1
|
Tyler JL, Trauner D, Glorius F. Reaction development: a student's checklist. Chem Soc Rev 2025; 54:3272-3292. [PMID: 39912730 DOI: 10.1039/d4cs01046a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
So you've discovered a reaction. But how do you turn this new discovery into a fully-fledged program that maximises the potential of your novel transformation? Herein, we provide a student's checklist to serve as a helpful guide for synthesis development, allowing you to thoroughly investigate the chemistry in question while ensuring that no key aspect of the project is overlooked. A wide variety of the most illuminating synthetic and spectroscopic techniques will be summarised, in conjunction with literature examples and our own insights, to provide sound justifications for their implementation towards the goal of developing new reactions.
Collapse
Affiliation(s)
- Jasper L Tyler
- University of Muenster, Institute for Organic Chemistry, Corrensstrasse 36, 48149 Muenster, Germany.
| | - Dirk Trauner
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA.
| | - Frank Glorius
- University of Muenster, Institute for Organic Chemistry, Corrensstrasse 36, 48149 Muenster, Germany.
| |
Collapse
|
2
|
Dana S, Pandit NK, Boos P, von Münchow T, Peters SE, Trienes S, Haberstock L, Herbst-Irmer R, Stalke D, Ackermann L. Parametrization of κ 2- N, O-Oxazoline Preligands for Enantioselective Cobaltaelectro-Catalyzed C-H Activations. ACS Catal 2025; 15:4450-4459. [PMID: 40144676 PMCID: PMC11934137 DOI: 10.1021/acscatal.5c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025]
Abstract
Enantioselective electrocatalyzed C-H activations have emerged as a transformative platform for the assembly of value-added chiral organic molecules. Despite the recent progress, the construction of multiple C(sp3)-stereogenic centers via a C(sp3)-C(sp3) bond formation has thus far proven to be elusive. In contrast, we herein report an annulative C-H activation strategy, generating chiral Fsp3-rich molecules with high levels of diastereo- and enantioselectivity. κ2-N,O-oxazoline preligands were effectively employed in enantioselective cobalt(III)-catalyzed C-H activation reactions. Using DFT-derived descriptors and regression statistical modeling, we performed a parametrization study on the modularity of chiral κ2-N,O-oxazoline preligands. The study resulted in a model describing ligands' selectivity characterized by key steric, electronic, and interaction behaviors.
Collapse
Affiliation(s)
| | | | | | - Tristan von Münchow
- WISCh (Wöhler-Research
Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
| | - Sven Erik Peters
- WISCh (Wöhler-Research
Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
| | - Sven Trienes
- WISCh (Wöhler-Research
Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
| | - Laura Haberstock
- WISCh (Wöhler-Research
Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
| | - Regine Herbst-Irmer
- WISCh (Wöhler-Research
Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
| | - Dietmar Stalke
- WISCh (Wöhler-Research
Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
| | - Lutz Ackermann
- WISCh (Wöhler-Research
Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
3
|
Yao QJ, Shi BF. Cobalt(III)-Catalyzed Enantioselective C-H Functionalization: Ligand Innovation and Reaction Development. Acc Chem Res 2025; 58:971-990. [PMID: 40008854 DOI: 10.1021/acs.accounts.5c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
ConspectusIn contrast to precious transition metals, such as palladium and rhodium, the development of novel chiral ligands for enantioselective C-H functionalizations catalyzed by earth-abundant, cost-effective, and environmentally friendly 3d metals poses substantial challenges, primarily due to the variable oxidation states, intricate coordination patterns, and limited mechanistic insights. In this Account, we summarize our research endeavors in the development of three novel types of Co(III) catalysis: pseudotetrahedral achiral Cp*Co(III)/chiral carbonyl acid (CCA) catalysis, in situ-generated chiral octahedral cobalt(III) via cobalt/salicyloxazoline (Salox) catalysis, and Co(II)/chiral phosphoric acid (CPA) cooperative catalysis, achieved through strategic chiral ligand design. Our initial objective was to achieve enantioselective C-H functionalization catalyzed by achiral Cp*Co(III) catalysts with external chiral ligands, aiming to circumvent the laborious preparation of chiral CpxCo(III) complexes. To this end, we developed several CCA ligands, incorporating non-covalent interactions (NCIs) as a crucial design element. Next, to address the limitations associated with the lengthy synthesis of Cp-ligated Co(III) complexes and the difficulties of modification, we explored the concept of the in situ generation of Co(III) catalysis using commercially available cobalt(II) salts with tailor-made chiral ligands. This exploration led to the development of two innovative catalytic systems, namely, Co(II)/Salox catalysis and Co(II)/CCA sequential catalysis. The Co(II)/Salox catalysis emerged as a versatile strategy, demonstrating excellent enantioselectivities across a range of asymmetric C-H functionalization reactions to construct various chiral molecules with central, axial, planar, and inherent chirality. The facile synthesis in a single step, along with ease of modification, further enhances the versatility and applicability of this approach. Moreover, we successfully applied cobalt/Salox catalysis in electro- and photochemical-catalyzed enantioselective C-H functionalization, using electrons or oxygen as traceless oxidant, thereby eliminating the need for stoichiometric chemical oxidants. Through mechanistic studies and reaction developments, we elucidated the detailed ligand structure-enantioselectivity relationships in cobalt/Salox catalysis, which are expected to inform future research endeavors. Finally, the Co(II)/CPA cooperative catalysis enabled the synthesis of chiral spiro-γ-lactams through sequential C-H olefination/asymmetric [4 + 1] spirocyclization. Mechanistically, the establishment of stereochemistry occurs during the cyclization step, where the CPA ligand serves as both a neutral ligand and a chiral Brønsted acid, with stereoinduction independent of the C-H cleavage step. We anticipate that the insights and advancements detailed in this Account will inspire further innovations in ligand development and drive progress in the exploration of 3d metal-catalyzed asymmetric C-H functionalization reactions.
Collapse
Affiliation(s)
- Qi-Jun Yao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Guo H, Loh CCJ. Noncovalent interactions: An emerging focal point in stereoselective catalytic carbohydrate synthesis. Carbohydr Res 2025; 552:109458. [PMID: 40132292 DOI: 10.1016/j.carres.2025.109458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
The incorporation of frontier synthetic concepts into stereoselective carbohydrate synthesis is gaining significant traction. In the last five years, there are increasing reports documenting that the consideration of weak non-covalent interactions (NCIs) constitutes a vital factor in steering the anomeric and site-selectivity, as well as in activating difficult glycosylations. In light of blossoming developments on this front, we present a brief overview of recent case studies that involve the harnessing of hydrogen bonding (HB), halogen bonding (XB), chalcogen bonding (ChB) and π-interactions. These NCIs represent a considerable palette of classical/non-classical weak interactions that is of current interest to the broad synthesis community. Significantly, a close mechanistic analysis often revealed that NCIs were instrumental in dictating the final stereoselectivity outcome of many glycosylation pathways. We are optimistic that by expanding the focal point from purely glycosyl substrate modifications towards tweaking catalytic NCIs at the supramolecular level of chemical glycosylations, this emerging concept offers new levers of stereoselectivity control beyond classical stereoelectronic and steric considerations.
Collapse
Affiliation(s)
- Hao Guo
- College of Chemistry and Materials Science, And Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, PR China
| | - Charles C J Loh
- UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
5
|
Adams HK, Kadarauch M, Hodson NJ, Lit AR, Phipps RJ. Design Approaches That Utilize Ionic Interactions to Control Selectivity in Transition Metal Catalysis. Chem Rev 2025; 125:2846-2907. [PMID: 40020185 PMCID: PMC11907411 DOI: 10.1021/acs.chemrev.4c00849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
The attractive force between two oppositely charged ions can constitute a powerful design tool in selective catalysis. Enzymes make extensive use of ionic interactions alongside a variety of other noncovalent interactions; recent years have seen synthetic chemists begin to seriously explore these interactions in catalyst designs that also incorporate a reactive transition metal. In isolation, a single ionic interaction exhibits low directionality, but in many successful systems they exist alongside additional interactions which can provide a high degree of organization at the selectivity-determining transition state. Even in situations with a single key interaction, low directionality is not always detrimental, and can even be advantageous, conferring generality to a single catalyst. This Review explores design approaches that utilize ionic interactions to control selectivity in transition metal catalysis. It is divided into two halves: in the first, the ionic interaction occurs in the outer sphere of the metal complex, using a ligand which is charged or bound to an anion; in the second, the metal bears a formal charge, and the ionic interaction is with an associated counterion.
