1
|
Zhou TP, Feng J, Wang Y, Li S, Wang B. Substrate Conformational Switch Enables the Stereoselective Dimerization in P450 NascB: Insights from Molecular Dynamics Simulations and Quantum Mechanical/Molecular Mechanical Calculations. JACS AU 2024; 4:1591-1604. [PMID: 38665654 PMCID: PMC11040706 DOI: 10.1021/jacsau.4c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
P450 NascB catalyzes the coupling of cyclo-(l-tryptophan-l-proline) (1) to generate (-)-naseseazine C (2) through intramolecular C-N bond formation and intermolecular C-C coupling. A thorough understanding of its catalytic mechanism is crucial for the engineering or design of P450-catalyzed C-N dimerization reactions. By employing MD simulations, QM/MM calculations, and enhanced sampling, we assessed various mechanisms from recent works. Our study demonstrates that the most favorable pathway entails the transfer of a hydrogen atom from N7-H to Cpd I. Subsequently, there is a conformational change in the substrate radical, shifting it from the Re-face to the Si-face of N7 in Substrate 1. The Si-face conformation of Substrate 1 is stabilized by the protein environment and the π-π stacking interaction between the indole ring and heme porphyrin. The subsequent intermolecular C3-C6' bond formation between Substrate 1 radical and Substrate 2 occurs via a radical attack mechanism. The conformational switch of the Substrate 1 radical not only lowers the barrier of the intermolecular C3-C6' bond formation but also yields the correct stereoselectivity observed in experiments. In addition, we evaluated the reactivity of the ferric-superoxide species, showing it is not reactive enough to initiate the hydrogen atom abstraction from the indole NH group of the substrate. Our simulation provides a comprehensive mechanistic insight into how the P450 enzyme precisely controls both the intramolecular C-N cyclization and intermolecular C-C coupling. The current findings align with the available experimental data, emphasizing the pivotal role of substrate dynamics in governing P450 catalysis.
Collapse
Affiliation(s)
- Tai-Ping Zhou
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jianqiang Feng
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yongchao Wang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shengying Li
- State
Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Binju Wang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Yang E, Yao Y, Su H, Sun Z, Gao SS, Sureram S, Kittakoop P, Fan K, Pan Y, Xu X, Sun ZH, Ma G, Liu G. Two Cytochrome P450 Enzymes Form the Tricyclic Nested Skeleton of Meroterpenoids by Sequential Oxidative Reactions. J Am Chem Soc 2024. [PMID: 38602511 DOI: 10.1021/jacs.4c01943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Meroterpenoid clavilactones feature a unique benzo-fused ten-membered carbocyclic ring unit with an α,β-epoxy-γ-lactone moiety, forming an intriguing 10/5/3 tricyclic nested skeleton. These compounds are good inhibitors of the tyrosine kinase, attracting a lot of chemical synthesis studies. However, the natural enzymes involved in the formation of the 10/5/3 tricyclic nested skeleton remain unexplored. Here, we identified a gene cluster responsible for the biosynthesis of clavilactone A in the basidiomycetous fungus Clitocybe clavipes. We showed that a key cytochrome P450 monooxygenase ClaR catalyzes the diradical coupling reaction between the intramolecular hydroquinone and allyl moieties to form the benzo-fused ten-membered carbocyclic ring unit, followed by the P450 ClaT that exquisitely and stereoselectively assembles the α,β-epoxy-γ-lactone moiety in clavilactone biosynthesis. ClaR unprecedentedly acts as a macrocyclase to catalyze the oxidative cyclization of the isopentenyl to the nonterpenoid moieties to form the benzo-fused macrocycle, and a multifunctional P450 ClaT catalyzes a ten-electron oxidation to accomplish the biosynthesis of the 10/5/3 tricyclic nested skeleton in clavilactones. Our findings establish the foundation for the efficient production of clavilactones using synthetic biology approaches and provide the mechanistic insights into the macrocycle formation in the biosynthesis of fungal meroterpenoids.
