1
|
Farnum BH, Goldsmith CR. Use of Intramolecular Quinol Redox Couples to Facilitate the Catalytic Transformation of O 2 and O 2-Derived Species. Acc Chem Res 2024. [PMID: 39689366 DOI: 10.1021/acs.accounts.4c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
ConspectusThe redox reactivity of transition metal centers can be augmented by nearby redox-active inorganic or organic moieties. In some cases, these functional groups can even allow a metal center to participate in reactions that were previously inaccessible to both the metal center and the functional group by themselves. Our research groups have been synthesizing and characterizing coordination complexes with polydentate quinol-containing ligands. Quinol is capable of being reversibly oxidized by either one or two electrons to semiquinone or para-quinone, respectively. Functionally, quinol behaves much differently than phenol, even though the pKa values of the first O-H bonds are nearly identical.The redox activity of the quinol in the polydentate ligand can augment the abilities of bound redox-active metals to catalyze the dismutation of O2-• and H2O2. These complexes can thereby act as high-performing functional mimics of superoxide dismutase (SOD) and catalase (CAT) enzymes, which exclusively use redox-active metals to transfer electrons to and from these reactive oxygen species (ROS). The quinols augment the activity of redox-active metals by stabilizing higher-valent metal species, providing alternative redox partners for the oxidation and reduction of reactive oxygen species, and protecting the catalyst from destructive side reactions. The covalently attached quinols can even enable redox-inactive Zn(II) to catalyze the degradation of ROS. With the Zn(II)-containing SOD and CAT mimics, the organic redox couple entirely substitutes for the inorganic redox couples used by the enzymes. The ligand structure modulates the antioxidant activity, and thus far, we have found that compounds that have poor or negligible SOD activity can nonetheless behave as efficient CAT mimics.Quinol-containing ligands have also been used to prepare electrocatalysts for dioxygen reduction, functionally mimicking the enzyme cytochrome c oxidase. The installation of quinols can boost electrocatalytic activity and even enable otherwise inactive ligand frameworks to support electrocatalysis. The quinols can also shift the product selectivity of O2 reduction from H2O2 to H2O without markedly increasing the effective overpotential. Distinct control of the coordination environment around the metal center allows the most successful of these catalysts to use economic and naturally abundant first-row transition metals such as iron and cobalt to selectively reduce O2 to H2O at low effective overpotentials. With iron, we have found that the electrocatalysts can enter the catalytic cycle as either an Fe(II) or Fe(III) species with no difference in turnover frequency. The entry point to the cycle, however, has a marked impact on the effective overpotential, with the Fe(III) species thus far being more efficient.
Collapse
Affiliation(s)
- Byron H Farnum
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Christian R Goldsmith
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
2
|
Hsiao SC, Chuang TY, Kumbhar SV, Yang T, Wang YH. Thermodynamic Assessment of Sacrificial Oxidant Potential, H 2O/O 2 Potential, and Rate-Overpotential Relationship to Examine Catalytic Water Oxidation in Nonaqueous Solvents. Inorg Chem 2024; 63:22523-22531. [PMID: 39526986 PMCID: PMC11600503 DOI: 10.1021/acs.inorgchem.4c03897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
The water oxidation reaction (WOR), which is pivotal to storing energy in chemical bonds, requires a catalyst to overcome its inherent kinetic barrier. In bulk solutions, sacrificial oxidants (SOs) can regenerate the catalysts to ensure that the homogeneous WOR can be operated with long-term consistent performance. To implement this strategy for organic WOR systems, we modified four common SOs with tetra-n-butylammonium ([NBu4]+)─[NBu4]2[Ce(NO3)6], [NBu4][IO4], [NBu4][HSO5], and [NBu4]2[S2O8]─and examined their chemical stability and electrochemical behaviors in various organic solvents. We also derived the organic-solvent-associated redox potential of H2O/O2 in organic media (EH2O/O2(org)) using open-circuit potential measurements of the H+/H2 redox couple and the related thermochemical cycle. Our findings indicate that the EH2O/O2(org) varies with solvent identity and can be adjusted by changing the [H2O], [acid], and [base] levels; thus, the SO should be carefully selected for WOR, because the innate redox potentials of SOs are not always higher than EH2O/O2(org) under the studied conditions. Lastly, we obtained catalyst-performance-related insights via a rate-overpotential free-energy relationship by calculating the overpotentials of previously studied WOR systems in organic media.
Collapse
Affiliation(s)
- Shun-Chien Hsiao
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ting-Yi Chuang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sharad V. Kumbhar
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tzuhsiung Yang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Heng Wang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
3
|
McCormick MJ, Machan CW. Developing homogeneous first row early transition metal catalysts for the oxygen reduction reaction. Dalton Trans 2024; 53:16807-16814. [PMID: 39344902 DOI: 10.1039/d4dt01969e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The oxygen reduction reaction (ORR) remains an important fixture in biological and synthetic systems for energy conversion and chemical functionalization. Late transition metals continue to dominate in the development of new catalyst systems, inspired by well-characterized metallocofactors and prior successes. By comparison, metals to the left of Fe on the periodic table are relatively understudied for the ORR. This Frontier article summarizes advancements related to the use of Mn, Cr, and V in homogeneous catalyst systems for the ORR and discusses the implications of these results for the development of catalyst systems from these metals and those earlier in the transition metal series.
