1
|
Sun J, Lian G, Chen Z, Zou Z, Wang L. Merger of Single-Atom Catalysis and Photothermal Catalysis for Future Chemical Production. ACS NANO 2024; 18:34572-34595. [PMID: 39652059 DOI: 10.1021/acsnano.4c13030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Photothermal catalysis is an emerging field with significant potential for sustainable chemical production processes. The merger of single-atom catalysts (SACs) and photothermal catalysis has garnered widespread attention for its ability to achieve precise bond activation and superior catalytic performance. This review provides a comprehensive overview of the recent progress of SACs in photothermal catalysis, focusing on their underlying mechanisms and applications. The dynamic structural evolution of SACs during photothermal processes is highlighted, and the current advancements and future perspectives in the design, screening, and scaling up of SACs for photothermal processes are discussed. This review aims to provide insights into their continued development in this rapidly evolving field.
Collapse
Affiliation(s)
- Junchuan Sun
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Guanwu Lian
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Zhongxin Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Zhigang Zou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Lu Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
2
|
Zhou J, Zhao J, Liu J, Song D, Xu W, Yang A, Li J, Wang N. Fine tuning dual active sites in modulating cascade electrocatalytic nitrate reduction over covalent organic framework. J Colloid Interface Sci 2024; 672:512-519. [PMID: 38852353 DOI: 10.1016/j.jcis.2024.05.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
Conversion of NO3- to NH3 proceeds stepwise in natural system under two different enzymes involving intermediate NO2-. Artificial electro-driven NO3- reduction also faces the obstacle of low faradaic efficiency due to insufficient utilization of this intermediate. Herein, we demonstrate a bimetallic COF-based electrocatalyst for the cascade catalysis of NO3--to-NO2--to-NH3 for the first time. TpBpy-Cu2Co4 exhibits a significantly improved performance, with an enhancement factor of 1.4-2 compared to monometallic TpBpy-M. The NH3 yield rate achieves 25.6 mg h-1 mgcat.-1 at -0.55 V vs RHE over TpBpy-Cu2Co4, together with excellent faradaic efficiency (93.4 %). This achievement demonstrates cascade catalysis between Co and Cu units, and their distinct roles are investigated through electrochemical experiments and theory calculations. In electrocatalytic process, Cu site facilities *NO3-to-*NO3H step, while the Co site significantly decreases the energy barrier of *NHOH-to-*NH. The present work provides a valuable inspiration in designing efficient catalysts for cascade reaction.
Collapse
Affiliation(s)
- Jing Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Jiani Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Jiquan Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China.
| | - Dengmeng Song
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Wenhua Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China.
| | - Anjin Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Jun Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Ning Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
3
|
Gunawan D, Zhang J, Li Q, Toe CY, Scott J, Antonietti M, Guo J, Amal R. Materials Advances in Photocatalytic Solar Hydrogen Production: Integrating Systems and Economics for a Sustainable Future. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404618. [PMID: 38853427 DOI: 10.1002/adma.202404618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Photocatalytic solar hydrogen generation, encompassing both overall water splitting and organic reforming, presents a promising avenue for green hydrogen production. This technology holds the potential for reduced capital costs in comparison to competing methods like photovoltaic-electrocatalysis and photoelectrocatalysis, owing to its simplicity and fewer auxiliary components. However, the current solar-to-hydrogen efficiency of photocatalytic solar hydrogen production has predominantly remained low at ≈1-2% or lower, mainly due to curtailed access to the entire solar spectrum, thus impeding practical application of photocatalytic solar hydrogen production. This review offers an integrated, multidisciplinary perspective on photocatalytic solar hydrogen production. Specifically, the review presents the existing approaches in photocatalyst and system designs aimed at significantly boosting the solar-to-hydrogen efficiency, while also considering factors of cost and scalability of each approach. In-depth discussions extending beyond the efficacy of material and system design strategies are particularly vital to identify potential hurdles in translating photocatalysis research to large-scale applications. Ultimately, this review aims to provide understanding and perspective of feasible pathways for commercializing photocatalytic solar hydrogen production technology, considering both engineering and economic standpoints.