Collapse
Affiliation(s)
- Erlan Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College,Beijing 100193, P.R. China
| | - Yongpeng Yao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Hao Su
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P.R. China
| | - Zhaocui Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College,Beijing 100193, P.R. China
| | - Shu-Shan Gao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P.R. China
| | - Sanya Sureram
- Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
| | - Prasat Kittakoop
- Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
- Chulabhorn Graduate Institute, Laksi, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yuanyuan Pan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Xudong Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College,Beijing 100193, P.R. China
| | - Zhong-Hao Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College,Beijing 100193, P.R. China
| | - Guoxu Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College,Beijing 100193, P.R. China
| | - Gang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
3
|
Yadav S, Shaik S, Dubey KD. On the engineering of reductase-based-monooxygenase activity in CYP450 peroxygenases. Chem Sci 2024; 15:5174-5186. [PMID: 38577361 PMCID: PMC10988616 DOI: 10.1039/d3sc06538c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/06/2024] [Indexed: 04/06/2024] Open
Abstract
Recent bioengineering of CYP450OleT shows that peroxide-based CYP450OleT can be converted to a reductase-based self-sufficient enzyme, which is capable of showing efficient hydroxylation and decarboxylation activity for a wide range of substrates. The so-generated enzyme creates several mechanistic puzzles: (A) as CYP450 peroxygenases lack the conventional acid-alcohol pair, what is the source of two protons that are required to create the ultimate oxidant Cpd I? (B) Why is it only CYP450OleT that shows the reductase-based activity but no other CYP members? The present study provides a mechanistic solution to these puzzles using comprehensive MD simulations and hybrid QM/MM calculations. We show that the fusion of the reductase domain to the heme-binding domain triggers significant conformational rearrangement, which is gated by the propionate side chain, which constitutes a new water aqueduct via the carboxylate end of the substrate that ultimately participates in Cpd I formation. Importantly, such well-synchronized choreographies are controlled by remotely located Tyr359, which senses the fusion of reductase and communicates to the heme domain via non-covalent interactions. These findings provide crucial insights and a broader perspective which enables us to make a verifiable prediction: thus, the catalytic activity is not only limited to the first or second catalytic shell of an enzyme. Furthermore, it is predicted that reinstatement of tyrosine at a similar position in other members of CYP450 peroxygenases can convert these enzymes to reductase-based monooxygenases.
Collapse
Affiliation(s)
- Shalini Yadav
- Department of Chemistry, School of Natural Science, Shiv Nadar Institution of Eminence NH91 Tehsil Dadri Greater Noida Uttar Pradesh 201314 India
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University Edmond J. Safra Campus at Givat Ram Jerusalem 9190401 Israel
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Science, Shiv Nadar Institution of Eminence NH91 Tehsil Dadri Greater Noida Uttar Pradesh 201314 India
| |
Collapse
|
4
|
Lu Y, Sen K, Yong C, Gunn DSD, Purton JA, Guan J, Desmoutier A, Abdul Nasir J, Zhang X, Zhu L, Hou Q, Jackson-Masters J, Watts S, Hanson R, Thomas HN, Jayawardena O, Logsdail AJ, Woodley SM, Senn HM, Sherwood P, Catlow CRA, Sokol AA, Keal TW. Multiscale QM/MM modelling of catalytic systems with ChemShell. Phys Chem Chem Phys 2023; 25:21816-21835. [PMID: 37097706 DOI: 10.1039/d3cp00648d] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Hybrid quantum mechanical/molecular mechanical (QM/MM) methods are a powerful computational tool for the investigation of all forms of catalysis, as they allow for an accurate description of reactions occurring at catalytic sites in the context of a complicated electrostatic environment. The scriptable computational chemistry environment ChemShell is a leading software package for QM/MM calculations, providing a flexible, high performance framework for modelling both biomolecular and materials catalysis. We present an overview of recent applications of ChemShell to problems in catalysis and review new functionality introduced into the redeveloped Python-based version of ChemShell to support catalytic modelling. These include a fully guided workflow for biomolecular QM/MM modelling, starting from an experimental structure, a periodic QM/MM embedding scheme to support modelling of metallic materials, and a comprehensive set of tutorials for biomolecular and materials modelling.
