesis and Solid State Pharmaceutical Centre (SSPC)Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin 2Ireland
| |
Collapse
|
43
|
Olivo G, Capocasa G, Del Giudice D, Lanzalunga O, Di Stefano S. New horizons for catalysis disclosed by supramolecular chemistry. Chem Soc Rev 2021; 50:7681-7724. [PMID: 34008654 DOI: 10.1039/d1cs00175b] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The adoption of a supramolecular approach in catalysis promises to address a number of unmet challenges, ranging from activity (unlocking of novel reaction pathways) to selectivity (alteration of the innate selectivity of a reaction, e.g. selective functionalization of C-H bonds) and regulation (switch ON/OFF, sequential catalysis, etc.). Supramolecular tools such as reversible association and recognition, pre-organization of reactants and stabilization of transition states upon binding offer a unique chance to achieve the above goals disclosing new horizons whose potential is being increasingly recognized and used, sometimes reaching the degree of ripeness for practical use. This review summarizes the main developments that have opened such new frontiers, with the aim of providing a guide to researchers approaching the field. We focus on artificial supramolecular catalysts of defined stoichiometry which, under homogeneous conditions, unlock outcomes that are highly difficult if not impossible to attain otherwise, namely unnatural reactivity or selectivity and catalysis regulation. The different strategies recently explored in supramolecular catalysis are concisely presented, and, for each one, a single or very few examples is/are described (mainly last 10 years, with only milestone older works discussed). The subject is divided into four sections in light of the key design principle: (i) nanoconfinement of reactants, (ii) recognition-driven catalysis, (iii) catalysis regulation by molecular machines and (iv) processive catalysis.
Collapse
Affiliation(s)
- Giorgio Olivo
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Giorgio Capocasa
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Daniele Del Giudice
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Stefano Di Stefano
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| |
Collapse
|
44
|
Yang JX, Li Z, Gu XH, Zhan TG, Cui J, Zhang KD. A photogated photoswitchable [2]rotaxane based on orthogonal photoreactions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
45
|
Rajamalli P, Rizzi F, Li W, Jinks MA, Gupta AK, Laidlaw BA, Samuel IDW, Penfold TJ, Goldup SM, Zysman‐Colman E. Using the Mechanical Bond to Tune the Performance of a Thermally Activated Delayed Fluorescence Emitter*. Angew Chem Int Ed Engl 2021; 60:12066-12073. [PMID: 33666324 PMCID: PMC8251797 DOI: 10.1002/anie.202101870] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 12/12/2022]
Abstract
We report the characterization of rotaxanes based on a carbazole-benzophenone thermally activated delayed fluorescence luminophore. We find that the mechanical bond leads to an improvement in key photophysical properties of the emitter, notably an increase in photoluminescence quantum yield and a decrease in the energy difference between singlet and triplet states, as well as fine tuning of the emission wavelength, a feat that is difficult to achieve when using covalently bound substituents. Computational simulations, supported by X-ray crystallography, suggest that this tuning of properties occurs due to weak interactions between the axle and the macrocycle that are enforced by the mechanical bond. This work highlights the benefits of using the mechanical bond to refine existing luminophores, providing a new avenue for emitter optimization that can ultimately increase the performance of these molecules.
Collapse
Affiliation(s)
- Pachaiyappan Rajamalli
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
- Materials Research CentreIndian Institute of ScienceBangalore560012India
| | - Federica Rizzi
- ChemistryUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - Wenbo Li
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsFifeKY16 9SSUK
| | - Michael A. Jinks
- ChemistryUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - Abhishek Kumar Gupta
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsFifeKY16 9SSUK
| | - Beth A. Laidlaw
- Chemistry, School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Ifor D. W. Samuel
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsFifeKY16 9SSUK
| | - Thomas J. Penfold
- Chemistry, School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | | | - Eli Zysman‐Colman
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| |
Collapse
|
46
|
Rajamalli P, Rizzi F, Li W, Jinks MA, Gupta AK, Laidlaw BA, Samuel IDW, Penfold TJ, Goldup SM, Zysman‐Colman E. Using the Mechanical Bond to Tune the Performance of a Thermally Activated Delayed Fluorescence Emitter**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pachaiyappan Rajamalli
- Organic Semiconductor Centre EaStCHEM School of Chemistry University of St Andrews St Andrews Fife KY16 9ST UK
- Materials Research Centre Indian Institute of Science Bangalore 560012 India
| | - Federica Rizzi
- Chemistry University of Southampton Highfield Southampton SO17 1BJ UK
| | - Wenbo Li
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews St Andrews Fife KY16 9SS UK
| | - Michael A. Jinks
- Chemistry University of Southampton Highfield Southampton SO17 1BJ UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre EaStCHEM School of Chemistry University of St Andrews St Andrews Fife KY16 9ST UK
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews St Andrews Fife KY16 9SS UK
| | - Beth A. Laidlaw
- Chemistry, School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Ifor D. W. Samuel
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews St Andrews Fife KY16 9SS UK
| | - Thomas J. Penfold
- Chemistry, School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Stephen M. Goldup
- Chemistry University of Southampton Highfield Southampton SO17 1BJ UK
| | - Eli Zysman‐Colman
- Organic Semiconductor Centre EaStCHEM School of Chemistry University of St Andrews St Andrews Fife KY16 9ST UK
| |
Collapse
|
47
|
Lirio S, Shih YH, So PB, Liu LH, Yen YT, Furukawa S, Liu WL, Huang HY, Lin CH. Fast multipoint immobilization of lipase through chiral L-proline on a MOF as a chiral bioreactor. Dalton Trans 2021; 50:1866-1873. [PMID: 33470994 DOI: 10.1039/d0dt04081a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we describe the facile preparation of a chiral catalyst by the combination of the amino acid, l-proline (Pro), and the enzyme, porcine pancreas lipase (PPL), immobilized on a microporous metal-organic framework (PPL-Pro@MOF). The multipoint immobilization of PPL onto the MOF is made possible with the aid of Pro, which also provided a chiral environment for enhanced enantioselectivity. The application of the microporous MOF is pivotal in maintaining the catalytic activity of PPL, wherein it prevented the leaching of Pro during the catalytic reaction, leading to the enhanced activity of PPL. The prepared biocatalyst was applied in asymmetric carbon-carbon bond formation, demonstrating the potential of this simple approach for chemical transformations.