Collapse
Affiliation(s)
- Denny Gunawan
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jiajun Zhang
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Qiyuan Li
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Cui Ying Toe
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jason Scott
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14475, Potsdam, Germany
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Rose Amal
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
4
|
Kozyr E, Martí-Sánchez S, Skorynina A, Arbiol J, Escudero C, Mino L, Bugaev A. In situ photodeposition of ultra-small palladium particles on TiO 2. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:1071-1077. [PMID: 39007821 PMCID: PMC11371036 DOI: 10.1107/s1600577524004788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/22/2024] [Indexed: 07/16/2024]
Abstract
In situ and operando investigation of photocatalysts plays a fundamental role in understanding the processes of active phase formation and the mechanisms of catalytic reactions, which is crucial for the rational design of more efficient materials. Using a custom-made operando photocatalytic cell, an in situ procedure to follow the formation steps of Pd/TiO2 photocatalyst by synchrotron-based X-ray absorption spectroscopy (XAS) is proposed. The procedure resulted in the formation of ∼1 nm Pd particles with a much narrower size distribution and homogeneous spreading over TiO2 support compared with the samples generated in a conventional batch reactor. The combination of in situ XAS spectroscopy with high-angle annular dark-field scanning transmission electron microscopy demonstrated the formation of single-atom Pd(0) sites on TiO2 as the initial step of the photodeposition process. Palladium hydride particles were observed for all investigated samples upon exposure to formic acid solutions.
Collapse
Affiliation(s)
- Elizaveta Kozyr
- Department of Chemistry and NIS CentreUniversity of TorinoVia Giuria 710125TorinoItaly
| | - Sara Martí-Sánchez
- Catalan Institute of Nanoscience and NanotechnologyCSIC and BIST, Campus UAB08193BellaterraBarcelonaSpain
| | - Alina Skorynina
- ALBA Synchrotron Light SourceCarrer de la Llum 2-26, Cerdanyola del Vallès08290BarcelonaSpain
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and NanotechnologyCSIC and BIST, Campus UAB08193BellaterraBarcelonaSpain
- ICREAPg. Lluís Companys 2308010BarcelonaSpain
| | - Carlos Escudero
- ALBA Synchrotron Light SourceCarrer de la Llum 2-26, Cerdanyola del Vallès08290BarcelonaSpain
| | - Lorenzo Mino
- Department of Chemistry and NIS CentreUniversity of TorinoVia Giuria 710125TorinoItaly
| | - Aram Bugaev
- Paul Scherrer InstituteForschungstrasse 1115232VilligenSwitzerland
| |
Collapse
|
5
|
Haroon H, Xiang Q. Single-Atom based Metal-Organic Framework Photocatalysts for Solar-Fuel Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401389. [PMID: 38733221 DOI: 10.1002/smll.202401389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/17/2024] [Indexed: 05/13/2024]
Abstract
The growing demand for fossil fuels and subsequent CO2 emissions prompted a search for alternate sources of energy and a reduction in CO2. Photocatalysis driven by solar light has been found as a potential research area to tackle both these problems. In this direction, SAC@MOF (Single-atom loaded MOFs) photocatalysis is an emerging field and a promising technology. The unique properties of single-atom catalysts (SACs), such as high catalytic activity and selectivity, are leveraged in these systems. Photocatalysis, focusing on the utilization of Metal-Organic Frameworks (MOFs) as platforms for creating single-atom catalysts (SACs) characterized by metal single-atoms (SAs) as their active sites, are noted for their unparalleled atomic efficiency, precisely defined active sites, and superior photocatalytic performance. The synergy between MOFs and SAs in photocatalytic systems is meticulously examined, highlighting how they collectively enhance photocatalytic efficiency. This review examines SAC@MOF development and applications in environmental and energy sectors, focusing on synthesis and stabilization methods for SACs on MOFs and also characterization techniques vital for understanding these catalysts. The potential of SAC@MOF in CO2 Photoreduction and Photocatalytic H2 evolution is highlighted, emphasizing its role in green energy technologies and advances in materials science and Photocatalysis.