Collapse
Affiliation(s)
- You Lu
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - Kakali Sen
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - Chin Yong
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - David S D Gunn
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - John A Purton
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - Jingcheng Guan
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Alec Desmoutier
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Jamal Abdul Nasir
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Xingfan Zhang
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Lei Zhu
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Qing Hou
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Joe Jackson-Masters
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Sam Watts
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Rowan Hanson
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Harry N Thomas
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Omal Jayawardena
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Andrew J Logsdail
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Scott M Woodley
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Hans M Senn
- School of Chemistry, University of Glasgow, Joseph Black Building, Glasgow G12 8QQ, UK
| | - Paul Sherwood
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK
| | - C Richard A Catlow
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Alexey A Sokol
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Thomas W Keal
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| |
Collapse
|
5
|
Chen JY, Li M, Liao RZ. Mechanistic Insights into Photochemical CO 2 Reduction to CH 4 by a Molecular Iron-Porphyrin Catalyst. Inorg Chem 2023. [PMID: 37279181 DOI: 10.1021/acs.inorgchem.3c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Iron tetraphenylporphyrin complex modified with four trimethylammonium groups (Fe-p-TMA) is found to be capable of catalyzing the eight-electron eight-proton reduction of CO2 to CH4 photochemically in acetonitrile. In the present work, density functional theory (DFT) calculations have been performed to investigate the reaction mechanism and to rationalize the product selectivity. Our results revealed that the initial catalyst Fe-p-TMA ([Cl-Fe(III)-LR4]4+, where L = tetraphenylporphyrin ligand with a total charge of -2, and R4 = four trimethylammonium groups with a total charge of +4) undergoes three reduction steps, accompanied by the dissociation of the chloride ion to form [Fe(II)-L••2-R4]2+. [Fe(II)-L••2-R4]2+, bearing a Fe(II) center ferromagnetically coupled with a tetraphenylporphyrin diradical, performs a nucleophilic attack on CO2 to produce the 1η-CO2 adduct [CO2•--Fe(II)-L•-R4]2+. Two intermolecular proton transfer steps then take place at the CO2 moiety of [CO2•--Fe(II)-L•-R4]2+, resulting in the cleavage of the C-O bond and the formation of the critical intermediate [Fe(II)-CO]4+ after releasing a water molecule. Subsequently, [Fe(II)-CO]4+ accepts three electrons and one proton to generate [CHO-Fe(II)-L•-R4]2+, which finally undergoes a successive four-electron-five-proton reduction to produce methane without forming formaldehyde, methanol, or formate. Notably, the redox non-innocent tetraphenylporphyrin ligand was found to play an important role in CO2 reduction since it could accept and transfer electron(s) during catalysis, thus keeping the ferrous ion at a relatively high oxidation state. Hydrogen evolution reaction via the formation of Fe-hydride ([Fe(II)-H]3+) turns out to endure a higher total barrier than the CO2 reduction reaction, therefore providing a reasonable explanation for the origin of the product selectivity.
Collapse
Affiliation(s)
- Jia-Yi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Man Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
6
|
Sun MZ, Lyu LS, Zheng QC. How does multiple substrate binding lead to substrate inhibition of CYP2D6 metabolizing dextromethorphan? A theoretical study. Phys Chem Chem Phys 2023; 25:5164-5173. [PMID: 36723118 DOI: 10.1039/d2cp05634h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
CYP2D6 is one of the most important metalloenzymes involved in the biodegradation of many drug molecules in the human body. It has been found that multiple substrate binding can lead to substrate inhibition of CYP2D6 metabolizing dextromethorphan (DM), but the corresponding theoretical mechanism is rarely reported. Therefore, we chose DM as the probe and performed molecular dynamics simulations and quantum mechanical calculations on CYP2D6-DM systems to investigate the mechanism of how the multiple substrate binding leads to the substrate inhibition of CYP2D6 metabolizing substrates. According to our results, three gate residues (Arg221, Val374, and Phe483) for the catalytic pocket are determined. We also found that the multiple substrate binding can lead to substrate inhibition by reducing the stability of CYP2D6 binding DM and increasing the reactive activation energy of the rate-determining step. Our findings would help to understand the substrate inhibition of CYP2D6 metabolizing the DM and enrich the knowledge of the drug-drug interactions for the cytochrome P450 superfamily.
Collapse
Affiliation(s)
- Min-Zhang Sun
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China
| | - Ling-Shan Lyu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China
| | - Qing-Chuan Zheng
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130023, China. .,Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China
| |
Collapse
|
7
|
Wu Y, Zhao C, Su Y, Shaik S, Lai W. Mechanistic Insight into Peptidyl-Cysteine Oxidation by the Copper-Dependent Formylglycine-Generating Enzyme. Angew Chem Int Ed Engl 2023; 62:e202212053. [PMID: 36545867 DOI: 10.1002/anie.202212053] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The copper-dependent formylglycine-generating enzyme (FGE) catalyzes the oxygen-dependent oxidation of specific peptidyl-cysteine residues to formylglycine. Our QM/MM calculations provide a very likely mechanism for this transformation. The reaction starts with dioxygen binding to the tris-thiolate CuI center to form a triplet CuII -superoxide complex. The rate-determining hydrogen atom abstraction involves a triplet-singlet crossing to form a CuII -OOH species that couples with the substrate radical, leading to a CuI -alkylperoxo intermediate. This is accompanied by proton transfer from the hydroperoxide to the S atom of the substrate via a nearby water molecule. The subsequent O-O bond cleavage is coupled with the C-S bond breaking that generates the formylglycine and a CuII -oxyl complex. Moreover, our results suggest that the aldehyde oxygen of the final product originates from O2 , which will be useful for future experimental work.