Collapse
Affiliation(s)
- Hannah K Adams
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Max Kadarauch
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Nicholas J Hodson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Arthur R Lit
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Robert J Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
6
|
Yang JY, Du YR, Cheng FQ, An K, Hu Y, Li ZY. Construction of Axially Chiral Dialdehydes via Rhodium-Catalyzed Enantioselective C-H Amidation. Angew Chem Int Ed Engl 2025; 64:e202421412. [PMID: 39853834 DOI: 10.1002/anie.202421412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/04/2025] [Accepted: 01/24/2025] [Indexed: 01/26/2025]
Abstract
Achieving axially chiral biaryl dialdehydes through asymmetric catalysis remains significantly challenging due to the lack of efficient strategies. In this report, we developed a rhodium-catalyzed enantioselective C-H amidation through chiral transient directing group strategy. With this new approach, a series of axially chiral amido dialdehydes were achieved in up to 86 % yields with 99.5 : 0.5 er. Furthermore, detailed mechanistic studies indicated that both the imine formation and C-H bond cleavage steps were reversible. More interestingly, the X-ray crystallographic analysis of Int-2 showed probable C-H/π interaction between biaryl group and chiral amine moiety. This process offered a convenient route to access axially chiral dialdehyde derivatives. More broadly, it demonstrated a new tool through transient and C-H/π synergistic interactions, which would stimulate further development of asymmetric catalytic system in enantioselective C-H functionalization.
Collapse
Affiliation(s)
- Jie-Ying Yang
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Ya-Ru Du
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Fu-Qiang Cheng
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Kun An
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Yuefei Hu
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Zhong-Yuan Li
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
7
|
Gair JJ, Isomura M, Wagen CC, Strassfeld DA, Jacobsen EN. Enantioselective Ring Opening of Azetidines via Charge Recognition in Hydrogen-Bond-Donor Catalysis. J Am Chem Soc 2025; 147:6378-6383. [PMID: 39960412 PMCID: PMC11924947 DOI: 10.1021/jacs.5c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
We report the highly enantioselective ring-opening of 3-substituted azetidines by alkyl and acyl halides promoted by a chiral squaramide hydrogen-bond donor catalyst. Broad scope is achieved across a variety of substrate combinations possessing disparate steric features. The same catalyst had been identified previously to promote enantioselective opening of oxetanes via both Lewis and Brønsted acid mechanisms. This remarkable generality is interpreted to arise from catalyst recognition of the conserved electrostatic features of the dipolar enantioselectivity-determining transition states in the ring-opening SN2 mechanisms with simultaneous tolerance of variation of the specific functional group and steric features of the reactions. Specific experimental and computational evidence is provided for a network of electrostatic interactions that forms a shared basis for enantioinduction across these transformations. This work provides a framework for designing catalysts that achieve high enantioselectivity across diverse reactions unified by conserved polar mechanisms.
Collapse
Affiliation(s)
- Joseph J Gair
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Mayuko Isomura
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Corin C Wagen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Daniel A Strassfeld
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Eric N Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
8
|
Abraham E, Nitzan A. Quantifying the Chirality of Vibrational Modes in Helical Molecular Chains. PHYSICAL REVIEW LETTERS 2024; 133:268001. [PMID: 39879066 DOI: 10.1103/physrevlett.133.268001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/14/2024] [Accepted: 10/16/2024] [Indexed: 01/31/2025]
Abstract
Chiral phonons have been proposed to be involved in various physical phenomena, yet the chirality of molecular normal modes has not been well defined mathematically. Here we examine two approaches for assigning and quantifying the chirality of molecular normal modes in double-helical molecular wires with various levels of twist. First, associating with each normal mode a structure obtained by imposing the corresponding motion on a common origin, we apply the continuous chirality measure (CCM) to quantitatively assess the relationship between the chirality-weighted normal mode spectrum and the chirality of the underlying molecular structure. We find that increasing the amount of twist in the double helix shifts the mean normal mode CCM to drastically higher values, implying that the chirality of molecular normal modes is strongly correlated with that of the underlying molecular structure. Second, we assign to each normal mode a pseudoscalar defined as the product of atomic linear and angular momentum summed over all atoms, and we analyze the handedness of the normal mode spectrum with respect to this quantity. We find that twisting the double-chain structure introduces asymmetry between right- and left-handed normal modes so that in twisted structures different frequency bands are characterized by distinct handedness. This may give rise to global phenomena such as thermal chirality.
Collapse
Affiliation(s)
- Ethan Abraham
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania 19104, USA
| | - Abraham Nitzan
- Tel Aviv University, University of Pennsylvania, Department of Chemistry, Philadelphia, Pennsylvania 19104, USA and School of Chemistry, Tel Aviv 69978, Israel
| |
Collapse
|
9
|
Read JA, Ball TE, Miller BR, Jacobsen EN, Sigman MS. Computational Library Enables Pattern Recognition of Noncovalent Interactions and Application as a Modern Linear Free Energy Relationship. J Org Chem 2024; 89:17237-17247. [PMID: 39580661 PMCID: PMC11641053 DOI: 10.1021/acs.joc.4c01790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
A quantitative and predictive understanding of how attractive noncovalent interactions (NCIs) influence functional outcomes is a long-standing goal in mechanistic chemistry. In that context, better comprehension of how substituent effects influence NCI strengths, and the origin of those effects, is still needed. We sought to build a resource capable of elucidating fundamental origins of substituent effects in NCIs and diagnosing NCIs in chemical systems. To accomplish this, a library of 893 NCI energies was calculated encompassing cation-π, anion-π, CH-π, and π-π interactions across 60 different arenes and heteroarenes. The interaction energies (IEs) were calculated using symmetry-adapted perturbation theory (SAPT), which identifies electrostatic, inductive, exchange-repulsive, and dispersive contributions to total IE. This descriptor library provides a comprehensive platform for evaluating substituent effect trends beyond traditional molecular descriptors such as Hammett values, frontier molecular orbital energies, and electrostatic potential, thereby expanding the tools available to analyze modern chemical processes that involve NCIs. To demonstrate the application of this library, three case studies in asymmetric catalysis and supramolecular chemistry are presented. These case studies informed the development of an automated NCI analysis tool, which employs statistical analyses to diagnose a particular NCI in a chemical system of interest.
Collapse
Affiliation(s)
- Jacquelyne A Read
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| | - Tyler E Ball
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Beck R Miller
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Eric N Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
10
|
Lin B, Xiao Y, Yang T, Chen GQ, Zhang X, Che CM. Gold-catalyzed highly enantioselective cycloadditions of 1,6-enynes and 1,6-diynes assisted by remote hydrogen bonding interaction. iScience 2024; 27:110876. [PMID: 39351202 PMCID: PMC11439896 DOI: 10.1016/j.isci.2024.110876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/14/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Gold(I)-catalyzed highly enantioselective [4 + 2] cycloadditions of 1,6-enynes were achieved by utilizing chiral bifunctional P,N ligand. A wide range of 1,6-enynes were converted to enantioenriched 5-6-6-fused tricyclic compounds under mild reaction condition (up to 99% ee). This chiral gold(I) complex was also employed in the first desymmetric cycloadditions of 1,6-diynes bearing single ester group at the tether (up to 93% ee), where 5-exo-dig pathway predominates over 6-endo-dig pathway. DFT calculations and control experiments were performed to rationalize the origin of precise stereocontrol. It implies that hydrogen bonding interaction between the ester group of substrates and the secondary amine of the chiral P,N ligands plays a pivotal role in the control of enantioselectivity. The utilities of the current reaction were demonstrated by scale-up experiment and derivatizations.
Collapse
Affiliation(s)
- Bijin Lin
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ye Xiao
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Tilong Yang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Gen-Qiang Chen
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xumu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chi-Ming Che
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
11
|
Docherty P, Kadarauch M, Mistry N, Phipps RJ. Application of sSPhos as a Chiral Ligand for Palladium-Catalyzed Asymmetric Allylic Alkylation. Org Lett 2024; 26:2862-2866. [PMID: 38147571 PMCID: PMC11020163 DOI: 10.1021/acs.orglett.3c04025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Palladium-catalyzed asymmetric allylic alkylation is a versatile method for C-C bond formation. Many established classes of chiral ligands can perform allylic alkylation reactions enantioselectively, but identification of new ligand classes remains important for future development of the field. We demonstrate that enantiopure sSPhos, a bifunctional chiral monophosphine ligand, when used as its tetrabutyl ammonium salt, is a highly effective ligand for a benchmark Pd-catalyzed allylic alkylation reaction. We explore the scope and limitations and perform experiments to probe the origin of selectivity. In contrast with reactions previously explored using enantiopure sSPhos, it appears that steric bulk around the sulfonate group is responsible for the high enantioselectivity in this case, rather than attractive noncovalent interactions.