Collapse
Affiliation(s)
- Haamid Haroon
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- State Key Laboratory of Electronic Thin Film and Integrated Devices School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Quanjun Xiang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- State Key Laboratory of Electronic Thin Film and Integrated Devices School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
6
|
Cheng L, Wu Q, Sun H, Tang Y, Xiang Q. Toward Functionality and Deactivation of Metal-Single-Atom in Heterogeneous Photocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406807. [PMID: 38923045 DOI: 10.1002/adma.202406807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Single-atom heterogeneous catalysts (SAHCs) provide an enticing platform for understanding catalyst structure-property-performance relationships. The 100% atom utilization and adjustable local coordination configurations make it easy to probe reaction mechanisms at the atomic level. However, the progressive deactivation of metal-single-atom (MSA) with high surface energy leads to frequent limitations on their commercial viability. This review focuses on the atomistic-sensitive reactivity and atomistic-progressive deactivation of MSA to provide a unifying framework for specific functionality and potential deactivation drivers of MSA, thereby bridging function, purpose-modification structure-performance insights with the atomistic-progressive deactivation for sustainable structure-property-performance accessibility. The dominant functionalization of atomically precise MSA acting on properties and reactivity encompassing precise photocatalytic reactions is first systematically explored. Afterward, a detailed analysis of various deactivation modes of MSA and strategies to enhance their durability is presented, providing valuable insights into the design of SAHCs with deactivation-resistant stability. Finally, the remaining challenges and future perspectives of SAHCs toward industrialization, anticipating shedding some light on the next stage of atom-economic chemical/energy transformations are presented.
Collapse
Affiliation(s)
- Lei Cheng
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Qiaolin Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hanjun Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Quanjun Xiang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China Chengdu, Sichuan, 610054, P. R. China
| |
Collapse
|
7
|
Cai M, Sun S, Bao J. Synchrotron Radiation Based X-ray Absorption Spectroscopy: Fundamentals and Applications in Photocatalysis. Chemphyschem 2024; 25:e202300939. [PMID: 38374799 DOI: 10.1002/cphc.202300939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
Photocatalysis is one of the most promising green technologies to utilize solar energy for clean energy achievement and environmental governance. There is a knotty problem to rational designing high-performance photocatalyst, which largely depends on an in-depth insight into their structure-activity relationships and complex photocatalytic reaction mechanisms. Synchrotron radiation based X-ray absorption spectroscopy (XAS) is an important characterization method for photocatlayst to offer the element-specific key geometric and electronic structural information at the atomic level, on this basis, time-resolved XAS technique has a huge impact on mechanistic understanding of photochemical reaction owing to their powerful ability to probe, in real-time, the electronic and geometric structures evolution within photocatalysis reactions. This review will focus on the fundamentals of XAS and their applications in photocatalysis. The detailed applications obtained from XAS is described through the following aspects: 1) identifying local structure of photocatalyst; 2) uncovering in situ structure and chemical state evolution during photocatalysis; 3) revealing the photoexcited process. We will provide an in depth understanding on how the XAS method can guide the rational design of highly efficient photocatalyst. Finally, a systematic summary of XAS and related significance is made and the research perspectives are suggested.
Collapse
Affiliation(s)
- Mengdie Cai
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Song Sun
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Jun Bao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| |
Collapse
|
8
|
Zang W, Lee J, Tieu P, Yan X, Graham GW, Tran IC, Wang P, Christopher P, Pan X. Distribution of Pt single atom coordination environments on anatase TiO 2 supports controls reactivity. Nat Commun 2024; 15:998. [PMID: 38307931 PMCID: PMC10837418 DOI: 10.1038/s41467-024-45367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024] Open
Abstract
Single-atom catalysts (SACs) offer efficient metal utilization and distinct reactivity compared to supported metal nanoparticles. Structure-function relationships for SACs often assume that active sites have uniform coordination environments at particular binding sites on support surfaces. Here, we investigate the distribution of coordination environments of Pt SAs dispersed on shape-controlled anatase TiO2 supports specifically exposing (001) and (101) surfaces. Pt SAs on (101) are found on the surface, consistent with existing structural models, whereas those on (001) are beneath the surface after calcination. Pt SAs under (001) surfaces exhibit lower reactivity for CO oxidation than those on (101) surfaces due to their limited accessibility to gas phase species. Pt SAs deposited on commercial-TiO2 are found both at the surface and in the bulk, posing challenges to structure-function relationship development. This study highlights heterogeneity in SA coordination environments on oxide supports, emphasizing a previously overlooked consideration in the design of SACs.