Collapse
Affiliation(s)
- Yao Wu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Cong Zhao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yanzhuang Su
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Wenzhen Lai
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| |
Collapse
|
8
|
Yan Y, Zheng C, Song W, Wu J, Guo L, Gao C, Liu J, Chen X, Zhu M, Liu L. Efficient Production of Epoxy-Norbornane from Norbornene by an Engineered P450 Peroxygenase. Chembiochem 2023; 24:e202200529. [PMID: 36354378 DOI: 10.1002/cbic.202200529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
Abstract
Epoxy-norbornane (EPO-NBE) is a crucial building block for the synthesis of various biologically active heterocyclic systems. To develop an efficient protocol for producing EPO-NBE using norbornene (NBE) as a substrate, cytochrome P450 enzyme from Pseudomonas putida (CYP238A1) was examined and its crystal structure (PDB code: 7X53) was resolved. Molecular mechanism analysis showed a high energy barrier related to iron-alkoxy radical complex formation. Therefore, a protein engineering strategy was developed and an optimal CYP238A1NPV variant containing a local hydrophobic "fence" at the active site was obtained, which increased the H2 O2 -dependent epoxidation activity by 7.5-fold compared with that of CYP238A1WT . Among the "fence", Glu255 participates in an efficient proton transfer system. Whole-cell transformation using CYP238A1NPV achieved an EPO-NBE yield of 77.6 g ⋅ L-1 in a 30-L reactor with 66.3 % conversion. These results demonstrate the potential of this system for industrial production of EPO-NBE and provides a new biocatalytic platform for epoxidation chemistry.
Collapse
Affiliation(s)
- Yu Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Chenni Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Meng Zhu
- Wuxi Acryl Technology Co., Ltd., Wuxi, 214122, P. R. China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
9
|
Yadav S, Kardam V, Tripathi A, T G S, Dubey KD. The Performance of Different Water Models on the Structure and Function of Cytochrome P450 Enzymes. J Chem Inf Model 2022; 62:6679-6690. [PMID: 36073971 DOI: 10.1021/acs.jcim.2c00505] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Modeling approaches and modern simulations to investigate the biomolecular structure and function rely on various methods. Since water molecules play a crucial role in all sorts of chemistry, the accurate modeling of water molecules is vital for such simulations. In cytochrome P450 (CYP450), in particular, water molecules play a key role in forming active oxidant that ultimately performs oxidation and metabolism. In the present study, we have highlighted the behavior of the three most widely used water models─TIP3P, SPC/E, and OPC─for three different CYP450 enzymes─CYP450BM3, CYP450OleT, and CYP450BSβ─during MD simulations and QM/MM calculations. We studied the various properties, such as RMSD, RMSF, H-bond, water occupancy, and hydrogen atom transfer (HAT), using QM/MM calculations and compared them for all three water models. Our study shows that the stabilities of the enzyme complexes are well maintained in all three water models. However, the OPC water model performs well for the polar active sites, that is, in CYP450OleT and CYP450BSβ, while the TIP3P water model is superior for the hydrophobic site, such as CYP450BM3.
Collapse
Affiliation(s)
- Shalini Yadav
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University Delhi-NCR, Gautam Buddha Nagar, U.P. 201314, India
| | - Vandana Kardam
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University Delhi-NCR, Gautam Buddha Nagar, U.P. 201314, India
| | - Ankita Tripathi
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University Delhi-NCR, Gautam Buddha Nagar, U.P. 201314, India
| | - Shruti T G
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University Delhi-NCR, Gautam Buddha Nagar, U.P. 201314, India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University Delhi-NCR, Gautam Buddha Nagar, U.P. 201314, India
| |
Collapse
|
10
|
Kardam V, Kalita S, Dubey KD. Computations reveal a crucial role of an aromatic dyad in the catalytic function of plant cytochrome P450 mint superfamily. J Inorg Biochem 2022; 237:111990. [PMID: 36115330 DOI: 10.1016/j.jinorgbio.2022.111990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/27/2022] [Accepted: 08/31/2022] [Indexed: 01/18/2023]
Abstract
Enzymes are highly specific for their native functions, however with advances in bioengineering tools such as directed evolution, several enzymes are being repurposed for the secondary function of contemporary significance(Khersonsky and Tawfik, 2010 [1]). Due to the functional versatility, the Cytochrome P450 (CYP450) superfamily has become the ideal scaffold for such bioengineering. In the current study, using MD (molecular dynamics) simulations and hybrid QM/MM (Quantum mechanics/molecular mechanics) calculations, we have studied the mechanism of spontaneous emergence of a secondary function due to a single site mutation in two plant CYP450 enzymes from the mint family. The MD simulations of WT (wild type) CYP71D18 and CYP71D13 enzymes and their variants show a crucial gating mechanism by aromatic dyad formed by Phe121 and Phe363 which regulates the substrate recognition. The QM/MM calculations reveal that the hydroxylation reactions at C3 and C6 positions in WT CYP71D18 and CYP71D13 enzymes as well as their variants follow a hydrogen atom transfer (HAT) followed by a single electron transfer (SET) mechanism, which is different from the typical rebound mechanism shown by most of the CYP450 enzymes.