Collapse
Affiliation(s)
- Philip
J. Docherty
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Max Kadarauch
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Nisha Mistry
- Drug
Substance Development, GSK, Stevenage SG1 2NY, U.K.
| | - Robert J. Phipps
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
12
|
Liu W, Li W, Xu W, Wang M, Kong W. Nickel-catalyzed switchable arylative/endo-cyclization of 1,6-enynes. Nat Commun 2024; 15:2914. [PMID: 38575585 PMCID: PMC10995176 DOI: 10.1038/s41467-024-47200-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/16/2024] [Indexed: 04/06/2024] Open
Abstract
Carbo- and heterocycles are frequently used as crucial scaffolds in natural products, fine chemicals, and biologically and pharmaceutically active compounds. Transition-metal-catalyzed cyclization of 1,6-enynes has emerged as a powerful strategy for constructing functionalized carbo- and heterocycles. Despite significant progress, the regioselectivity of alkyne functionalization is entirely substrate-dependent. And only exo-cyclization/cross-coupling products can be obtained, while endo-selective cyclization/cross-coupling remains elusive and still poses a formidable challenge. In this study, we disclose a nickel-catalyzed switchable arylation/cyclization of 1,6-enynes in which the nature of the ligand dictates the regioselectivity of alkyne arylation, while the electrophilic trapping reagents determine the selectivity of the cyclization mode. Specifically, using a commercially available 1,10-phenanthroline as a ligand facilitates trans-arylation/cyclization to obtain seven-membered ring products, while a 2-naphthyl-substituted bisbox ligand promotes cis-arylation/cyclization to access six-membered ring products. Diastereoselective cyclizations have also been developed for the synthesis of enantioenriched piperidines and azepanes, which are core structural elements of pharmaceuticals and natural products possessing important biological activities. Furthermore, experimental and density functional theory studies reveal that the regioselectivity of the alkyne arylation process is entirely controlled by the steric hindrance of the ligand; the reaction mechanism involves exo-cyclization followed by Dowd-Beckwith-type ring expansion to form endo-cyclization products.
Collapse
Affiliation(s)
- Wenfeng Liu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Wei Li
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Weipeng Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Wangqing Kong
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
13
|
Paterson KJ, Dahiya A, Williams BD, Phipps RJ. Tertiary Amides as Directing Groups for Enantioselective C-H Amination using Ion-Paired Rhodium Complexes. Angew Chem Int Ed Engl 2024; 63:e202317489. [PMID: 38348742 DOI: 10.1002/anie.202317489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Indexed: 03/01/2024]
Abstract
Enantioselective C-H amination at a benzylic methylene is a vital disconnection towards chiral benzylamines. Here we disclose that butyric and valeric acid-derived tertiary amides can undergo highly enantioselective benzylic amination using an achiral anionic Rh complex that is ion-paired with a Cinchona alkaloid-derived chiral cation. A broad scope of compounds can be aminated encompassing numerous arene substitutions, amides, and two different chain lengths. Excellent tolerance of ortho substituents was observed, which has not been achieved before in asymmetric intermolecular C-H amination with Rh. We speculate that the tertiary amide group of the substrate engages in hydrogen bonding interactions directly with the chiral cation, enabling a high level of organisation at the transition state for C-H amination. This is in contrast with our previous work where a substrate bearing a hydrogen bond donor was required. Control experiments led to the discovery that methyl ethers also function as proficient directing groups under the optimised conditions, potentially also acting as hydrogen bond acceptors. This finding has the promise to dramatically expand the applicability of our ion-paired chiral catalysts.
Collapse
Affiliation(s)
- Kieran J Paterson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Amit Dahiya
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Benjamin D Williams
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Robert J Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
14
|
Xu J. Recent Advances in π-Stacking Interaction-Controlled Asymmetric Synthesis. Molecules 2024; 29:1454. [PMID: 38611737 PMCID: PMC11012711 DOI: 10.3390/molecules29071454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The π-stacking interaction is one of the most important intramolecular and intermolecular noncovalent interactions in organic chemistry. It plays an important role in stabilizing some structures and transition states in certain reactions via both intramolecular and intermolecular interactions, facilitating different selectivities, such as chemo-, regio-, and stereoselectivities. This minireview focuses on the recent examples of the π-stacking interaction-controlled asymmetric synthesis, including auxiliary-induced asymmetric synthesis, kinetic resolution, asymmetric synthesis of helicenes and heterohelicenes, and multilayer 3D chiral molecules.
Collapse
Affiliation(s)
- Jiaxi Xu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China; ; Tel./Fax: +86-10-6443-5565
- College of Science, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
15
|
Rummel L, Schreiner PR. Advances and Prospects in Understanding London Dispersion Interactions in Molecular Chemistry. Angew Chem Int Ed Engl 2024; 63:e202316364. [PMID: 38051426 DOI: 10.1002/anie.202316364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
London dispersion (LD) interactions are the main contribution of the attractive part of the van der Waals potential. Even though LD effects are the driving force for molecular aggregation and recognition, the role of these omnipresent interactions in structure and reactivity had been largely underappreciated over decades. However, in the recent years considerable efforts have been made to thoroughly study LD interactions and their potential as a chemical design element for structures and catalysis. This was made possible through a fruitful interplay of theory and experiment. This review highlights recent results and advances in utilizing LD interactions as a structural motif to understand and utilize intra- and intermolecularly LD-stabilized systems. Additionally, we focus on the quantification of LD interactions and their fundamental role in chemical reactions.
Collapse
Affiliation(s)
- Lars Rummel
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| |
Collapse
|
16
|
Li B, Zhang HH, Luo Y, Yu S, Goddard Iii WA, Dang Y. Interception of Transient Allyl Radicals with Low-Valent Allylpalladium Chemistry: Tandem Pd(0/II/I)-Pd(0/II/I/II) Cycles in Photoredox/Pd Dual-Catalytic Enantioselective C(sp 3)-C(sp 3) Homocoupling. J Am Chem Soc 2024; 146:6377-6387. [PMID: 38385755 DOI: 10.1021/jacs.4c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
We present comprehensive computational and experimental studies on the mechanism of an asymmetric photoredox/Pd dual-catalytic reductive C(sp3)-C(sp3) homocoupling of allylic electrophiles. In stark contrast to the canonical assumption that photoredox promotes bond formation via facile reductive elimination from high-valent metal-organic species, our computational analysis revealed an intriguing low-valent allylpalladium pathway that features tandem operation of Pd(0/II/I)-Pd(0/II/I/II) cycles. Specifically, we propose that (i) the photoredox/Pd system enables the in situ generation of allyl radicals from low-valent Pd(I)-allyl species, and (ii) effective interception of the fleeting allyl radical by the chiral Pd(I)-allyl species results in the formation of an enantioenriched product. Notably, the cooperation of the two pathways highlights the bifunctional role of Pd(I)-allyl species in the generation and interception of transient allyl radicals. Moreover, the mechanism implies divergent substrate-activation modes in this homocoupling reaction, suggesting a theoretical possibility for cross-coupling. Combined, the current study offers a novel mechanistic hypothesis for photoredox/Pd dual catalysis and highlights the use of low-valent allylpalladium as a means to efficiently intercept radicals for selective asymmetric bond constructions.
Collapse
Affiliation(s)
- Bo Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Materials and Process Simulation Center, Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Hong-Hao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yongrui Luo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - William A Goddard Iii
- Materials and Process Simulation Center, Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
17
|
Pramanik M, Guerzoni MG, Richards E, Melen RL. Recent Advances in Asymmetric Catalysis Using p-Block Elements. Angew Chem Int Ed Engl 2024; 63:e202316461. [PMID: 38038149 PMCID: PMC11497282 DOI: 10.1002/anie.202316461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/02/2023]
Abstract
The development of new methods for enantioselective reactions that generate stereogenic centres within molecules are a cornerstone of organic synthesis. Typically, metal catalysts bearing chiral ligands as well as chiral organocatalysts have been employed for the enantioselective synthesis of organic compounds. In this review, we highlight the recent advances in main group catalysis for enantioselective reactions using the p-block elements (boron, aluminium, phosphorus, bismuth) as a complementary and sustainable approach to generate chiral molecules. Several of these catalysts benefit in terms of high abundance, low toxicity, high selectivity, and excellent reactivity. This minireview summarises the utilisation of chiral p-block element catalysts for asymmetric reactions to generate value-added compounds.