Collapse
Affiliation(s)
- Wenjie Zang
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - Jaeha Lee
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Peter Tieu
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Xingxu Yan
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - George W Graham
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ich C Tran
- Irvine Materials Research Institute, University of California, Irvine, CA, 92697, USA
| | - Peikui Wang
- Department of Chemistry, University of Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Phillip Christopher
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
| | - Xiaoqing Pan
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA.
- Irvine Materials Research Institute, University of California, Irvine, CA, 92697, USA.
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
9
|
Chen Y, Soler L, Cazorla C, Oliveras J, Bastús NG, Puntes VF, Llorca J. Facet-engineered TiO 2 drives photocatalytic activity and stability of supported noble metal clusters during H 2 evolution. Nat Commun 2023; 14:6165. [PMID: 37789037 PMCID: PMC10547715 DOI: 10.1038/s41467-023-41976-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 09/25/2023] [Indexed: 10/05/2023] Open
Abstract
Metal clusters supported on TiO2 are widely used in many photocatalytic applications, including pollution control and production of solar fuels. Besides high photoactivity, stability during the photoreaction is another essential quality of high-performance photocatalysts, however systematic studies on this attribute are absent for metal clusters supported on TiO2. Here we have studied, both experimentally and with first-principles simulation methods, the stability of Pt, Pd and Au clusters prepared by ball milling on nanoshaped anatase nanoparticles preferentially exposing {001} (plates) and {101} (bipyramids) facets during the photogeneration of hydrogen. It is found that Pt/TiO2 exhibits superior stability than Pd/TiO2 and Au/TiO2, and that {001} facet-based photocatalysts always are more stable than their {101} analogous regardless of the considered metal species. The loss of stability associated with cluster sintering, which is facilitated by the transfer of photoexcited carriers from the metal species to the neighbouring Ti and O atoms, most significantly and detrimentally affects the H2-evolution photoactivity.
Collapse
Affiliation(s)
- Yufen Chen
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 16, EEBE, Barcelona, 08019, Spain
- Institute of Energy Technologies and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 16, EEBE, Barcelona, 08019, Spain
| | - Lluís Soler
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 16, EEBE, Barcelona, 08019, Spain.
- Institute of Energy Technologies and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 16, EEBE, Barcelona, 08019, Spain.
| | - Claudio Cazorla
- Department of Physics, Universitat Politècnica de Catalunya, Campus Nord, B4-B5, Barcelona, E-08034, Spain
| | - Jana Oliveras
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193, Barcelona, Spain
| | - Neus G Bastús
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193, Barcelona, Spain
| | - Víctor F Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193, Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), 08010, Barcelona, Spain
- Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, Passeig de la Vall d'Hebron, 129, Barcelona, 08035, Spain
| | - Jordi Llorca
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 16, EEBE, Barcelona, 08019, Spain.