Collapse
Affiliation(s)
- Mary Jo McCormick
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, VA 22904-4319, USA.
| | - Charles W Machan
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, VA 22904-4319, USA.
| |
Collapse
|
4
|
Han J, Tan H, Guo K, Lv H, Peng X, Zhang W, Lin H, Apfel UP, Cao R. The "Pull Effect" of a Hanging Zn II on Improving the Four-Electron Oxygen Reduction Selectivity with Co Porphyrin. Angew Chem Int Ed Engl 2024; 63:e202409793. [PMID: 38923266 DOI: 10.1002/anie.202409793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Due to the challenge of cleaving O-O bonds at single Co sites, mononuclear Co complexes typically show poor selectivity for the four-electron (4e-) oxygen reduction reaction (ORR). Herein, we report on selective 4e- ORR catalyzed by a Co porphyrin with a hanged ZnII ion. Inspired by Cu/Zn-superoxide dismutase, we designed and synthesized 1-CoZn with a hanging ZnII at the second sphere of a Co porphyrin. Complex 1-CoZn is much more effective than its Zn-lacking analogues to catalyze the 4e- ORR in neutral aqueous solutions, giving an electron number of 3.91 per O2 reduction. With spectroscopic studies, the hanging ZnII was demonstrated to be able to facilitate the electron transfer from CoII to O2, through an electronic "pull effect", to give CoIII-superoxo. Theoretical studies further suggested that this "pull effect" plays crucial roles in assisting O-O bond cleavage. This work is significant to present a new strategy of hanging a ZnII to improve O2 activation and O-O bond cleavage.
Collapse
Affiliation(s)
- Jinxiu Han
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Huang Tan
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Kai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haoyuan Lv
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinyang Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haiping Lin
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Ulf-Peter Apfel
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Activation of Small Molecules/Technical Electrochemistry, Universitätsstrasse 150, 44801, Bochum, Germany
- Fraunhofer UMSICHT, Osterfelder Strasse 3, 46047, Oberhausen, Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
5
|
Obisesan SV, Parvin M, Tao M, Ramos E, Saunders AC, Farnum BH, Goldsmith CR. Installing Quinol Proton/Electron Mediators onto Non-Heme Iron Complexes Enables Them to Electrocatalytically Reduce O 2 to H 2O at High Rates and Low Overpotentials. Inorg Chem 2024; 63:14126-14141. [PMID: 39008564 DOI: 10.1021/acs.inorgchem.4c01977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
We prepare iron(II) and iron(III) complexes with polydentate ligands that contain quinols, which can act as electron proton transfer mediators. Although the iron(II) complex with N-(2,5-dihydroxybenzyl)-N,N',N'-tris(2-pyridinylmethyl)-1,2-ethanediamine (H2qp1) is inactive as an electrocatalyst, iron complexes with N,N'-bis(2,5-dihydroxybenzyl)-N,N'-bis(2-pyridinylmethyl)-1,2-ethanediamine (H4qp2) and N-(2,5-dihydroxybenzyl)-N,N'-bis(2-pyridinylmethyl)-1,2-ethanediamine (H2qp3) were found to be much more active and more selective for water production than a previously reported cobalt-H2qp1 electrocatalyst while operating at low overpotentials. The catalysts with H2qp3 can enter the catalytic cycle as either Fe(II) or Fe(III) species; entering the cycle through Fe(III) lowers the effective overpotential. On the basis of their TOF0 values, the successful iron-quinol complexes are better electrocatalysts for oxygen reduction than previously reported iron-porphyrin compounds, with the Fe(III)-H2qp3 arguably being the best homogeneous electrocatalyst for this reaction. With iron, the quinol-for-phenol substitution shifts the product selectivity from H2O2 to water with little impact on the overpotential, but unlike cobalt, this substitution also greatly improves the activity, as assessed by TOFmax, by hastening the protonation and oxygen binding steps. The addition of a second quinol further enhances the activity and selectivity for water but modestly increases the effective overpotential.
Collapse
Affiliation(s)
- Segun V Obisesan
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Maksuda Parvin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Matthew Tao
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Eric Ramos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Alexander C Saunders
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Byron H Farnum
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Christian R Goldsmith
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
6
|
Rademaker D, Tanase S, Kang H, Hofmann JP, Hetterscheid DGH. Selective Electrochemical Oxygen Reduction to Hydrogen Peroxide by Confinement of Cobalt Porphyrins in a Metal-Organic Framework. Chemistry 2024:e202401339. [PMID: 38872486 DOI: 10.1002/chem.202401339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Sustainable alternatives for the energy intensive synthesis of H2O2 are necessary. Molecular cobalt catalysts show potential but are typically restricted by undesired bimolecular pathways leading to the breakdown of both H2O2 and the catalyst. The confinement of cobalt porphyrins in the PCN-224 metal-organic framework leads to an enhanced selectivity towards H2O2 and stability of the catalyst. Consequently, oxygen can now be selectively reduced to hydrogen peroxide with a stable conversion for at least 5 h, illustrating the potential of catalysts confined in MOFs to increase the selectivity and stability of electrocatalytic conversions.
Collapse
Affiliation(s)
- Dana Rademaker
- Leiden Institute of Chemistry, Leiden University, 2300, RA Leiden, The Netherlands
| | - Stefania Tanase
- Van't Hoff Institute for Molecular Sciences, Universiteit van Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Hongrui Kang
- Surface Science Laboratory Department of Materials- and Geosciences, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Jan P Hofmann
- Surface Science Laboratory Department of Materials- and Geosciences, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | | |
Collapse
|
7
|
Jiang S, Han Y, Sun B, Zeng L, Gong J. Reduced sulfur accelerates Fe(III)/Fe(II) recycling in FeS 2 surface for enhanced electro-Fenton reaction. CHEMOSPHERE 2024; 353:141588. [PMID: 38430939 DOI: 10.1016/j.chemosphere.2024.141588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
FeS2 is well-known for its role in redox reactions. However, the mechanism within heterogeneous electron-Fenton (Hetero-EF) systems remains unclear. In this study, a novel FeS2 based three-dimensional system (GF/Cu-FeS2) with self-generation of H2O2 was investigated for Hetero-EF degradation of sulfamethazine (SMZ). The results revealed that SMZ could be completely removed in 1.5 h, accompanying with the mineralization efficiency of 96% within 4 h. This system performed excellent stability, evidenced by consistently eliminated 100% of SMZ within 2 h over 4 cycles. The generated Reactive Oxygen Species (ROS) of •OH and •O2- in every degradation cycle were quantitatively measured to confirm the stability of the GF/Cu-FeS2 system. Additionally, the redox reaction mechanism on the surface of FeS2 was thoroughly analyzed in detail. The accelerated reduction of Fe(III) to Fe(II), triggered by S22- on the surface of FeS2, promoted the iron cycling, thereby quickening the Fenton process. Density Functional Theory (DFT) results illustrated the process of S22- to be oxidized to in detail. Therefore, this work provides deeper insight into the mechanistic role of S22- in FeS2 for environmental remediation.