Collapse
Affiliation(s)
- Vandana Kardam
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Delhi-NCR, NH91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Surajit Kalita
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Delhi-NCR, NH91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Delhi-NCR, NH91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India.
| |
Collapse
|
11
|
Singh W, Santos SF, James P, Black GW, Huang M, Dubey KD. Single-Site Mutation Induces Water-Mediated Promiscuity in Lignin Breaking Cytochrome P450 GcoA. ACS OMEGA 2022; 7:21109-21118. [PMID: 35755387 PMCID: PMC9219061 DOI: 10.1021/acsomega.2c00524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/19/2022] [Indexed: 05/10/2023]
Abstract
Cytochrome P450GcoA is an enzyme that catalyzes the guaiacol unit of lignin during the lignin breakdown via an aryl-O-demethylation reaction. This reaction is intriguing and is of commercial importance for its potential applications in the production of biofuel and plastic from biomass feedstock. Recently, the F169A mutation in P450GcoA elicits a promiscuous activity for syringol while maintaining the native activity for guaiacol. Using comprehensive MD simulations and hybrid QM/MM calculations, we address, herein, the origin of promiscuity in P450GcoA and its relevance to the specific activity toward lignin-derived substrates. Our study shows a crucial role of an aromatic dyad of F169 and F395 by regulating the water access to the catalytic center. The F169A mutation opens a water aqueduct and hence increases the native activity for G-lignin. We show that syringol binds very tightly to the WT enzyme, which blocks the conformational rearrangement needed for the second step of O-demethylation. The F169A creates an extra room favoring the conformational rearrangement in the 3-methoxycatechol (3MC) and second dose of the dioxygen insertion. Therefore, using MD simulations and complemented by thorough QM/MM calculations, our study shows how a single-site mutation rearchitects active site engineering for promiscuous syringol activity.
Collapse
Affiliation(s)
- Warispreet Singh
- Department
of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1
8ST, United Kingdom
- Hub
for Biotechnology in Build Environment, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Sónia F.
G. Santos
- Department
of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1
8ST, United Kingdom
- Hub
for Biotechnology in Build Environment, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Paul James
- Department
of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1
8ST, United Kingdom
- Hub
for Biotechnology in Build Environment, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Gary W. Black
- Department
of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1
8ST, United Kingdom
- Hub
for Biotechnology in Build Environment, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Meilan Huang
- Department
of Chemistry & Chemical Engineering, Queen’s University, Belfast BT9 5AG, United Kingdom
| | - Kshatresh Dutta Dubey
- Department
of Chemistry and Centre for Informatics, Shiv Nadar University Delhi NCR, Gautam Buddha Nagar, U.P. 201314, India
| |
Collapse
|
12
|
Yan Y, Wu J, Hu G, Gao C, Guo L, Chen X, Liu L, Song W. Current state and future perspectives of cytochrome P450 enzymes for C–H and C=C oxygenation. Synth Syst Biotechnol 2022; 7:887-899. [PMID: 35601824 PMCID: PMC9112060 DOI: 10.1016/j.synbio.2022.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 01/11/2023] Open
Abstract
Cytochrome P450 enzymes (CYPs) catalyze a series of C–H and C=C oxygenation reactions, including hydroxylation, epoxidation, and ketonization. They are attractive biocatalysts because of their ability to selectively introduce oxygen into inert molecules under mild conditions. This review provides a comprehensive overview of the C–H and C=C oxygenation reactions catalyzed by CYPs and the various strategies for achieving higher selectivity and enzymatic activity. Furthermore, we discuss the application of C–H and C=C oxygenation catalyzed by CYPs to obtain the desired chemicals or pharmaceutical intermediates in practical production. The rapid development of protein engineering for CYPs provides excellent biocatalysts for selective C–H and C=C oxygenation reactions, thereby promoting the development of environmentally friendly and sustainable production processes.