Collapse
Affiliation(s)
- Milan Pramanik
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityTranslational Research HubMaindy RoadCathays, CardiffCF24 4HQCymru/WalesUK
| | - Michael G. Guerzoni
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityTranslational Research HubMaindy RoadCathays, CardiffCF24 4HQCymru/WalesUK
| | - Emma Richards
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityTranslational Research HubMaindy RoadCathays, CardiffCF24 4HQCymru/WalesUK
| | - Rebecca L. Melen
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityTranslational Research HubMaindy RoadCathays, CardiffCF24 4HQCymru/WalesUK
| |
Collapse
|
18
|
Li Z, Xu W, Song S, Wang M, Zhao Y, Shi Z. Enantioselective Rhodium-Catalyzed C-H Arylation Enables Direct Synthesis of Atropisomeric Phosphines. Angew Chem Int Ed Engl 2024; 63:e202316035. [PMID: 38182545 DOI: 10.1002/anie.202316035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/07/2024]
Abstract
Atropisomeric phosphines hold considerable significance in asymmetric catalysis, yet their synthesis presents a formidable challenge owing to intricate multistep procedures. In this context, a groundbreaking methodology has been presented for their preparation. This innovative approach entails an atroposelective rhodium-catalyzed C-H activation employing aryl and heteroaryl halides, chelated by a P(III) center. The essence of this strategy lies in its ability to directly construct chiral phosphine ligands in a single step, thereby exhibiting exceptional efficiency in terms of atom and redox economy. Illustrative examples serve to demonstrate the immense potential of in situ-formed ligands in asymmetric catalysis. Mechanistic experiments have further provided invaluable insights into this transformation.
Collapse
Affiliation(s)
- Zexian Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Weipeng Xu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Shuaishuai Song
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
19
|
Cai X, Ding D, Zhao S, Wen S, Zhang G, Bai P, Zhang W, Song H, Xu C. Zwitterionic Aqua Palladacycles with Noncovalent Interactions for meta-Selective Suzuki Coupling of 3,4-Dichlorophenol and 3,4-Dichlorobenzyl Alcohol in Water. Inorg Chem 2024; 63:2313-2321. [PMID: 38112695 DOI: 10.1021/acs.inorgchem.3c03197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The site-selective reaction of substrates with multiple reactive sites has been a focus of the current synthetic chemistry. The use of attractive noncovalent interactions between the catalyst and substrate is emerging as a versatile approach to address site-selectivity challenges. Herein, we designed and synthesized a series of palladacycles, to control meta-selective Suzuki coupling of 3,4-dichlorophenol and 3,4-dichlorobenzyl alcohol. Noncovalent interactions directed zwitterionic aqua palladacycles catalyzed meta-selective Suzuki couplings of 3,4-dichloroarenes bearing hydroxyl in water have been developed. Experiments and density functional theory (DFT) calculations demonstrated that the electrostatic interactions play a critical role in meta-selective coupling of 3,4-dichlorophenol, while meta-selective coupling of 3,4-dichlorobenzyl alcohol arises due to the hydrogen-bonding interactions.
Collapse
Affiliation(s)
- Xingwei Cai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology. Zhenjiang 212003 Jiangsu, China
| | - Danli Ding
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology. Zhenjiang 212003 Jiangsu, China
| | - Shangxun Zhao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology. Zhenjiang 212003 Jiangsu, China
| | - Shuo Wen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology. Zhenjiang 212003 Jiangsu, China
| | - Guihong Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology. Zhenjiang 212003 Jiangsu, China
| | - Pengtao Bai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology. Zhenjiang 212003 Jiangsu, China
| | - Wenjing Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001 Henan, China
| | - Heng Song
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology. Zhenjiang 212003 Jiangsu, China
| | - Chen Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology. Zhenjiang 212003 Jiangsu, China
| |
Collapse
|
20
|
Chadha A, Padhi SK, Stella S, Venkataraman S, Saravanan T. Microbial alcohol dehydrogenases: recent developments and applications in asymmetric synthesis. Org Biomol Chem 2024; 22:228-251. [PMID: 38050738 DOI: 10.1039/d3ob01447a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Alcohol dehydrogenases are a well-known group of enzymes in the class of oxidoreductases that use electron transfer cofactors such as NAD(P)+/NAD(P)H for oxidation or reduction reactions of alcohols or carbonyl compounds respectively. These enzymes are utilized mainly as purified enzymes and offer some advantages in terms of green chemistry. They are environmentally friendly and a sustainable alternative to traditional chemical synthesis of bulk and fine chemicals. Industry has implemented several whole-cell biocatalytic processes to synthesize pharmaceutically active ingredients by exploring the high selectivity of enzymes. Unlike the whole cell system where cofactor regeneration is well conserved within the cellular environment, purified enzymes require additional cofactors or a cofactor recycling system in the reaction, even though cleaner reactions can be carried out with fewer downstream work-up problems. The challenge of producing purified enzymes in large quantities has been solved in large part by the use of recombinant enzymes. Most importantly, recombinant enzymes find applications in many cascade biotransformations to produce several important chiral precursors. Inevitably, several dehydrogenases were engineered as mere recombinant enzymes could not meet the industrial requirements for substrate and stereoselectivity. In recent years, a significant number of engineered alcohol dehydrogenases have been employed in asymmetric synthesis in industry. In a parallel development, several enzymatic and non-enzymatic methods have been established for regenerating expensive cofactors (NAD+/NADP+) to make the overall enzymatic process more efficient and economically viable. In this review article, recent developments and applications of microbial alcohol dehydrogenases are summarized by emphasizing notable examples.
Collapse
Affiliation(s)
- Anju Chadha
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India.
| | - Santosh Kumar Padhi
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India.
| | - Selvaraj Stella
- Department of Chemistry, Sarah Tucker College (Affiliated to Manonmaniam Sundaranar University), Tirunelveli-627007, Tamil Nadu, India.
| | - Sowmyalakshmi Venkataraman
- Department of Pharmaceutical Chemistry, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education & Research, Chennai, 600116, Tamil Nadu, India.
| | - Thangavelu Saravanan
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India.
| |
Collapse
|
21
|
Borsley S, Gallagher JM, Leigh DA, Roberts BMW. Ratcheting synthesis. Nat Rev Chem 2024; 8:8-29. [PMID: 38102412 DOI: 10.1038/s41570-023-00558-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 12/17/2023]
Abstract
Synthetic chemistry has traditionally relied on reactions between reactants of high chemical potential and transformations that proceed energetically downhill to either a global or local minimum (thermodynamic or kinetic control). Catalysts can be used to manipulate kinetic control, lowering activation energies to influence reaction outcomes. However, such chemistry is still constrained by the shape of one-dimensional reaction coordinates. Coupling synthesis to an orthogonal energy input can allow ratcheting of chemical reaction outcomes, reminiscent of the ways that molecular machines ratchet random thermal motion to bias conformational dynamics. This fundamentally distinct approach to synthesis allows multi-dimensional potential energy surfaces to be navigated, enabling reaction outcomes that cannot be achieved under conventional kinetic or thermodynamic control. In this Review, we discuss how ratcheted synthesis is ubiquitous throughout biology and consider how chemists might harness ratchet mechanisms to accelerate catalysis, drive chemical reactions uphill and programme complex reaction sequences.