Collapse
Affiliation(s)
- Shan Jiang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Yunuo Han
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Benjian Sun
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Lingyu Zeng
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Jianyu Gong
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China.
| |
Collapse
|
8
|
Sun L, Jin X, Su T, Fisher AC, Wang X. Conjugated Nickel Phthalocyanine Derivatives for Heterogeneous Electrocatalytic H 2O 2 Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306336. [PMID: 37560974 DOI: 10.1002/adma.202306336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/03/2023] [Indexed: 08/11/2023]
Abstract
Electrocatalytic hydrogen peroxide (H2O2) production has emerged as a promising alternative to the chemical method currently used in industry, due to its environmentally friendly conditions and potential for higher activity and selectivity. Heterogeneous molecular catalysts are promising in this regard, as their active site configurations can be judiciously designed, modified, and tailored with diverse functional groups, thereby tuning the activity and selectivity of the active sites. In this work, nickel phthalocyanine derivatives with various conjugation degrees are synthesized and identified as effective pH-universal electrocatalysts for H2O2 production after heterogenized on nitrogen-decorated carbon, with increased conjugation degrees leading to boosted selectivity. This is explained by the regulated d-band center, which optimized the binding energy of the reaction intermediate, reducing the energy barrier for oxygen reduction and leading to optimized H2O2 selectivity. The best catalyst, NiPyCN/CN, exhibits a high H2O2 electrosynthesis activity with ≈95% of H2O2 faradic efficiency in an alkaline medium, demonstrating its potential for H2O2 production.
Collapse
Affiliation(s)
- Libo Sun
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Cambridge CARES, CREATE Tower, Singapore, 138602, Singapore
| | - Xindie Jin
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Tan Su
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Adrian C Fisher
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB2 3RA, UK
| | - Xin Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
9
|
Anferov SW, Boyn JN, Mazziotti DA, Anderson JS. Selective Cobalt-Mediated Formation of Hydrogen Peroxide from Water under Mild Conditions via Ligand Redox Non-Innocence. J Am Chem Soc 2024; 146:5855-5863. [PMID: 38375752 DOI: 10.1021/jacs.3c11032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Despite the broad importance of hydrogen peroxide (H2O2) in oxidative transformations, there are comparatively few viable routes for its production. The majority of commercial H2O2 is currently produced by the stepwise reduction of dioxygen (O2) via the anthraquinone process, but direct electrochemical formation from water (H2O) would have several advantages─namely, avoiding flammable gases or stepwise separations. However, the selective oxidation of H2O to form H2O2 over the thermodynamically favored product of O2 is a difficult synthetic challenge. Here, we present a molecular H2O oxidation system with excellent selectivity for H2O2 that functions both stoichiometrically and catalytically. We observe high efficiency for electrocatalytic H2O2 production at low overpotential with no O2 observed under any conditions. Mechanistic studies with both calculations and kinetic analyses from isolated intermediates suggest that H2O2 formation occurs in a bimolecular fashion via a dinuclear H2O2-bridged intermediate with an important role for a redox non-innocent ligand. This system showcases the ability of metal-ligand cooperativity and strategic design of the secondary coordination sphere to promote kinetically and thermodynamically challenging selectivity in oxidative catalysis.
Collapse
Affiliation(s)
- Sophie W Anferov
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60627, United States
| | - Jan-Niklas Boyn
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - David A Mazziotti
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60627, United States
| | - John S Anderson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60627, United States
| |
Collapse
|
10
|
Wang LC, Chiou PY, Hsu YP, Lee CL, Hung CH, Wu YH, Wang WJ, Hsieh GL, Chen YC, Chang LC, Su WP, Manoharan D, Liao MC, Thangudu S, Li WP, Su CH, Tian HK, Yeh CS. Prussian blue analog with separated active sites to catalyze water driven enhanced catalytic treatments. Nat Commun 2023; 14:4709. [PMID: 37543632 PMCID: PMC10404294 DOI: 10.1038/s41467-023-40470-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023] Open
Abstract
Chemodynamic therapy (CDT) uses the Fenton or Fenton-like reaction to yield toxic ‧OH following H2O2 → ‧OH for tumoral therapy. Unfortunately, H2O2 is often taken from the limited endogenous supply of H2O2 in cancer cells. A water oxidation CoFe Prussian blue (CFPB) nanoframes is presented to provide sustained, external energy-free self-supply of ‧OH from H2O to process CDT and/or photothermal therapy (PTT). Unexpectedly, the as-prepared CFPB nanocubes with no near-infrared (NIR) absorption is transformed into CFPB nanoframes with NIR absorption due to the increased Fe3+-N ≡ C-Fe2+ composition through the proposed proton-induced metal replacement reactions. Surprisingly, both the CFPB nanocubes and nanoframes provide for the self-supply of O2, H2O2, and ‧OH from H2O, with the nanoframe outperforming in the production of ‧OH. Simulation analysis indicates separated active sites in catalyzation of water oxidation, oxygen reduction, and Fenton-like reactions from CFPB. The liposome-covered CFPB nanoframes prepared for controllable water-driven CDT for male tumoral mice treatments.
Collapse
Affiliation(s)
- Liu-Chun Wang
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Pei-Yu Chiou
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ya-Ping Hsu
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chin-Lai Lee
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
| | - Chih-Hsuan Hung
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yi-Hsuan Wu
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wen-Jyun Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Gia-Ling Hsieh
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ying-Chi Chen
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Li-Chan Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - Wen-Pin Su
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
- Departments of Oncology and Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - Divinah Manoharan
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Min-Chiao Liao
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
| | - Suresh Thangudu
- Center for General Education, Chang Gung University, Taoyuan, 333, Taiwan
| | - Wei-Peng Li
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Chia-Hao Su
- Center for General Education, Chang Gung University, Taoyuan, 333, Taiwan.