Collapse
Affiliation(s)
- Stephen Lirio
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan 32023, Taiwan
| | - Yung-Han Shih
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan 32023, Taiwan
| | - Pamela Berilyn So
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan 32023, Taiwan
| | - Li-Hao Liu
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan 32023, Taiwan
| | - Yun-Ting Yen
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan 32023, Taiwan
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Wan-Ling Liu
- College of Science, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan 32023, Taiwan
| | - Hsi-Ya Huang
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan 32023, Taiwan
| | - Chia-Her Lin
- Department of Chemistry, National Taiwan Normal University, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chow Rd., Taipei, 11676, Taiwan.
| |
Collapse
|
48
|
Enantioselective preparation of mechanically planar chiral rotaxanes by kinetic resolution strategy. Nat Commun 2021; 12:404. [PMID: 33452235 PMCID: PMC7811017 DOI: 10.1038/s41467-020-20372-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022] Open
Abstract
Asymmetric synthesis of mechanically planar chiral rotaxanes and topologically chiral catenanes has been a long-standing challenge in organic synthesis. Recently, an excellent strategy was developed based on diastereomeric synthesis of rotaxanes and catenanes with mechanical chirality followed by removal of the chiral auxiliary. On the other hand, its enantioselective approach has been quite limited. Here, we report enantioselective preparation of mechanically planar chiral rotaxanes by kinetic resolution of the racemates via remote asymmetric acylation of a hydroxy group in the axis component, which provides an unreacted enantiomer in up to >99.9% ee in 29% yield (the theoretical maximum yield of kinetic resolution of racemate is 50%). While the rotaxane molecules are expected to have conformational complexity, our original catalysts enabled to discriminate the mechanical chirality of the rotaxanes efficiently with the selectivity factors in up to 16. Since the discovery of mechanically planar chiral rotaxanes and topologically chiral catenanes, their asymmetric synthesis has been a long-standing challenge. Here, the authors report enantioselective preparation of mechanically planar chiral rotaxanes with up to 99.9% ee in 29% yield.
Collapse
|
49
|
Perez JDM, Puigcerver J, Orlando T, Pastor A, Martins MAP, Alajarin M, Martinez-Cuezva A, Berna J. Mechanical bonding activation in rotaxane-based organocatalysts. Org Chem Front 2021. [DOI: 10.1039/d1qo00789k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interlocked organocatalysts show enhanced catalytic performance when compared with their non-interlocked threads.The ring cooperatively activates the substrates, facilitating the formation and stabilization of catalytically active intermediates.
Collapse
Affiliation(s)
- Jesus de Maria Perez
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| | - Julio Puigcerver
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| | - Tainara Orlando
- Núcleo de Química de Heterociclos (NUQUIMHE)
- Departamento de Química
- Universidade Federal de Santa Maria
- 97105-900 Santa Maria-RS
- Brazil
| | - Aurelia Pastor
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| | - Marcos A. P. Martins
- Núcleo de Química de Heterociclos (NUQUIMHE)
- Departamento de Química
- Universidade Federal de Santa Maria
- 97105-900 Santa Maria-RS
- Brazil
| | - Mateo Alajarin
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| | - Alberto Martinez-Cuezva
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| | - Jose Berna
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| |
Collapse
|
50
|
Li WX, Yin YF, Duan HY, Liu LJ, Kong LC, Zhan TG, Zhang KD. An orthogonal photoresponsive tristable [3]rotaxane with non-destructive readout. Org Chem Front 2021. [DOI: 10.1039/d0qo01441a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An orthogonal photoresponsive [3]rotaxane is constructed by introducing two orthogonal photoswitchable azobenzene binding sites, and it features reversible photoregulated tristate absorption spectral changes with non-destructive readout capability.
Collapse
Affiliation(s)
- Wan-Xia Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Yong-Fei Yin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Hong-Ying Duan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Li-Juan Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Li-Chun Kong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Tian-Guang Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Kang-Da Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| |
Collapse
|