Collapse
Affiliation(s)
- Yu Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
- Corresponding author.
| |
Collapse
|
13
|
Affiliation(s)
- Surajit Kalita
- Department of Chemistry and Center for Informatics, School of Natural Science, Shiv Nadar University Delhi-NCR, NH91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University, Edmond. J. Safra Campus, Givat Ram, Jerusalem 9190400, Israel
| | - Kshatresh Dutta Dubey
- Department of Chemistry and Center for Informatics, School of Natural Science, Shiv Nadar University Delhi-NCR, NH91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
14
|
Yadav S, Shaik S, Siddiqui SA, Kalita S, Dubey KD. Local Electric Fields Dictate Function: The Different Product Selectivities Observed for Fatty Acid Oxidation by Two Deceptively Very Similar P450-Peroxygenases OleT and BSβ. J Chem Inf Model 2022; 62:1025-1035. [PMID: 35129977 DOI: 10.1021/acs.jcim.1c01453] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cytochrome P450 peroxygenases use hydrogen peroxide to hydroxylate long-chain fatty acids by bypassing the use of O2 and a redox partner. Among the peroxygenases, P450OleT uniquely performs decarboxylation of fatty acids and production of terminal olefins. This route taken by P450OleT is intriguing, and its importance is augmented by the practical importance of olefin production. As such, this mechanistic choice merits elucidation. To address this puzzle, we use hybrid QM/MM calculations and MD simulations for the OleT enzyme as well as for the structurally analogous enzyme, P450BSβ. The study of P450OleT reveals that the protonated His85 in the wild-type P450OleT plays a crucial role in steering decarboxylation activity by stabilizing the corresponding hydroxoiron(IV) intermediate (Cpd II). In contrast, for P450BSβ in which Q85 replaces H85, the respective Cpd II species is unstable and it reacts readily with the substrate radical by rebound, producing hydroxylation products. As shown, this single-site difference creates in P450OleT a local electric field (LEF), which is significantly higher than that in P450BSβ. In turn, these LEF differences are responsible for the different stabilities of the respective Cpd II/radical intermediates and hence for different functions of the two enzymes. P450BSβ uses the common rebound mechanism and leads to hydroxylation, whereas P450OleT proceeds via decarboxylation and generates terminal olefins. Olefin production projects the power of a single residue to alter the LEF and the enzyme's function.
Collapse
Affiliation(s)
- Shalini Yadav
- Department of Chemistry, School of Natural Science, Shiv Nadar University, Delhi-NCR, NH91 Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University, Edmond. J. Safra Campus, Givat Ram, Jerusalem 9190400, Israel
| | - Shakir Ali Siddiqui
- Department of Chemistry, School of Natural Science, Shiv Nadar University, Delhi-NCR, NH91 Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Surajit Kalita
- Department of Chemistry, School of Natural Science, Shiv Nadar University, Delhi-NCR, NH91 Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Science, Shiv Nadar University, Delhi-NCR, NH91 Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India.,Center for Informatics, Department of Chemistry, School of Natural Science, Shiv Nadar University, Delhi-NCR, NH91 Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
15
|
Wang Y, Li X, Wei J, Zhang X, Liu Y. Mechanism of Sugar Ring Contraction and Closure Catalyzed by UDP-d-apiose/UDP-d-xylose Synthase (UAXS). J Chem Inf Model 2022; 62:632-646. [PMID: 35043627 DOI: 10.1021/acs.jcim.1c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Uridine diphosphate (UDP)-apiose/UDP-xylose synthase (UAXS) is a member of the short-chain dehydrogenase/reductase superfamily (SDR), which catalyzes the ring contraction and closure of UDP-d-glucuronic acid (UDP-GlcA), affording UDP-apiose and UDP-xylose. UAXS is a special enzyme that integrates ring-opening, decarboxylation, rearrangement, and ring closure/contraction in a single active site. Recently, the ternary complex structure of UAXS was crystallized from Arabidopsis thaliana. In this work, to gain insights into the detailed formation mechanism of UDP-apiose and UDP-xylose, an enzyme-substrate reactant model has been constructed and quantum mechanical/molecular mechanical (QM/MM) calculations have been performed. Our calculation results reveal that the reaction starts from the C4-OH oxidation, which is accompanied by the conformational transformation of the sugar ring from chair type to boat type. The sugar ring-opening is prior to decarboxylation, and the deprotonation of the C2-OH group is the prerequisite for sugar ring-opening. Moreover, the keto-enol tautomerization of the decarboxylated intermediate is a necessary step for ring closure/contraction. Based on our calculation results, more UDP-apiose product was expected, which is in line with the experimental observation. Three titratable residues, Tyr185, Cys100, and Cys140, steer the reaction by proton transfer from or to UDP-GlcA, and Arg182, Glu141, and D337 constitute a proton conduit for sugar C2-OH deprotonation. Although Thr139 and Tyr105 are not directly involved in the enzymatic reaction, they are responsible for promoting the catalysis by forming hydrogen-bonding interactions with GlcA. Our calculations may provide useful information for understanding the catalysis of the SDR family.