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan.
- Institute for Radiological Research, Chang Gung University, Taoyuan, 333, Taiwan.
| | - Hong-Kang Tian
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan.
- Program on Smart and Sustainable Manufacturing, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan, 701, Taiwan.
- Hierarchical Green-Energy Materials Research Center, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Chen-Sheng Yeh
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan.
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
11
|
Hao R, Chen J, Hu J, Gu S, Gan Q, Li Y, Wang Z, Luo W, Yuan H, Liu G, Yan C, Zhang J, Liu K, Liu C, Lu Z. Precisely manipulated π-π stacking of catalytic exfoliated iron polyphthalocyanine/reduced graphene oxide hybrid via pyrolysis-free path. J Colloid Interface Sci 2023; 646:900-909. [PMID: 37235935 DOI: 10.1016/j.jcis.2023.05.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Metal macrocycles with well-defined molecular structures are ideal platforms for the in-depth study of electrochemical oxygen reduction reaction (ORR). Structural integrity of metal macrocycles is vital but remain challenging since the commonly used high-temperature pyrolysis would cause severe structure damage and unidentifiable active sites. Herein, we propose a pyrolysis-free strategy to precisely manipulate the exfoliated 2D iron polyphthalocyanine (FePPc) anchored on reduced graphene oxide (rGO) via π-π stacking using facile high-energy ball milling. A delocalized electron shift caused by π-π interaction is firstly found to be the mechanism of facilitating the remarkable ORR activity of this hybrid catalyst. The optimal FePPc@rGO-HE achieves superior half-wave potential (0.90 V) than 20 % Pt/C. This study offers a new insight in designing stable and high-performance metal macrocycle catalysts with well-defined active sites.
Collapse
Affiliation(s)
- Rui Hao
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen 518055, PR China; Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Jingjing Chen
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Jing Hu
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen 518055, PR China; Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Shuai Gu
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Qingmeng Gan
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Yingzhi Li
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Zhiqiang Wang
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Wen Luo
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Huimin Yuan
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Guiyu Liu
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Chunliu Yan
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Junjun Zhang
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Kaiyu Liu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China.
| | - Chen Liu
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Zhouguang Lu
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen 518055, PR China.
| |
Collapse
|
12
|
Zheng R, Meng Q, Zhang L, Ge J, Liu C, Xing W, Xiao M. Co-based Catalysts for Selective H 2 O 2 Electroproduction via 2-electron Oxygen Reduction Reaction. Chemistry 2023; 29:e202203180. [PMID: 36378121 DOI: 10.1002/chem.202203180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/13/2022] [Accepted: 11/13/2022] [Indexed: 11/16/2022]
Abstract
Electrochemical production of hydrogen peroxide (H2 O2 ) via two-electron oxygen reduction reaction (ORR) process is emerging as a promising alternative method to the conventional anthraquinone process. To realize high-efficiency H2 O2 electrosynthesis, robust and low cost electrocatalysts have been intensively pursued, among which Co-based catalysts attract particular research interests due to the earth-abundance and high selectivity. Here, we provide a comprehensive review on the advancement of Co-based electrocatalyst for H2 O2 electroproduction. The fundamental chemistry of 2-electron ORR is discussed firstly for guiding the rational design of electrocatalysts. Subsequently, the development of Co-based electrocatalysts involving nanoparticles, compounds and single atom catalysts is summarized with the focus on active site identification, structure regulation and mechanism understanding. Moreover, the current challenges and future directions of the Co-based electrocatalysts are briefly summarized in this review.
Collapse
Affiliation(s)
- Ruixue Zheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun, 130022, Jilin, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Qinglei Meng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun, 130022, Jilin, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Li Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun, 130022, Jilin, P. R. China
| | - Junjie Ge
- School of Chemistry and Material Science, University of Science and Technology of China Hefei, 230026, Anhui, P. R. China
| | - Changpeng Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun, 130022, Jilin, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Wei Xing
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun, 130022, Jilin, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Meiling Xiao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun, 130022, Jilin, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| |
Collapse
|
13
|
Battistella B, Iffland-Mühlhaus L, Schütze M, Cula B, Kuhlmann U, Dau H, Hildebrandt P, Lohmiller T, Mebs S, Apfel UP, Ray K. Evidence of Sulfur Non-Innocence in [Co II (dithiacyclam)] 2+ -Mediated Catalytic Oxygen Reduction Reactions. Angew Chem Int Ed Engl 2023; 62:e202214074. [PMID: 36378951 PMCID: PMC10108118 DOI: 10.1002/anie.202214074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022]
Abstract
In many metalloenzymes, sulfur-containing ligands participate in catalytic processes, mainly via the involvement in electron transfer reactions. In a biomimetic approach, we now demonstrate the implication of S-ligation in cobalt mediated oxygen reduction reactions (ORR). A comparative study between the catalytic ORR capabilities of the four-nitrogen bound [Co(cyclam)]2+ (1; cyclam=1,5,8,11-tetraaza-cyclotetradecane) and the S-containing analog [Co(S2 N2 -cyclam)]2+ (2; S2 N2 -cyclam=1,8-dithia-5,11-diaza-cyclotetradecane) reveals improved catalytic performance once the chalcogen is introduced in the Co coordination sphere. Trapping and characterization of the intermediates formed upon dioxygen activation at the CoII centers in 1 and 2 point to the involvement of sulfur in the O2 reduction process as the key for the improved catalytic ORR capabilities of 2.