- Institute of Energy Technologies and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 16, EEBE, Barcelona, 08019, Spain.
| |
Collapse
|
10
|
Li CF, Pan WG, Zhang ZR, Wu T, Guo RT. Recent Progress of Single-Atom Photocatalysts Applied in Energy Conversion and Environmental Protection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300460. [PMID: 36855324 DOI: 10.1002/smll.202300460] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/13/2023] [Indexed: 06/02/2023]
Abstract
Photocatalysis driven by solar energy is a feasible strategy to alleviate energy crises and environmental problems. In recent years, significant progress has been made in developing advanced photocatalysts for efficient solar-to-chemical energy conversion. Single-atom catalysts have the advantages of highly dispersed active sites, maximum atomic utilization, unique coordination environment, and electronic structure, which have become a research hotspot in heterogeneous photocatalysis. This paper introduces the potential supports, preparation, and characterization methods of single-atom photocatalysts in detail. Subsequently, the fascinating effects of single-atom photocatalysts on three critical steps of photocatalysis (the absorption of incident light to produce electron-hole pairs, carrier separation and migration, and interface reactions) are analyzed. At the same time, the applications of single-atom photocatalysts in energy conversion and environmental protection (CO2 reduction, water splitting, N2 fixation, organic macromolecule reforming, air pollutant removal, and water pollutant degradation) are systematically summarized. Finally, the opportunities and challenges of single-atom catalysts in heterogeneous photocatalysis are discussed. It is hoped that this work can provide insights into the design, synthesis, and application of single-atom photocatalysts and promote the development of high-performance photocatalytic systems.
Collapse
Affiliation(s)
- Chu-Fan Li
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai, 200090, P. R. China
- Key Laboratory of Environmental Protection Technology for Clean Power Generation in Machinery Industry, Shanghai, 200090, P. R. China
| | - Zhen-Rui Zhang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Tong Wu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai, 200090, P. R. China
- Key Laboratory of Environmental Protection Technology for Clean Power Generation in Machinery Industry, Shanghai, 200090, P. R. China
| |
Collapse
|
11
|
Gao F, Wang X, Cui WG, Liu Y, Yang Y, Sun W, Chen J, Liu P, Pan H. Topologically Porous Heterostructures for Photo/Photothermal Catalysis of Clean Energy Conversion. SMALL METHODS 2023; 7:e2201532. [PMID: 36813753 DOI: 10.1002/smtd.202201532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/26/2023] [Indexed: 06/18/2023]
Abstract
As a straightforward way to fix solar energy, photo/photothermal catalysis with semiconductor provides a promising way to settle the energy shortage and environmental crisis in many fields, especially in clean energy conversion. Topologically porous heterostructures (TPHs), featured with well-defined pores and mainly composed by the derivatives of some precursors with specific morphology, are a major part of hierarchical materials in photo/photothermal catalysis and provide a versatile platform to construct efficient photocatalysts for their enhanced light absorption, accelerated charges transfer, improved stability, and promoted mass transportation. Therefore, a comprehensive and timely review on the advantages and recent applications of the TPHs is of great importance to forecast the potential applications and research trend in the future. This review initially demonstrates the advantages of TPHs in photo/photothermal catalysis. Then the universal classifications and design strategies of TPHs are emphasized. Besides, the applications and mechanisms of photo/photothermal catalysis in hydrogen evolution from water splitting and COx hydrogenation over TPHs are carefully reviewed and highlighted. Finally, the challenges and perspectives of TPHs in photo/photothermal catalysis are also critically discussed.
Collapse
Affiliation(s)
- Fan Gao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xinqiang Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wen-Gang Cui
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Yanxia Liu
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wenping Sun
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Ping Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
12
|
Giulimondi V, Mitchell S, Pérez-Ramírez J. Challenges and Opportunities in Engineering the Electronic Structure of Single-Atom Catalysts. ACS Catal 2023; 13:2981-2997. [PMID: 36910873 PMCID: PMC9990067 DOI: 10.1021/acscatal.2c05992] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Indexed: 02/16/2023]
Abstract
Controlling the electronic structure of transition-metal single-atom heterogeneous catalysts (SACs) is crucial to unlocking their full potential. The ability to do this with increasing precision offers a rational strategy to optimize processes associated with the adsorption and activation of reactive intermediates, charge transfer dynamics, and light absorption. While several methods have been proposed to alter the electronic characteristics of SACs, such as the oxidation state, band structure, orbital occupancy, and associated spin, the lack of a systematic approach to their application makes it difficult to control their effects. In this Perspective, we examine how the electronic configuration of SACs can be engineered for thermochemical, electrochemical, and photochemical applications, exploring the relationship with their activity, selectivity, and stability. We discuss synthetic and analytical challenges in controlling and discriminating the electronic structure of SACs and possible directions toward closing the gap between computational and experimental efforts. By bringing this topic to the center, we hope to stimulate research to understand, control, and exploit electronic effects in SACs and ultimately spur technological developments.