Collapse
Affiliation(s)
- Yijing Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xinyi Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jingjing Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xue Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
16
|
|
17
|
Stamm A, Öhlin J, Mosbech C, Olsén P, Guo B, Söderberg E, Biundo A, Fogelström L, Bhattacharyya S, Bornscheuer UT, Malmström E, Syrén PO. Pinene-Based Oxidative Synthetic Toolbox for Scalable Polyester Synthesis. JACS AU 2021; 1:1949-1960. [PMID: 34849510 PMCID: PMC8620555 DOI: 10.1021/jacsau.1c00312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 05/27/2023]
Abstract
Generation of renewable polymers is a long-standing goal toward reaching a more sustainable society, but building blocks in biomass can be incompatible with desired polymerization type, hampering the full implementation potential of biomaterials. Herein, we show how conceptually simple oxidative transformations can be used to unlock the inherent reactivity of terpene synthons in generating polyesters by two different mechanisms starting from the same α-pinene substrate. In the first pathway, α-pinene was oxidized into the bicyclic verbanone-based lactone and subsequently polymerized into star-shaped polymers via ring-opening polymerization, resulting in a biobased semicrystalline polyester with tunable glass transition and melting temperatures. In a second pathway, polyesters were synthesized via polycondensation, utilizing the diol 1-(1'-hydroxyethyl)-3-(2'-hydroxy-ethyl)-2,2-dimethylcyclobutane (HHDC) synthesized by oxidative cleavage of the double bond of α-pinene, together with unsaturated biobased diesters such as dimethyl maleate (DMM) and dimethyl itaconate (DMI). The resulting families of terpene-based polyesters were thereafter successfully cross-linked by either transetherification, utilizing the terminal hydroxyl groups of the synthesized verbanone-based materials, or by UV irradiation, utilizing the unsaturation provided by the DMM or DMI moieties within the HHDC-based copolymers. This work highlights the potential to apply an oxidative toolbox to valorize inert terpene metabolites enabling generation of biosourced polyesters and coatings thereof by complementary mechanisms.
Collapse
Affiliation(s)
- Arne Stamm
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Johannes Öhlin
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Caroline Mosbech
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Peter Olsén
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Boyang Guo
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, Tomtebodavägen
23, Box 1031, SE-171 21 Solna, Sweden
| | - Elisabeth Söderberg
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, Tomtebodavägen
23, Box 1031, SE-171 21 Solna, Sweden
| | - Antonino Biundo
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, Tomtebodavägen
23, Box 1031, SE-171 21 Solna, Sweden
| | - Linda Fogelström
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56-58, Stockholm SE-100 44 Sweden
| | | | - Uwe T. Bornscheuer
- Department
of Biotechnology and Enzyme Catalysis, University
of Greifswald, Institute of Biochemistry, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| | - Eva Malmström
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56-58, Stockholm SE-100 44 Sweden
| | - Per-Olof Syrén
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, Tomtebodavägen
23, Box 1031, SE-171 21 Solna, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56-58, Stockholm SE-100 44 Sweden
| |
Collapse
|
18
|
Kalita S, Shaik S, Dubey KD. MD simulations and QM/MM calculations reveal the key mechanistic elements which are responsible for the efficient C-H amination reaction performed by a bioengineered P450 enzyme. Chem Sci 2021; 12:14507-14518. [PMID: 34881002 PMCID: PMC8580044 DOI: 10.1039/d1sc03489h] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
An enzyme which is capable of catalyzing C–H amination reactions is considered to be a dream tool for chemists due to its pharmaceutical potential and greener approach. Recently, the Arnold group achieved this feat using an engineered CYP411 enzyme, which further undergoes a random directed evolution which increases its efficiency and selectivity. The present study provides mechanistic insight and the root cause of the success of these mutations to enhance the reactivity and selectivity of the mutant enzyme. This is achieved by means of comprehensive MD simulations and hybrid QM/MM calculations. The study shows that the efficient C–H amination by the engineered CYP411 is a combined outcome of electronic and steric effects. The mutation of the axial cysteine ligand to serine relays electron density to the Fe ion in the heme, and thereby enhances the bonding capability of the heme-iron to the nitrogen atom of the tosyl azide. In comparison, the native cysteine-ligated P450 cannot bind the tosyl azide. Additionally, the A78V and A82L mutations in P411 provide ‘bulk’ to the active site which increases the enantioselectivity via a steric effect. At the same time, the QM/MM calculations elucidate the C–H amination by the iron nitrenoid, revealing a mechanism analogous to Compound I in the native C–H hydroxylation by P450. Computer simulation method reveals the mechanism of C–H amination reaction due to a single site mutation.![]()