Collapse
Affiliation(s)
- Beatrice Battistella
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Linda Iffland-Mühlhaus
- Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Maximillian Schütze
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Beatrice Cula
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Uwe Kuhlmann
- Institut für Chemie, Fakultät II, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Holger Dau
- Institut für Physik, Freie Universität zu Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Peter Hildebrandt
- Institut für Chemie, Fakultät II, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Thomas Lohmiller
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany.,EPR4Energy Joint Lab, Department Spins in Energy Conversion and Quantum Information Science, Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 16, 12489, Berlin, Germany
| | - Stefan Mebs
- Institut für Physik, Freie Universität zu Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Ulf-Peter Apfel
- Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany.,Department for Electrosynthesis, Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047, Oberhausen, Germany
| | - Kallol Ray
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| |
Collapse
|
14
|
Gordon JB, Albert T, Yadav S, Thomas J, Siegler MA, Moënne-Loccoz P, Goldberg DP. Oxygen versus Sulfur Coordination in Cobalt Superoxo Complexes: Spectroscopic Properties, O 2 Binding, and H-Atom Abstraction Reactivity. Inorg Chem 2023; 62:392-400. [PMID: 36538786 PMCID: PMC10194424 DOI: 10.1021/acs.inorgchem.2c03484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A five-coordinate, disiloxide-ligated cobalt(II) (S = 3/2) complex (1) was prepared as an oxygen-ligated analogue to the previously reported silanedithiolate-ligated CoII(Me3TACN)(S2SiMe2) (J. Am. Chem. Soc., 2019, 141, 3641-3653). The structural and spectroscopic properties of 1 were analyzed by single-crystal X-ray diffraction, electron paramagnetic resonance (EPR), and NMR spectroscopies. The reactivity of 1 with dioxygen was examined, and it was shown to bind O2 reversibly in a range of solvents at low temperatures. A cobalt(III)-superoxo complex, CoIII(O2·-)(Me3TACN)((OSi2Ph)2O) (2), was generated, and was analyzed by UV-vis, EPR, and resonance Raman spectroscopies. Unlike its sulfur-ligated analogue, complex 2 can thermally release O2 to regenerate 1. Vibrational assignments for selective 18O isotopic labeling of both O2 and disiloxide ligands in 2 are consistent with a 6-coordinate, Co(η1-O2·-)("end-on") complex. Complex 2 reacts with the O-H bond of 4-methoxy-2,2,6,6-tetramethylpiperidin-1-ol (4-MeO-TEMPOH) via H-atom abstraction with a rate of 0.58(2) M-1 s-1 at -105 °C, but it is unable to oxidize phenol substrates. This bracketed reactivity suggests that the O-H bond being formed in the putative CoIII(OOH) product has a relatively weak O-H bond strength (BDFE ∼66-74 kcal mol-1). These thermodynamic and kinetic parameters are similar to those seen for the sulfur-ligated Co(O2)(Me3TACN)(S2SiMe2), indicating that the differences in the electronic structure for O versus S ligation do not have a large impact on H-atom abstraction reactivity.
Collapse
Affiliation(s)
- Jesse B Gordon
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Therese Albert
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Sudha Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Jithin Thomas
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
15
|
Obisesan SV, Rose C, Farnum BH, Goldsmith CR. Co(II) Complex with a Covalently Attached Pendent Quinol Selectively Reduces O 2 to H 2O. J Am Chem Soc 2022; 144:22826-22830. [DOI: 10.1021/jacs.2c08315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | | | - Christian R. Goldsmith
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama36849, United States
| |
Collapse
|
16
|
Hsu WC, Zeng WQ, Lu IC, Yang T, Wang YH. Dinuclear Cobalt Complexes for Homogeneous Water Oxidation: Tuning Rate and Overpotential through the Non-Innocent Ligand. CHEMSUSCHEM 2022; 15:e202201317. [PMID: 36083105 DOI: 10.1002/cssc.202201317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/09/2022] [Indexed: 06/15/2023]
Abstract
In this study, dinuclear cobalt complexes (1 and 2) featuring bis(benzimidazole)pyrazolide-type ligands (H2 L and Me2 L) were prepared and evaluated as molecular electrocatalysts for water oxidation. Notably, 1 bearing a non-innocent ligand (H2 L) displayed faster catalytic turnover than 2 under alkaline conditions, and the base dependence of water oxidation and kinetic isotope effect analysis indicated that the reaction mediated by 1 proceeded by a different mechanism relative to 2. Spectroelectrochemical, cold-spray ionization mass spectrometric and computational studies found that double deprotonation of 1 under alkaline conditions cathodically shifted the catalysis-initiating potential and further altered the turnover-limiting step from nucleophilic water attack on (H2 L)CoIII 2 (superoxo) to deprotonation of (L)CoIII 2 (OH)2 . The rate-overpotential analysis and catalytic Tafel plots showed that 1 exhibited a significantly higher rate than previously reported Ru-based dinuclear electrocatalysts at similar overpotentials. These observations suggest that using non-innocent ligands is a valuable strategy for designing effective metal-based molecular water oxidation catalysts.