Collapse
Affiliation(s)
- Vera Giulimondi
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Sharon Mitchell
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Javier Pérez-Ramírez
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
13
|
Operando Laboratory X-ray Absorption Spectroscopy and UV–Vis Study of Pt/TiO2 Photocatalysts during Photodeposition and Hydrogen Evolution Reactions. Catalysts 2023. [DOI: 10.3390/catal13020414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Photocatalytic hydrogen (H2) production is a promising route for alternative energetics. Understanding structure–activity relationships is a crucial step towards the rational design of photocatalysts, which requires the application of operando spectroscopy under relevant working conditions. We performed an operando investigation on a catalytic system during the photodeposition of Pt on TiO2 and photostimulated H2 production, using simultaneous laboratory X-ray absorption spectroscopy (XAS), UV–Vis spectroscopy, and mass spectrometry. XAS showed a progressive increase in Pt fluorescence for Pt deposited on TiO2 for over an hour, which is correlated with the signal of the produced H2. The final Pt/TiO2 catalyst contained Pt(0) particles. The electronic features corresponding to the Pt4+ species in the UV–Vis spectrum of the solution disappear as soon as UV radiation is applied in the presence of formic acid, which acts as a hole scavenger, resulting in the presence of Pt(0) particles in solution.
Collapse
|
14
|
Chiarello GL, Bernareggi M, Selli E. Redox Dynamics of Pt and Cu Nanoparticles on TiO 2 during the Photocatalytic Oxidation of Methanol under Aerobic and Anaerobic Conditions Studied by In Situ Modulated Excitation X-ray Absorption Spectroscopy. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gian Luca Chiarello
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133Milano, Italy
| | - Massimo Bernareggi
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133Milano, Italy
| | - Elena Selli
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133Milano, Italy
| |
Collapse
|
15
|
TiO2-supported Single-atom Catalysts: Synthesis, Structure, and Application. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2224-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Issa Hamoud H, Wolski L, Pankin I, Bañares MA, Daturi M, El-Roz M. In situ and Operando Spectroscopies in Photocatalysis: Powerful Techniques for a Better Understanding of the Performance and the Reaction Mechanism. Top Curr Chem (Cham) 2022; 380:37. [PMID: 35951125 DOI: 10.1007/s41061-022-00387-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/18/2022] [Indexed: 10/15/2022]
Abstract
In photocatalysis, a set of elemental steps are involved together at different timescales to govern the overall efficiency of the process. These steps are divided as follow: (1) photon absorption and excitation (in femtoseconds), (2) charge separation (femto- to picoseconds), (3) charge carrier diffusion/transport (nano- to microseconds), and (4 and 5) reactant activation/conversion and mass transfer (micro- to milliseconds). The identification and quantification of these steps, using the appropriate tool/technique, can provide the guidelines to emphasize the most influential key parameter that improve the overall efficiency and to develop the "photocatalyst by design" concept. In this review, the identification/quantification of reactant activation/conversion and mass transfer (steps 4 and 5) is discussed in details using the in situ/operando techniques, especially the infrared (IR), Raman, and X-ray absorption spectroscopy (XAS). The use of these techniques in photocatalysis was highlighted by the most recent and conclusive case studies which allow a better characterization of the active site and reveal the reaction pathways in order to establish a structure-performance relationship. In each case study, the reaction conditions and the reactor design for photocatalysis (pressure, temperature, concentration, etc.) were thoroughly discussed. In the last part, some examples in the use of time-resolved techniques (time-resolved FTIR, photoluminescence, and transient absorption) are also presented as an author's guideline to study the elemental steps in photocatalysis at shorter timescale (ps, ns, and µs).