Collapse
Affiliation(s)
- Stefan Borsley
- Department of Chemistry, University of Manchester, Manchester, UK
| | | | - David A Leigh
- Department of Chemistry, University of Manchester, Manchester, UK.
| | | |
Collapse
|
22
|
Kadarauch M, Whalley DM, Phipps RJ. sSPhos: A General Ligand for Enantioselective Arylative Phenol Dearomatization via Electrostatically-Directed Palladium Catalysis. J Am Chem Soc 2023; 145:25553-25558. [PMID: 37972383 PMCID: PMC10690801 DOI: 10.1021/jacs.3c10663] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Arylative phenol dearomatization affords complex, cyclohexanone-based scaffolds from simple starting materials, and asymmetric versions allow access to valuable enantioenriched structures. However, bespoke chiral ligands must typically be identified for each new scaffold variation. We have addressed this limitation by applying the concept of electrostatically-directed palladium catalysis whereby the chiral sulfonated ligand sSPhos engages in electrostatic interactions with a phenolate substrate via its associated alkali metal cation. This approach allows access to highly enantioenriched spirocyclohexadienones, a process originally reported by Buchwald and co-workers in a predominantly racemic manner. In addition, sSPhos is proficient at forming two other distinct scaffolds, which had previously required fundamentally different chiral ligands, as well as a novel oxygen-linked scaffold. We envisage that the broad generality displayed by sSPhos will facilitate the expansion of this important reaction type and highlight the potential of this unusual design principle, which harnesses attractive electrostatic interactions.
Collapse
Affiliation(s)
- Max Kadarauch
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| | - David M. Whalley
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| | - Robert J. Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| |
Collapse
|
23
|
Pappoppula M, Olsen KL, Ketelboeter DR, Aponick A. Enantio- and Regioselective Copper-Catalyzed 1,2-Dearomatization of Pyridines. Angew Chem Int Ed Engl 2023; 62:e202312967. [PMID: 37820350 DOI: 10.1002/anie.202312967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023]
Abstract
A copper-catalyzed dearomative alkynylation of pyridines is reported with excellent regio- and enantioselectivities. The synthetically valuable enantioenriched 2-alkynyl-1,2-dihydropyridine products afforded are generated from the readily available feedstock, pyridine, and commercially available terminal alkynes. The three-component reaction between a pyridine, a terminal alkyne, and methyl chloroformate employs copper chloride and StackPhos, a chiral biaryl P,N- ligand, as the catalytic system. Under mild reaction conditions, the desired 1,2-addition products are delivered in up to 99 % yield with regioselectivity ratios up to 25 : 1 and enantioselectivities values of up to 99 % ee. Activated and non-activated terminal alkynes containing a wide range of functional groups are well tolerated. Even acetylene gas delivered mono-alkynylated products in high yield and ee. Application of the methodology in an efficient enantioselective synthesis of the chiral piperidine indolizidine, coniceine, is reported.
Collapse
Affiliation(s)
- Mukesh Pappoppula
- Department of Chemistry and Florida Center for Heterocyclic Compounds, University of Florida, P.O. Box 117200, Gainesville, FL 32611, United States
| | - Kathryn L Olsen
- Department of Chemistry and Florida Center for Heterocyclic Compounds, University of Florida, P.O. Box 117200, Gainesville, FL 32611, United States
| | - Devin R Ketelboeter
- Department of Chemistry and Florida Center for Heterocyclic Compounds, University of Florida, P.O. Box 117200, Gainesville, FL 32611, United States
| | - Aaron Aponick
- Department of Chemistry and Florida Center for Heterocyclic Compounds, University of Florida, P.O. Box 117200, Gainesville, FL 32611, United States
| |
Collapse
|
24
|
Iaia EP, Soyemi A, Szilvási T, Harris JW. Zeolite encapsulated organometallic complexes as model catalysts. Dalton Trans 2023; 52:16103-16112. [PMID: 37812079 DOI: 10.1039/d3dt02126b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Heterogeneities in the structure of active centers in metal-containing porous materials are unavoidable and complicate the description of chemical events occurring along reaction coordinates at the atomic level. Metal containing zeolites include sites of varied local coordination and secondary confining environments, requiring careful titration protocols to quantify the predominant active sites. Hybrid organometallic-zeolite catalysts are useful well-defined platform materials for spectroscopic, kinetic, and computational studies of heterogeneous catalysis that avoid the complications of conventional metal-containing porous materials. Such materials have been synthesized and studied previously, but catalytic applications were mostly limited to liquid-phase oxidation and electrochemical reactions. The hydrothermal stability, time-on-stream stability, and utility of these materials in gas-phase oxidation reactions are under-studied. The potential applications for single-site heterogeneous catalysts in fundamental research are abundant and motivate future synthetic, spectroscopic, kinetic, and computational studies.
Collapse
Affiliation(s)
- Ethan P Iaia
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - Ademola Soyemi
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - Tibor Szilvási
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - James W Harris
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
25
|
Guria S, Hassan MMM, Ma J, Dey S, Liang Y, Chattopadhyay B. A tautomerized ligand enabled meta selective C-H borylation of phenol. Nat Commun 2023; 14:6906. [PMID: 37903772 PMCID: PMC10616221 DOI: 10.1038/s41467-023-42310-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/06/2023] [Indexed: 11/01/2023] Open
Abstract
Remote meta selective C-H functionalization of aromatic compounds remains a challenging problem in chemical synthesis. Here, we report an iridium catalyst bearing a bidentate pyridine-pyridone (PY-PYRI) ligand framework that efficiently catalyzes this meta selective borylation reaction. We demonstrate that the developed concept can be employed to introduce a boron functionality at the remote meta position of phenols, phenol containing bioactive and drug molecules, which was an extraordinary challenge. Moreover, we have demonstrated that the method can also be applied for the remote C6 borylation of indole derivatives including tryptophan that was the key synthetic precursor for the total synthesis of Verruculogen and Fumitremorgin A alkaloids. The inspiration of this catalytic concept was started from the O-Si secondary interaction, which by means of several more detailed control experiments and detailed computational investigations revealed that an unprecedented Bpin shift occurs during the transformation of iridium bis(boryl) complex to iridium tris(boryl) complex, which eventually control the remote meta selectivity by means of the dispersion between the designed ligand and steering silane group.
Collapse
Affiliation(s)
- Saikat Guria
- Department of Biological & Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| | - Mirja Md Mahamudul Hassan
- Department of Biological & Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| | - Jiawei Ma
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Sayan Dey
- Department of Biological & Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.
| | - Buddhadeb Chattopadhyay
- Department of Biological & Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India.
| |
Collapse
|
26
|
Nanda SK. Asymmetric cascades of the π-allyl complex: a journey from transition-metal catalysis to metallaphotocatalysis. Chem Commun (Camb) 2023; 59:11298-11319. [PMID: 37670574 DOI: 10.1039/d3cc03010e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The enantioselective catalytic cascade involving Tsuji-Trost allylation has provided a viable strategy for the construction of multiple asymmetric C-C and C-X centres and numerous methods have been developed around it for the synthesis of various vital scaffolds. The synthetic utility of this strategy was enhanced by replacing the customary allyl acetates with ethylene diacetates/dicarbonates, vinyl epoxides, vinyl oxetanes, vinyl ethylene carbonates, vinyl cyclopropanes, enynes, and dienes using transition-metal catalysis. One more milestone was achieved when metallaphotocatalysis provided the necessary platform for these cascades by using a cheaper metal. This review will provide a summary of these enantioselective catalytic cascades from 2015.
Collapse
Affiliation(s)
- Santosh Kumar Nanda
- Department of Chemistry, School of Applied Science, Centurion University, Bhubaneswar, Odisha, 752050, India.
| |
Collapse
|
27
|
Sheng J, Pooler DRS, Feringa BL. Enlightening dynamic functions in molecular systems by intrinsically chiral light-driven molecular motors. Chem Soc Rev 2023; 52:5875-5891. [PMID: 37581608 PMCID: PMC10464662 DOI: 10.1039/d3cs00247k] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 08/16/2023]
Abstract
Chirality is a fundamental property which plays a major role in chemistry, physics, biological systems and materials science. Chiroptical artificial molecular motors (AMMs) are a class of molecules which can convert light energy input into mechanical work, and they hold great potential in the transformation from simple molecules to dynamic systems and responsive materials. Taking distinct advantages of the intrinsic chirality in these structures and the unique opportunity to modulate the chirality on demand, chiral AMMs have been designed for the development of light-responsive dynamic processes including switchable asymmetric catalysis, chiral self-assembly, stereoselective recognition, transmission of chirality, control of spin selectivity and biosystems as well as integration of unidirectional motion with specific mechanical functions. This review focuses on the recently developed strategies for chirality-led applications by the class of intrinsically chiral AMMs. Finally, some limitations in current design and challenges associated with recent systems are discussed and perspectives towards promising candidates for responsive and smart molecular systems and future applications are presented.