Collapse
Affiliation(s)
- Wan-Chi Hsu
- Department of Chemistry, National Tsing Hua University, 101, Sec 2, Kuang-Fu Rd., 30013, Hsinchu, Taiwan
| | - Wan-Qin Zeng
- Department of Chemistry, National Chung Hsing University, 145, Xingda Rd., South Dist., 402, Taichung, Taiwan
| | - I-Chung Lu
- Department of Chemistry, National Chung Hsing University, 145, Xingda Rd., South Dist., 402, Taichung, Taiwan
| | - Tzuhsiung Yang
- Department of Chemistry, National Tsing Hua University, 101, Sec 2, Kuang-Fu Rd., 30013, Hsinchu, Taiwan
| | - Yu-Heng Wang
- Department of Chemistry, National Tsing Hua University, 101, Sec 2, Kuang-Fu Rd., 30013, Hsinchu, Taiwan
| |
Collapse
|
17
|
Synthesis and characterization of a series of cobalt complexes: Investigation of their efficacy as sensitizers in dye-sensitized solar cell applications. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Lu R, Zahid AH, Han Q. Insight into the photocatalytic mechanism of the optimal x value in the BiOBr xI 1-x, BiOCl xI 1-x and BiOCl xBr 1-x series varying with pollutant type. NANOSCALE 2022; 14:13711-13721. [PMID: 36093962 DOI: 10.1039/d2nr03726b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It is known that bismuth oxyhalides (BiOX, X = Cl, Br, I) can easily form solid solutions like BiOBrxI1-x, BiOClxI1-x and BiOClxBr1-x (0 ≤ x ≤ 1) and exhibit composition-dependent photocatalytic performance. However, the reported results indicate that the optimal composition changes with pollutant type. That is to say, the specific x value with the best photocatalytic activity towards the degradation of a certain pollutant does not imply that it is an optimum x value for another pollutant. In order to explore the reason behind this, herein, three types of solid solutions with various x values were prepared in ethylene glycol/H2O (VEG : VH2O = 1) solution at room temperature, and their photocatalytic activity towards the degradation of bisphenol A (BPA), tetracycline (TC), malachite green (MG), methyl violet (MV) and rhodamine B (RhB) was assessed under visible-light illumination. Taking BiOBrxI1-x as an example, BiOBr0.5I0.5 exhibited the best degradation efficiency for BPA, MV and MG, whereas BiOBr0.95I0.05 possessed the best photocatalytic activity towards TC and RhB degradation. Detailed characterization suggests that light absorption and charge separation efficiency are not the main factors behind this difference. Given that direct oxidation of the holes was dominant in the degradation process, the oxidation ability of the solid solutions was correlated with the oxidation behavior of the pollutant. The prerequisite condition for degrading a certain pollutant is that the valence band potential of the solid solution should be more positive than the oxidation potential of the pollutant, and yet, too big a difference between these two potentials does not benefit rapid degradation.
Collapse
Affiliation(s)
- Ruixin Lu
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Abdul Hannan Zahid
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Qiaofeng Han
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
19
|
Groff BD, Mayer JM. Optimizing Catalysis by Combining Molecular Scaling Relationships: Iron Porphyrin-Catalyzed Electrochemical Oxygen Reduction as a Case Study. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Benjamin D. Groff
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - James M. Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
20
|
Wei Z, Zhao S, Li W, Zhao X, Chen C, Phillips DL, Zhu Y, Choi W. Artificial Photosynthesis of H 2O 2 through Reversible Photoredox Transformation between Catechol and o-Benzoquinone on Polydopamine-Coated CdS. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhen Wei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Shen Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Wenlu Li
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xu Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chuncheng Chen
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - David Lee Phillips
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Wonyong Choi
- KENTECH Institute for Environmental & Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju 58330, Korea
| |
Collapse
|
21
|
Tabaru K, Obora Y. Synergic Palladium Catalysis for Aerobic Oxidative Coupling. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kazuki Tabaru
- Kansai University: Kansai Daigaku Department of Chemistry and Materials Engineering 3-3-35 Yamate-cho 564-8680 Suita JAPAN
| | - Yasushi Obora
- Kansai University: Kansai Daigaku Department of Chemistry and Materials Engineering 3-3-35 Yamate-cho 564-8680 Suita JAPAN
| |
Collapse
|
22
|
Wiedner ES, Appel AM, Raugei S, Shaw WJ, Bullock RM. Molecular Catalysts with Diphosphine Ligands Containing Pendant Amines. Chem Rev 2022; 122:12427-12474. [PMID: 35640056 DOI: 10.1021/acs.chemrev.1c01001] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pendant amines play an invaluable role in chemical reactivity, especially for molecular catalysts based on earth-abundant metals. As inspired by [FeFe]-hydrogenases, which contain a pendant amine positioned for cooperative bifunctionality, synthetic catalysts have been developed to emulate this multifunctionality through incorporation of a pendant amine in the second coordination sphere. Cyclic diphosphine ligands containing two amines serve as the basis for a class of catalysts that have been extensively studied and used to demonstrate the impact of a pendant base. These 1,5-diaza-3,7-diphosphacyclooctanes, now often referred to as "P2N2" ligands, have profound effects on the reactivity of many catalysts. The resulting [Ni(PR2NR'2)2]2+ complexes are electrocatalysts for both the oxidation and production of H2. Achieving the optimal benefit of the pendant amine requires that it has suitable basicity and is properly positioned relative to the metal center. In addition to the catalytic efficacy demonstrated with [Ni(PR2NR'2)2]2+ complexes for the oxidation and production of H2, catalysts with diphosphine ligands containing pendant amines have also been demonstrated for several metals for many different reactions, both in solution and immobilized on surfaces. The impact of pendant amines in catalyst design continues to expand.
Collapse
|
23
|
Zhao X, Yin Q, Mao X, Cheng C, Zhang L, Wang L, Liu TF, Li Y, Li Y. Theory-guided design of hydrogen-bonded cobaltoporphyrin frameworks for highly selective electrochemical H 2O 2 production in acid. Nat Commun 2022; 13:2721. [PMID: 35581214 PMCID: PMC9114359 DOI: 10.1038/s41467-022-30523-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/29/2022] [Indexed: 11/08/2022] Open
Abstract
The pursuit of selective two-electron oxygen reduction reaction to H2O2 in acids is demanding and largely hampered by the lack of efficient non-precious-metal-based electrocatalysts. Metal macrocycles hold promise, but have been relatively underexplored. Efforts are called for to promote their inherent catalytic activities and/or increase the surface exposure of active sites. In this contribution, we perform the high-throughput computational screening of thirty-two different metalloporphyrins by comparing their adsorption free energies towards key reaction intermediates. Cobalt porphyrin is revealed to be the optimal candidate with a theoretical overpotential as small as 40 mV. Guided by the computational predictions, we prepare hydrogen-bonded cobaltoporphyrin frameworks in order to promote the solution accessibility of catalytically active sites for H2O2 production in acids. The product features an onset potential at ~0.68 V, H2O2 selectivity of >90%, turnover frequency of 10.9 s-1 at 0.55 V and stability of ~30 h, the combination of which clearly renders it stand out from existing competitors for this challenging reaction.