Collapse
Affiliation(s)
- Houeida Issa Hamoud
- Laboratoire Catalyse et Spectrochimie, Normandie Université, ENSICAEN, UNICAEN, CNRS, 14050, Caen, France
| | - Lukasz Wolski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Ilia Pankin
- Smart Materials, Research Institute, Southern Federal University, Sladkova Street 174/28, 344090, Rostov-on-Don, Russia
| | - Miguel A Bañares
- Catalytic Spectroscopy Laboratory, Instituto de Catalisis, ICP-CSIC, 28049, Madrid, Spain
| | - Marco Daturi
- Laboratoire Catalyse et Spectrochimie, Normandie Université, ENSICAEN, UNICAEN, CNRS, 14050, Caen, France
| | - Mohamad El-Roz
- Laboratoire Catalyse et Spectrochimie, Normandie Université, ENSICAEN, UNICAEN, CNRS, 14050, Caen, France.
| |
Collapse
|
17
|
Kim G, Shin S, Choi Y, Kim J, Kim G, Kim KJ, Lee H. Gas-Permeable Iron-Doped Ceria Shell on Rh Nanoparticles with High Activity and Durability. JACS AU 2022; 2:1115-1122. [PMID: 35647595 PMCID: PMC9131474 DOI: 10.1021/jacsau.2c00035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 05/14/2023]
Abstract
Strong metal-support interaction (SMSI) is a promising strategy to control the structure of the supported metal catalyst. Especially, encapsulating metal nanoparticles through SMSI can enhance resistance against sintering but typically blocks the access of reactants onto the metal surface. Here, we report gas-permeable shells formed on Rh nanoparticles with enhanced activity and durability for the surface reaction. First, Fe species were doped into ceria, enhancing the transfer of surface oxygen species. When Rh was deposited onto the Fe-doped ceria (FC) and reduced, a shell was formed on Rh nanoparticles. Diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS) results show that the shell is formed upon reduction and removed upon oxidation reversibly. CO adsorption on the Rh surface through the shell was confirmed by cryo-DRIFTS. The reverse water gas shift (RWGS) reaction (CO2 + H2 → CO + H2O) occurred on the encapsulated Rh nanoparticles effectively with selective CO formation, whereas bare Rh nanoparticles deposited on ceria produced methane as well. The CO adsorption became much weaker on the encapsulated Rh nanoparticles, and H2-spillover occurred more on the FC, resulting in high activity for RWGS. The exposed Rh nanoparticles deposited on ceria presented degradation at 400 °C after 150 h of RWGS, whereas the encapsulated Rh nanoparticles showed no degradation with superior durability. Enhancing surface oxygen transfer can be an efficient way to form gas-permeable overlayers on metal nanoparticles with high activity and durability.
Collapse
Affiliation(s)
- Gunjoo Kim
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Sangyong Shin
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Yunji Choi
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Jinwoong Kim
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Geonhwa Kim
- Pohang
Accelerator Laboratory, Pohang University
of Science and Technology, Pohang 37673, Republic of Korea
| | - Ki-Jeong Kim
- Pohang
Accelerator Laboratory, Pohang University
of Science and Technology, Pohang 37673, Republic of Korea
| | - Hyunjoo Lee
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| |
Collapse
|
18
|
Zhou J, Hu Y, Chang YC, Hu Z, Huang YC, Fan Y, Lin HJ, Pao CW, Dong CL, Lee JF, Chen CT, Wang JQ, Zhang L. In Situ Exploring of the Origin of the Enhanced Oxygen Evolution Reaction Efficiency of Metal(Co/Fe)–Organic Framework Catalysts Via Postprocessing. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jing Zhou
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yitian Hu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yu-Chung Chang
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan 30076, R. O. C
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Dresden 01187, Germany
| | - Yu-Cheng Huang
- Tamkang University, Tamsui, New Taipei, Taiwan 25137, R. O. C
| | - YaLei Fan
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Hong-Ji Lin
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan 30076, R. O. C
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan 30076, R. O. C
| | - Chung-Li Dong
- Tamkang University, Tamsui, New Taipei, Taiwan 25137, R. O. C
| | - Jyh-Fu Lee
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan 30076, R. O. C
| | - Chien-Te Chen
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan 30076, R. O. C
| | - Jian-Qiang Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Dalian National Laboratory for Clean Energy, Dalian, Liaoning 116023, China