Collapse
Affiliation(s)
- Jinyu Sheng
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Daisy R S Pooler
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Ben L Feringa
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
28
|
Abuhafez N, Gramage-Doria R. Boosting the activity of Mizoroki-Heck cross-coupling reactions with a supramolecular palladium catalyst favouring remote Zn⋯pyridine interactions. Faraday Discuss 2023; 244:186-198. [PMID: 37083293 DOI: 10.1039/d2fd00165a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Transition metal catalysis benefitting from supramolecular interactions in the secondary coordination sphere in order to pre-organize substrates around the active site and reach a specific selectivity typically occurs under long reaction times and mild reaction temperatures with the aim to maximize such subtle effects. Herein, we demonstrate that the kinetically labile Zn⋯N interaction between a pyridine substrate and a zinc-porphyrin site serving for substrate binding is a unique type of weak interaction that enables identification of supramolecular effects in transition metal catalysis after one hour at a high reaction temperature of 130 °C. Under carefully selected reaction conditions, supramolecularly-regulated palladium-catalyzed Mizoroki-Heck reactions between 3-bromopyridine and terminal olefins (acrylates or styrenes) proceeded in a more efficient manner compared to the non-supramolecular version. The supramolecular catalysis developed here also displayed interesting substrate-selectivity patterns.
Collapse
Affiliation(s)
- Naba Abuhafez
- Univ Rennes, CNRS, ISCR-UMR6226, F-35000 Rennes, France.
| | | |
Collapse
|
29
|
Aliyeva VA, Gurbanov AV, Mahmoud AG, Gomila RM, Frontera A, Mahmudov KT, Pombeiro AJL. Chalcogen bonding in copper(II)-mediated synthesis. Faraday Discuss 2023; 244:77-95. [PMID: 37089087 DOI: 10.1039/d2fd00160h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The chalcogen bond (ChB) is a noncovalent attraction between an electrophilic chalcogen atom and a nucleophilic (Nu) region in the same (intramolecular) or another (intermolecular) molecular entity: R-Ch⋯Nu (Ch = O, S, Se or Te; R = substituents; Nu = nucleophile). ChB is comparable to the hydrogen and halogen bonds both in terms of strengths and directionality. However, in contrast to the monovalent halogen atoms, usually the divalent or tetravalent chalcogen atoms are able to display more than one electrophilic centre (on account of the existence of two or three species bonded to the chalcogen atom), which provides an additional opportunity in the use of this type of noncovalent binding in synthetic operations. In this work, the role of ChB at the secondary coordination sphere of metal complexes through copper(II)-mediated activation of dioxygen or of one nitrile group of a 1,2,5-selenadiazole-3,4-dicarbonitrile ligand to form a carbimidate or an imino-carboxylic acid is demonstrated. DFT calculations allowed evaluation of the strength of the ChBs and proved their relevant structure directing role in the solid state architectures. The effect of metal-coordination on the σ-hole opposite to the coordinated SeO bond has been analysed using molecular electrostatic potential (MEP) surfaces and explains the greater ability of the coordinated selenoxide derivatives to form strong ChBs.
Collapse
Affiliation(s)
- Vusala A Aliyeva
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
| | - Atash V Gurbanov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
- Excellence Center, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan
| | - Abdallah G Mahmoud
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
- Department of Chemistry, Faculty of Science, Helwan University, Ain Helwan, Cairo 11795, Egypt
| | - Rosa M Gomila
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km7.5, Palma, Baleares, Spain.
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km7.5, Palma, Baleares, Spain.
| | - Kamran T Mahmudov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
- Excellence Center, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
| |
Collapse
|
30
|
Wei J, Gandon V, Zhu Y. Amino Acid-Derived Ionic Chiral Catalysts Enable Desymmetrizing Cross-Coupling to Remote Acyclic Quaternary Stereocenters. J Am Chem Soc 2023; 145:16796-16811. [PMID: 37471696 PMCID: PMC10401725 DOI: 10.1021/jacs.3c04877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Synthetic application of asymmetric catalysis relies on strategic alignment of bond construction to creation of chirality of a target molecule. Remote desymmetrization offers distinctive advantages of spatial decoupling of catalytic transformation and generation of a stereogenic element. However, such spatial separation presents substantial difficulties for the chiral catalyst to discriminate distant enantiotopic sites through a reaction three or more bonds away from a prochirality center. Here, we report a strategy that establishes acyclic quaternary carbon stereocenters through cross-coupling reactions at distal positions of aryl substituents. The new class of amino acid-derived ionic chiral catalysts enables desymmetrizing (enantiotopic-group-selective) Suzuki-Miyaura reaction, Sonogashira reaction, and Buchwald-Hartwig amination between diverse diarylmethane scaffolds and aryl, alkynyl, and amino coupling partners, providing rapid access to enantioenriched molecules that project substituents to widely spaced positions in the three-dimensional space. Experimental and computational investigations reveal electrostatic steering of substrates by the C-terminus of chiral ligands through ionic interactions. Cooperative ion-dipole interactions between the catalyst's amide group and potassium cation aid in the preorganization that transmits asymmetry to the product. This study demonstrates that it is practical to achieve precise long-range stereocontrol through engineering the spatial arrangements of the ionic catalysts' substrate-recognizing groups and metal centers.
Collapse
Affiliation(s)
- Junqiang Wei
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR CNRS 8182), Paris-Saclay University, bâtiment Hesnri Moissan, 17 avenue des sciences, 91400 Orsay, France
| | - Ye Zhu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
31
|
Nakanishi T, Terada M. Computational molecular refinement to enhance enantioselectivity by reinforcing hydrogen bonding interactions in major reaction pathway. Chem Sci 2023; 14:5712-5721. [PMID: 37265716 PMCID: PMC10231322 DOI: 10.1039/d3sc01637d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/29/2023] [Indexed: 06/03/2023] Open
Abstract
Computational analyses have revealed that the distortion of a catalyst and the substrates and their interactions are key to determining the stability of the transition state. Hence, two strategies "distortion strategy" and "interaction strategy" can be proposed for improving enantiomeric excess in enantioselective reactions. The "distortion strategy" is used as a conventional approach that destabilizes the TS (transition state) of the minor pathway. On the other hand, the "interaction strategy" focuses on the stabilization of the TS of the major pathway in which an enhancement of the reaction rate is expected. To realize this strategy, we envisioned the TS stabilization of the major reaction pathway by reinforcing hydrogen bonding and adopted the chiral phosphoric acid-catalysed enantioselective Diels-Alder reaction of 2-vinylquinolines with dienylcarbamates. The intended "interaction strategy" led to remarkable improvements in the enantioselectivity and reaction rate.
Collapse
Affiliation(s)
- Taishi Nakanishi
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aramaki Aza Aoba, Aoba-ku Sendai Miyagi 980-8578 Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aramaki Aza Aoba, Aoba-ku Sendai Miyagi 980-8578 Japan
| |
Collapse
|
32
|
Docherty JH, Lister TM, Mcarthur G, Findlay MT, Domingo-Legarda P, Kenyon J, Choudhary S, Larrosa I. Transition-Metal-Catalyzed C-H Bond Activation for the Formation of C-C Bonds in Complex Molecules. Chem Rev 2023. [PMID: 37163671 DOI: 10.1021/acs.chemrev.2c00888] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Site-predictable and chemoselective C-H bond functionalization reactions offer synthetically powerful strategies for the step-economic diversification of both feedstock and fine chemicals. Many transition-metal-catalyzed methods have emerged for the selective activation and functionalization of C-H bonds. However, challenges of regio- and chemoselectivity have emerged with application to highly complex molecules bearing significant functional group density and diversity. As molecular complexity increases within molecular structures the risks of catalyst intolerance and limited applicability grow with the number of functional groups and potentially Lewis basic heteroatoms. Given the abundance of C-H bonds within highly complex and already diversified molecules such as pharmaceuticals, natural products, and materials, design and selection of reaction conditions and tolerant catalysts has proved critical for successful direct functionalization. As such, innovations within transition-metal-catalyzed C-H bond functionalization for the direct formation of carbon-carbon bonds have been discovered and developed to overcome these challenges and limitations. This review highlights progress made for the direct metal-catalyzed C-C bond forming reactions including alkylation, methylation, arylation, and olefination of C-H bonds within complex targets.