Collapse
Affiliation(s)
- Xuan Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Qi Yin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, China
| | - Xinnan Mao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Chen Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Liang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Lu Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China.
| | - Tian-Fu Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, 999078, Macao, China
| | - Yanguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China.
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, 999078, Macao, China.
| |
Collapse
|
24
|
Hsu WC, Wang YH. Homogeneous Water Oxidation Catalyzed by First-Row Transition Metal Complexes: Unveiling the Relationship between Turnover Frequency and Reaction Overpotential. CHEMSUSCHEM 2022; 15:e202102378. [PMID: 34881515 DOI: 10.1002/cssc.202102378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/07/2021] [Indexed: 06/13/2023]
Abstract
The utilization of earth-abundant low-toxicity metal ions in the construction of highly active and efficient molecular catalysts promoting the water oxidation reaction is important for developing a sustainable artificial energy cycle. However, the kinetic and thermodynamic properties of the currently available molecular water oxidation catalysts (MWOCs) have not been comprehensively investigated. This Review summarizes the current status of MWOCs based on first-row transition metals in terms of their turnover frequency (TOF, a kinetic property) and overpotential (η, a thermodynamic property) and uses the relationship between log(TOF) and η to assess catalytic performance. Furthermore, the effects of the same ligand classes on these MWOCs are discussed in terms of TOF and η, and vice versa. The collective analysis of these relationships provides a metric for the direct comparison of catalyst systems and identifying factors crucial for catalyst design.
Collapse
Affiliation(s)
- Wan-Chi Hsu
- Department of Chemistry, National Tsing Hua University, 101, Sec 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Yu-Heng Wang
- Department of Chemistry, National Tsing Hua University, 101, Sec 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| |
Collapse
|
25
|
Gao X, Huang K, Zhang Z, Meng X. Bismuth chromate (Cr 2Bi 3O 11): a new bismuth-based semiconductor with excellent photocatalytic activity. Chem Commun (Camb) 2022; 58:2014-2017. [PMID: 35050288 DOI: 10.1039/d1cc06734f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel bismuth chromate material (Cr2Bi3O11) was synthesized by a direct mixing method with higher photocatalytic activity in both organic pollutant detoxification and oxygen evolution. Cr2Bi3O11 with a band gap of 2.20 eV could be activated by photons with a wavelength below 561 nm. This work not only provides an approach for the controllable synthesis of Cr2Bi3O11, but also experimentally and theoretically shows its excellence and potential when applied in photocatalysis.
Collapse
Affiliation(s)
- Xinyu Gao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Kelei Huang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Zisheng Zhang
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, Ottawa, ON, K1N6N5, Canada
| | - Xiangchao Meng
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
26
|
Synthesis and redox properties of heterobimetallic Re(bpyCrown-M)(CO)3Cl complexes, where M = Na+, K+, Ca2+, and Ba2+. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Li Y, Wang N, Lei H, Li X, Zheng H, Wang H, Zhang W, Cao R. Bioinspired N4-metallomacrocycles for electrocatalytic oxygen reduction reaction. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213996] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Nichols AW, Cook EN, Gan YJ, Miedaner PR, Dressel JM, Dickie DA, Shafaat HS, Machan CW. Pendent Relay Enhances H 2O 2 Selectivity during Dioxygen Reduction Mediated by Bipyridine-Based Co-N 2O 2 Complexes. J Am Chem Soc 2021; 143:13065-13073. [PMID: 34380313 DOI: 10.1021/jacs.1c03381] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Generally, cobalt-N2O2 complexes show selectivity for hydrogen peroxide during electrochemical dioxygen (O2) reduction. We recently reported a Co(III)-N2O2 complex with a 2,2'-bipyridine-based ligand backbone which showed alternative selectivity: H2O was observed as the primary reduction product from O2 (71 ± 5%) with decamethylferrocene as a chemical reductant and acetic acid as a proton donor in methanol solution. We hypothesized that the key selectivity difference in this case arises in part from increased favorability of protonation at the distal O position of the key intermediate Co(III)-hydroperoxide species. To interrogate this hypothesis, we have prepared a new Co(III) compound that contains pendent -OMe groups poised to direct protonation toward the proximal O atom of this hydroperoxo intermediate. Mechanistic studies in acetonitrile (MeCN) solution reveal two regimes are possible in the catalytic response, dependent on added acid strength and the presence of the pendent proton donor relay. In the presence of stronger acids, the activity of the complex containing pendent relays becomes O2 dependent, implying a shift to Co(III)-superoxide protonation as the rate-determining step. Interestingly, the inclusion of the relay results in primarily H2O2 production in MeCN, despite minimal difference between the standard reduction potentials of the three complexes tested. EPR spectroscopic studies indicate the formation of Co(III)-superoxide species in the presence of exogenous base, with greater O2 reactivity observed in the presence of the pendent -OMe groups.
Collapse
Affiliation(s)
- Asa W Nichols
- Department of Chemistry, University of Virginia, McCormick Rd., PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Emma N Cook
- Department of Chemistry, University of Virginia, McCormick Rd., PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Yunqiao J Gan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave., Columbus, Ohio 43210, United States
| | - Peter R Miedaner
- Department of Chemistry, University of Virginia, McCormick Rd., PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Julia M Dressel
- Department of Chemistry, University of Virginia, McCormick Rd., PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, McCormick Rd., PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave., Columbus, Ohio 43210, United States
| | - Charles W Machan
- Department of Chemistry, University of Virginia, McCormick Rd., PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| |
Collapse
|
29
|
Determining the Overpotential of Electrochemical Fuel Synthesis Mediated by Molecular Catalysts: Recommended Practices, Standard Reduction Potentials, and Challenges. ChemElectroChem 2021. [DOI: 10.1002/celc.202100576] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Tanabe Y, Nishibayashi Y. Comprehensive insights into synthetic nitrogen fixation assisted by molecular catalysts under ambient or mild conditions. Chem Soc Rev 2021; 50:5201-5242. [PMID: 33651046 DOI: 10.1039/d0cs01341b] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
N2 is fixed as NH3 industrially by the Haber-Bosch process under harsh conditions, whereas biological nitrogen fixation is achieved under ambient conditions, which has prompted development of alternative methods to fix N2 catalyzed by transition metal molecular complexes. Since the early 21st century, catalytic conversion of N2 into NH3 under ambient conditions has been achieved by using molecular catalysts, and now H2O has been utilized as a proton source with turnover frequencies reaching the values found for biological nitrogen fixation. In this review, recent advances in the development of molecular catalysts for synthetic N2 fixation under ambient or mild conditions are summarized, and potential directions for future research are also discussed.