Collapse
Affiliation(s)
- Surajit Kalita
- Department of Chemistry and Center for Informatics, School of Natural Sciences, Shiv Nadar University Dadri, Gautam Buddha Nagar Uttar Pradesh 201314 India
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J Safra Campus Givat Ram Jerusalem 9140401 Israel
| | - Kshatresh Dutta Dubey
- Department of Chemistry and Center for Informatics, School of Natural Sciences, Shiv Nadar University Dadri, Gautam Buddha Nagar Uttar Pradesh 201314 India
| |
Collapse
|
19
|
Dual-function enzyme catalysis for enantioselective carbon-nitrogen bond formation. Nat Chem 2021; 13:1166-1172. [PMID: 34663919 DOI: 10.1038/s41557-021-00794-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/23/2021] [Indexed: 12/22/2022]
Abstract
Chiral amines can be made by insertion of a carbene into an N-H bond using two-catalyst systems that combine a transition metal-based carbene-transfer catalyst and a chiral proton-transfer catalyst to enforce stereocontrol. Haem proteins can effect carbene N-H insertion, but asymmetric protonation in an active site replete with proton sources is challenging. Here we describe engineered cytochrome P450 enzymes that catalyse carbene N-H insertion to prepare biologically relevant α-amino lactones with high activity and enantioselectivity (up to 32,100 total turnovers, >99% yield and 98% e.e.). These enzymes serve as dual-function catalysts, inducing carbene transfer and promoting the subsequent proton transfer with excellent stereoselectivity in a single active site. Computational studies uncover the detailed mechanism of this new-to-nature enzymatic reaction and explain how active-site residues accelerate this transformation and provide stereocontrol.
Collapse
|
20
|
Chauhan J, Maddi SR, Dubey KD, Sen S. Developing C2-Aroyl Indoles as Novel Inhibitors of IDO1 and Understanding Their Mechanism of Inhibition via Mass Spectroscopy, QM/MM Calculations and Molecular Dynamics Simulation. Front Chem 2021; 9:691319. [PMID: 34336787 PMCID: PMC8319603 DOI: 10.3389/fchem.2021.691319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Indoleamine-2,3-dioxygenase (IDO1) and tryptophan dioxygenases are two heme based metalloenzymes that catalyze the tryptophan oxidation reaction by inserting molecular dioxygen to cleave the pyrrole ring. The mechanism of such ring cleavage reaction is of carcinogenic importance as the malignant tumors recruit this mechanism for immune invasion. In the presence study, we have synthesized a Novel C2 aroyl indoles inhibitor, 8d, which shows significant inhibition of 180 nM at IC50 scale. The binding and conformational changes that transpire after inhibitor binding were thoroughly studied by molecular docking and MD simulations. The subsequent QM/MM (Quantum Mechanical/Molecular Mechanical) calculations were used to proposed the mechanism of inhibition. The QM/MM calculations show that the reaction proceeds via multistep processes where the dioxygen insertion to the substrate 8a is the rate determining process. Theoretical mechanism is further supported by mass spectroscopy, and drug metabolism/pharmacokinetics study (DMPK) and metabolic stability of compound 8d was investigated in rat and human liver microsomes.
Collapse
Affiliation(s)
- Jyoti Chauhan
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | | | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| |
Collapse
|
21
|
Zhang X, Jiang Y, Chen Q, Dong S, Feng Y, Cong Z, Shaik S, Wang B. H-Bonding Networks Dictate the Molecular Mechanism of H2O2 Activation by P450. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02068] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Yiping Jiang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, People’s Republic of China
| | - Qianqian Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Sheng Dong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, People’s Republic of China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, People’s Republic of China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, People’s Republic of China
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, 9190407 Jerusalem, Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
22
|
Shaik S. Stories of My Journeys Through Valence Bond Theory, DFT, MD and their Applications to Complex Objects. Isr J Chem 2020. [DOI: 10.1002/ijch.202000090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sason Shaik
- Institute of Chemistry The Hebrew University of Jerusalem Edmond J. Safra Campus, Givat Ram 91904 Jerusalem Israel
| |
Collapse
|