Collapse
Affiliation(s)
- Jamie H Docherty
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Thomas M Lister
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Gillian Mcarthur
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Michael T Findlay
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Pablo Domingo-Legarda
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Jacob Kenyon
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Shweta Choudhary
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Igor Larrosa
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
33
|
Hassan MMM, Guria S, Dey S, Das J, Chattopadhyay B. Transition metal-catalyzed remote C─H borylation: An emerging synthetic tool. SCIENCE ADVANCES 2023; 9:eadg3311. [PMID: 37083526 PMCID: PMC10121176 DOI: 10.1126/sciadv.adg3311] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Transition metal-catalyzed C─H bond activation and borylation is a powerful synthetic method that offers versatile synthetic transformation from organoboron compounds to virtually all other functional groups. Compared to the ortho-borylation, remote borylation remains more challenging owing to the inaccessibility of these C─H bonds. Enforcing the metal catalyst toward the remote C─H bonds needs well-judged catalyst design through proper ligand development. This review article aims to summarize the recent discoveries for the remote C─H borylation by the employment of new catalyst/ligand design with the help of steric of the ligand, noncovalent interactions. It has been found that C─H borylation now takes part in the total synthesis of natural products in a shorter route. Whereas, Ir-catalyzed C─H borylation is predominant, cobalt catalyst has also started to affect this field for sustainable and cost-effective development.
Collapse
Affiliation(s)
- Mirja Md Mahamudul Hassan
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Saikat Guria
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Sayan Dey
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Jaitri Das
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Buddhadeb Chattopadhyay
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
34
|
Aleksiev M, García Mancheño O. Enantioselective dearomatization reactions of heteroarenes by anion-binding organocatalysis. Chem Commun (Camb) 2023; 59:3360-3372. [PMID: 36790499 PMCID: PMC10019134 DOI: 10.1039/d2cc07101k] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Catalytic asymmetric dearomatization of heteroaromatic compounds has received considerable attention in the last few years, since it allows for a fast expansion of the chemical space by converting relatively simple, flat molecules into complex, three dimensional structures with added value. Among different approaches, remarkable progress has been recently achieved by the development of organocatalytic dearomatization methods. In particular, the anion-binding catalysis technology has emerged as a potent alternative to metal catalysis, which together with the design of novel, tunable anion-receptor motifs, has provided new entries for the enantioselective dearomatization of heteroarenes through a chiral contact ion pair formation by activation of the electrophilic reaction partner. In this feature, we provide an overview of the different methodologies and advances in anion-binding catalyzed dearomatization reactions of different heteroarenes.
Collapse
Affiliation(s)
- Martin Aleksiev
- Organic Chemistry Institute, University of Münster, Corrensstraße 36/40, 48149 Münster, Germany.
| | - Olga García Mancheño
- Organic Chemistry Institute, University of Münster, Corrensstraße 36/40, 48149 Münster, Germany.
| |
Collapse
|
35
|
Jakob B, Diehl AM, Horst K, Kelm H, Manolikakes G. Palladium-catalyzed asymmetric three-component reaction between glyoxylic acid, sulfonamides and arylboronic acids for the synthesis of α-arylglycine derivatives. Front Chem 2023; 11:1165618. [PMID: 36993813 PMCID: PMC10040839 DOI: 10.3389/fchem.2023.1165618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
A palladium-catalyzed asymmetric three-component synthesis of α-arylglycine derivatives starting from glyoxylic acid, sulfonamides and arylboronic acids is reported. This novel, operationally simple method offers access to the α-arylglycine scaffold in good yields and enantioselectivities. The utilization of α tailored catalyst system enables the enantioselective synthesis of the desired α-arylglycines despite a fast racemic background reaction. The obtained products can be directly employed as building blocks in peptide synthesis.
Collapse
|
36
|
Du J, Li YF, Ding CH. Recent advances of Pd-p-allyl zwitterions in cycloaddition reactions. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
37
|
Sohtome Y, Komagawa S, Nakamura A, Hashizume D, Lectard S, Akakabe M, Hamashima Y, Uchiyama M, Sodeoka M. Experimental and Computational Investigation of Facial Selectivity Switching in Nickel-Diamine-Acetate-Catalyzed Michael Reactions. J Org Chem 2023. [PMID: 36813263 DOI: 10.1021/acs.joc.2c02732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Chiral Ni complexes have revolutionized both asymmetric acid-base and redox catalysis. However, the coordination isomerism of Ni complexes and their open-shell property still often hinder the elucidation of the origin of their observed stereoselectivity. Here, we report our experimental and computational investigations to clarify the mechanism of β-nitrostyrene facial selectivity switching in Ni(II)-diamine-(OAc)2-catalyzed asymmetric Michael reactions. In the reaction with a dimethyl malonate, the Evans transition state (TS), in which the enolate binds in the same plane with the diamine ligand, is identified as the lowest-energy TS to promote C-C bond formation from the Si face in β-nitrostyrene. In contrast, a detailed survey of the multiple potential pathways in the reaction with α-keto esters points to a clear preference for our proposed C-C bond-forming TS, in which the enolate coordinates to the Ni(II) center in apical-equatorial positions relative to the diamine ligand, thereby promoting Re face addition in β-nitrostyrene. The N-H group plays a key orientational role in minimizing steric repulsion.
Collapse
Affiliation(s)
- Yoshihiro Sohtome
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shinsuke Komagawa
- Elements Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Ayako Nakamura
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
| | - Sylvain Lectard
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mai Akakabe
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshitaka Hamashima
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masanobu Uchiyama
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Elements Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
38
|
Remote control over both site-selectivity and atroposelectivity of Suzuki–Miyaura coupling through distal ionic interactions. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
39
|
Khromova OV, Emelyanov MA, Stoletova NV, Bodunova EE, Prima DO, Smol’yakov AF, Eremenko IL, Maleev VI, Larionov VA. Post-Modification of Octahedral Chiral-at-Metal Cobalt(III) Complexes by Suzuki–Miyaura Cross-Coupling and Evaluation of Their Catalytic Activity. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Olga V. Khromova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Mikhail A. Emelyanov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Nadezhda V. Stoletova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Ekaterina E. Bodunova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation
- Higher Chemical College of the Russian Academy of Sciences, Miusskaya sq. 9, 125047 Moscow, Russian Federation
| | - Darya O. Prima
- Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Alexander F. Smol’yakov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Igor L. Eremenko
- N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 31, 119991 Moscow, Russian Federation
| | - Victor I. Maleev
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Vladimir A. Larionov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation
- Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russian Federation
| |
Collapse
|
40
|
Labelle A, Arndtsen BA. Chiral BINOL-based borate counterions: from cautionary tale on anion stability to enantioselective Cu-catalyzed cyclopropanation. Chem Commun (Camb) 2023; 59:728-731. [PMID: 36541187 DOI: 10.1039/d2cc05924j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The chiral weakly coordinating (3,3'-biphenyl-BINOL)BF2 anion can be generated by the reaction of the BINOL derivative with Cu(NCMe)4BF4. Structural analysis suggest the anion is weakly coordinating to Cu+. However, its use in cyclopropanation reactions leads to the rearrangement of the anion to create a chiral 3,3'-diphenyl-BINOL ligand that coordinates to copper. The latter suggests an important feature to consider when using weakly association anions, but can also be used to design simple chiral BINOL-based ligands for asymmetric cyclopropanation.
Collapse
Affiliation(s)
- Anthony Labelle
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada.
| | - Bruce A Arndtsen
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada.
| |
Collapse
|
41
|
Xi J, Ng EWH, Ho CY. Unsymmetric N-Aryl Substituent Effects on Chiral NHC-Cu: Enantioselectivity and Reactivity Enhancement by Ortho-H and Syn-Configuration. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jianwei Xi
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Shenzhen Grubbs Institute, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Elvis Wang Hei Ng
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Shenzhen Grubbs Institute, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chun-Yu Ho
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Shenzhen Grubbs Institute, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
42
|
Tejero AG, Carmona M, Rodríguez R, Viguri F, Lahoz FJ, García-Orduña P, Carmona D. Synthesis of chiral-at-metal rhodium complexes from achiral tripodal tetradentate ligands: resolution and application to enantioselective Diels-Alder and 1,3-dipolar cycloadditions. RSC Adv 2022; 12:34704-34714. [PMID: 36545596 PMCID: PMC9717581 DOI: 10.1039/d2ra06982b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022] Open
Abstract
An improved synthesis of the racemic rhodium compound [RhCl2(κ4 C,N,N',P-L1)] (1) containing an achiral tripodal tetradentate ligand is reported. Their derived solvate complexes [Rh(κ4 C,N,N',P-L1)(Solv)2][SbF6]2 (Solv = NCMe, 2; H2O, 3) are resolved into their two enantiomers. Complexes 2 and 3 catalyze the Diels-Alder (DA) reaction between methacrolein and cyclopentadiene and the 1,3-dipolar cycloaddition reaction between methacrolein and the nitrone N-benzylidenphenylamine-N-oxide. When enantiopure (A Rh,R N)-2 was employed as the catalyst, enantiomeric ratios >99/1, in the R at C2 adduct, and up to 94/6, in the 3,5-endo isomer, were achieved in the DA reaction and in the 1,3-dipolar cycloaddition reaction, respectively. A plausible catalytic cycle that accounts for the origin of the observed enantioselectivity is proposed.