Collapse
Affiliation(s)
- Yoshiaki Tanabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
31
|
Lei H, Zhang Q, Wang Y, Gao Y, Wang Y, Liang Z, Zhang W, Cao R. Significantly boosted oxygen electrocatalysis with cooperation between cobalt and iron porphyrins. Dalton Trans 2021; 50:5120-5123. [PMID: 33881086 DOI: 10.1039/d1dt00441g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Developing electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) is of great importance. Herein, Co tetrakis(pentafluorophenyl)porphyrin (Co-P) and Fe chloride tetrakis(pentafluorophenyl)porphyrin (Fe-P) were loaded on carbon nanotubes (CNTs) for combining the electrocatalytic advantages of both Co-P and Fe-P. The resultant (Co-P)0.5(Fe-P)0.5@CNT composite displayed significantly boosted activity for the selective four-electron ORR with a half-wave potential of 0.80 V versus reversible hydrogen electrode (RHE) and for the OER with a potential of 1.65 V versus RHE to obtain 10 mA cm-2 current density in 0.1 M KOH. A Zn-air battery assembled from (Co-P)0.5(Fe-P)0.5@CNT exhibited a small charge-discharge voltage gap of 0.74 V at 2 mA cm-2, a high power density of 174.5 mW cm-2 and a good rechargeable stability (>120 cycles).
Collapse
Affiliation(s)
- Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Qingxin Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yabo Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yimei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yanzhi Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
32
|
Liang Z, Guo H, Zhou G, Guo K, Wang B, Lei H, Zhang W, Zheng H, Apfel U, Cao R. Metal–Organic‐Framework‐Supported Molecular Electrocatalysis for the Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Hongbo Guo
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Guojun Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Kai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Bin Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Ulf‐Peter Apfel
- Ruhr-Universität Bochum Fakultät für Chemie und Biochemie Anorganische Chemie I Universitätsstrasse 150 44801 Bochum Germany
- Fraunhofer UMSICHT Energy Division Osterfelder Strasse 3 46047 Oberhausen Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
33
|
Liang Z, Guo H, Zhou G, Guo K, Wang B, Lei H, Zhang W, Zheng H, Apfel UP, Cao R. Metal-Organic-Framework-Supported Molecular Electrocatalysis for the Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2021; 60:8472-8476. [PMID: 33484092 DOI: 10.1002/anie.202016024] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 12/15/2022]
Abstract
Synthesizing molecule@support hybrids is appealing to improve molecular electrocatalysis. We report herein metal-organic framework (MOF)-supported Co porphyrins for the oxygen reduction reaction (ORR) with improved activity and selectivity. Co porphyrins can be grafted on MOF surfaces through ligand exchange. A variety of porphyrin@MOF hybrids were made using this method. Grafted Co porphyrins showed boosted ORR activity with large (>70 mV) anodic shift of the half-wave potential compared to ungrafted porphyrins. By using active MOFs for peroxide reduction, the number of electrons transferred per O2 increased from 2.65 to 3.70, showing significantly improved selectivity for the 4e ORR. It is demonstrated that H2 O2 generated from O2 reduction at Co porphyrins is further reduced at MOF surfaces, leading to improved 4e ORR. As a practical demonstration, these hybrids were used as air electrode catalysts in Zn-air batteries, which exhibited equal performance to that with Pt-based materials.
Collapse
Affiliation(s)
- Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongbo Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Guojun Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Kai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Bin Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ulf-Peter Apfel
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Anorganische Chemie I, Universitätsstrasse 150, 44801, Bochum, Germany.,Fraunhofer UMSICHT, Energy Division, Osterfelder Strasse 3, 46047, Oberhausen, Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
34
|
Rana A, Lee YM, Li X, Cao R, Fukuzumi S, Nam W. Highly Efficient Catalytic Two-Electron Two-Proton Reduction of Dioxygen to Hydrogen Peroxide with a Cobalt Corrole Complex. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Atanu Rana
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Faculty of Science and Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
35
|
Nichols AW, Kuehner JS, Huffman BL, Miedaner PR, Dickie DA, Machan CW. Reduction of dioxygen to water by a Co(N 2O 2) complex with a 2,2'-bipyridine backbone. Chem Commun (Camb) 2021; 57:516-519. [PMID: 33331837 DOI: 10.1039/d0cc06763f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We report a Co-based complex for the reduction of O2 to H2O utilizing decamethylferrocene as chemical reductant and acetic acid as a proton donor in methanol solution. Despite structural similarities to previously reported Co(N2O2) complexes capable of catalytic O2 reduction, this system shows selectivity for the four-electron/four-proton reduction product, H2O, instead of the two-electron/two-proton reduction product, H2O2. Mechanistic studies show that the overall rate law is analogous to previous examples, suggesting that the key selectivity difference arises in part from increased favorability of protonation at the distal O position of the key intermediate Co(iii)-hydroperoxide, instead of the proximal one. Interestingly, no product selectivity dependence is observed with respect to the presence of pyridine, which is proposed to bind trans to O2 during catalysis.
Collapse
Affiliation(s)
- Asa W Nichols
- Department of Chemistry, University of Virginia, McCormick Rd, PO Box 400319, Charlottesville, Virginia 22904-4319, USA.
| | | | | | | | | | | |
Collapse
|