Collapse
Affiliation(s)
- Alvaro G Tejero
- Departamento de Catálisis y Procesos Catalíticos, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - María Carmona
- Departamento de Catálisis y Procesos Catalíticos, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Ricardo Rodríguez
- Departamento de Catálisis y Procesos Catalíticos, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Fernando Viguri
- Departamento de Catálisis y Procesos Catalíticos, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Fernando J Lahoz
- Departamento de Catálisis y Procesos Catalíticos, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Pilar García-Orduña
- Departamento de Catálisis y Procesos Catalíticos, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Daniel Carmona
- Departamento de Catálisis y Procesos Catalíticos, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| |
Collapse
|
43
|
Xie C, Kim J, Mai BK, Cao S, Ye R, Wang XY, Liu P, Kwon O. Enantioselective Synthesis of Quaternary Oxindoles: Desymmetrizing Staudinger-Aza-Wittig Reaction Enabled by a Bespoke HypPhos Oxide Catalyst. J Am Chem Soc 2022; 144:21318-21327. [PMID: 36375169 PMCID: PMC10746329 DOI: 10.1021/jacs.2c09421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper describes a catalytic asymmetric Staudinger-aza-Wittig reaction of (o-azidoaryl)malonates, allowing access to chiral quaternary oxindoles through phosphine oxide catalysis. We designed a novel HypPhos oxide catalyst to enable the desymmetrizing Staudinger-aza-Wittig reaction through the PIII/PV═O redox cycle in the presence of a silane reductant and an IrI-based Lewis acid. The reaction occurs under mild conditions, with good functional group tolerance, a wide substrate scope, and excellent enantioselectivity. Density functional theory revealed that the enantioselectivity in the desymmetrizing reaction arose from the cooperative effects of the IrI species and the HypPhos catalyst. The utility of this methodology is demonstrated by the (formal) syntheses of seven alkaloid targets: (-)-gliocladin C, (-)-coerulescine, (-)-horsfiline, (+)-deoxyeseroline, (+)-esermethole, (+)-physostigmine, and (+)-physovenine.
Collapse
Affiliation(s)
- Changmin Xie
- Department of Chemistry and Biochemistry, University of California─Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, California 90095-1569, United States
| | - Jacob Kim
- Department of Chemistry and Biochemistry, University of California─Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, California 90095-1569, United States
| | - Binh Khanh Mai
- Department of Chemistry and Biochemistry, University of California─Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, California 90095-1569, United States
| | - Shixuan Cao
- Department of Chemistry and Biochemistry, University of California─Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, California 90095-1569, United States
| | - Rong Ye
- Department of Chemistry and Biochemistry, University of California─Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, California 90095-1569, United States
| | - Xin-Yi Wang
- Department of Chemistry and Biochemistry, University of California─Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, California 90095-1569, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California─Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, California 90095-1569, United States
| |
Collapse
|
44
|
Zhou Y, Gao Z, Hu C, Meng S, Duan R, Sun Z, Pang X. Facile Synthesis of Gradient Polycarbonate–Polyester Terpolymers from Monomer Mixtures Mediated by an Asymmetric Chromium Complex. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yanchuan Zhou
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Zan Gao
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, P. R. China
| | - Chenyang Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Shuaiming Meng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ranlong Duan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Zhiqiang Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
45
|
Ali HM, Ali IH. Thermal and thermo-oxidative stability of a series of palladium and platinum ferrocenylamine sulfides and selenides. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198221141979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ferrocenylamine complexes have found increasing applications in the fields of catalysis in various organic reactions, industry, medical treatments and enzyme–activity determinations. Therefore, information related to the thermal and thermo-oxidative stability of these compounds is important for such applications; however, this information is currently limited. Twenty previously prepared palladium and platinum ferrocenylamine complexes with systematic structural variations are examined for their thermal (under nitrogen) and thermo-oxidation stability (under atmospheric air) using thermogravimetry (TG), differential thermal analysis (DTG), and differential scanning calorimetry (DSC) techniques. Degradation products are identified by comparing thermogravimetric analysis and theoretical calculations. Structure–stability studies are also discussed. The results show that all the compounds have high thermal and thermo-oxidative stabilities of up to 265 and 173 °C, respectively. Electron–donating substituents enhance the thermal and thermo-oxidative stabilities of the palladium complexes ( t-Bu, selenide electrophiles and dielectrophiles), while those with destabilizing effects are aromatic substituents (Ph and tolyl). Most platinum ferrocenylamine sulfides and selenides show higher thermal and thermo-oxidative stabilities than their corresponding palladium analogs. All the prepared compounds show high thermal and thermo-oxidative stability which reinforces their catalytic and industrial applications. However, their thermal stability is higher than their thermo-oxidative stability.
Collapse
Affiliation(s)
- Hussein M Ali
- Department of Agricultural Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Isra H Ali
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
46
|
Gillespie J, Fanourakis A, Phipps RJ. Strategies That Utilize Ion Pairing Interactions to Exert Selectivity Control in the Functionalization of C-H Bonds. J Am Chem Soc 2022; 144:18195-18211. [PMID: 36178308 PMCID: PMC9562467 DOI: 10.1021/jacs.2c08752] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 11/30/2022]
Abstract
Electrostatic attraction between two groups of opposite charge, typically known as ion-pairing, offers unique opportunities for the design of systems to enable selectivity control in chemical reactions. Catalysis using noncovalent interactions is an established and vibrant research area, but it is noticeable that hydrogen bonding interactions are still the main interaction of choice in system design. Opposite charges experience the powerful force of Coulombic attraction and have the ability to exert fundamental influence on the outcome of reactions that involve charged reagents, intermediates or catalysts. In this Perspective, we will examine how ion-pairing interactions have been used to control selectivity in C-H bond functionalization processes. This broad class of reactions provides an interesting and thought-provoking lens through which to examine the application of ion-pairing design strategies because it is one that encompasses great mechanistic diversity, poses significant selectivity challenges, and perhaps most importantly is of immense interest to synthetic chemists in both industry and academia. We survey reactions that proceed via radical and ionic mechanisms alongside those that involve transition metal catalysis and will deal with control of site-selectivity and enantioselectivity. We anticipate that as this emerging area develops, it will become an ever-more important design strategy for selectivity control.
Collapse
Affiliation(s)
| | | | - Robert J. Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
47
|
Enzyme-like water preorganization in a synthetic molecular cleft for homogeneous water oxidation catalysis. Nat Catal 2022. [DOI: 10.1038/s41929-022-00843-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
|
49
|
Zeng Y, Lemay JC, Dong Y, Garcia J, Groves MN, McBreen PH. Ligand-Assisted Carbonyl Bond Activation in Single Diastereomeric Complexes on Platinum. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yang Zeng
- CCVC and Department of Chemistry, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Jean-Christian Lemay
- CCVC and Department of Chemistry, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Yi Dong
- CCVC and Department of Chemistry, Université Laval, Québec, Québec G1V 0A6, Canada
| | - James Garcia
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, California 92831, United States
| | - Michael. N Groves
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, California 92831, United States
| | - Peter H. McBreen
- CCVC and Department of Chemistry, Université Laval, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
50
|
Sohtome Y, Sodeoka M. Theoretical Insights into the Substrate-Dependent Diastereodivergence in (3 + 2) Cycloaddition of α-Keto Ester Enolates with Nitrones. Chem Pharm Bull (Tokyo) 2022; 70:616-623. [DOI: 10.1248/cpb.c22-00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yoshihiro Sohtome
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research
| | - Mikiko Sodeoka
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science
| |
Collapse
|