| | - Linjuan Zhang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Dalian National Laboratory for Clean Energy, Dalian, Liaoning 116023, China
| |
Collapse
|
19
|
Yang Y, Peltier CR, Zeng R, Schimmenti R, Li Q, Huang X, Yan Z, Potsi G, Selhorst R, Lu X, Xu W, Tader M, Soudackov AV, Zhang H, Krumov M, Murray E, Xu P, Hitt J, Xu L, Ko HY, Ernst BG, Bundschu C, Luo A, Markovich D, Hu M, He C, Wang H, Fang J, DiStasio RA, Kourkoutis LF, Singer A, Noonan KJT, Xiao L, Zhuang L, Pivovar BS, Zelenay P, Herrero E, Feliu JM, Suntivich J, Giannelis EP, Hammes-Schiffer S, Arias T, Mavrikakis M, Mallouk TE, Brock JD, Muller DA, DiSalvo FJ, Coates GW, Abruña HD. Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chem Rev 2022; 122:6117-6321. [PMID: 35133808 DOI: 10.1021/acs.chemrev.1c00331] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen energy-based electrochemical energy conversion technologies offer the promise of enabling a transition of the global energy landscape from fossil fuels to renewable energy. Here, we present a comprehensive review of the fundamentals of electrocatalysis in alkaline media and applications in alkaline-based energy technologies, particularly alkaline fuel cells and water electrolyzers. Anion exchange (alkaline) membrane fuel cells (AEMFCs) enable the use of nonprecious electrocatalysts for the sluggish oxygen reduction reaction (ORR), relative to proton exchange membrane fuel cells (PEMFCs), which require Pt-based electrocatalysts. However, the hydrogen oxidation reaction (HOR) kinetics is significantly slower in alkaline media than in acidic media. Understanding these phenomena requires applying theoretical and experimental methods to unravel molecular-level thermodynamics and kinetics of hydrogen and oxygen electrocatalysis and, particularly, the proton-coupled electron transfer (PCET) process that takes place in a proton-deficient alkaline media. Extensive electrochemical and spectroscopic studies, on single-crystal Pt and metal oxides, have contributed to the development of activity descriptors, as well as the identification of the nature of active sites, and the rate-determining steps of the HOR and ORR. Among these, the structure and reactivity of interfacial water serve as key potential and pH-dependent kinetic factors that are helping elucidate the origins of the HOR and ORR activity differences in acids and bases. Additionally, deliberately modulating and controlling catalyst-support interactions have provided valuable insights for enhancing catalyst accessibility and durability during operation. The design and synthesis of highly conductive and durable alkaline membranes/ionomers have enabled AEMFCs to reach initial performance metrics equal to or higher than those of PEMFCs. We emphasize the importance of using membrane electrode assemblies (MEAs) to integrate the often separately pursued/optimized electrocatalyst/support and membranes/ionomer components. Operando/in situ methods, at multiscales, and ab initio simulations provide a mechanistic understanding of electron, ion, and mass transport at catalyst/ionomer/membrane interfaces and the necessary guidance to achieve fuel cell operation in air over thousands of hours. We hope that this Review will serve as a roadmap for advancing the scientific understanding of the fundamental factors governing electrochemical energy conversion in alkaline media with the ultimate goal of achieving ultralow Pt or precious-metal-free high-performance and durable alkaline fuel cells and related technologies.
Collapse
Affiliation(s)
- Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Cheyenne R Peltier
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Roberto Schimmenti
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Qihao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Zhifei Yan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Georgia Potsi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ryan Selhorst
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xinyao Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mariel Tader
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hanguang Zhang
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Mihail Krumov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ellen Murray
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Pengtao Xu
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy Hitt
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Linxi Xu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hsin-Yu Ko
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brian G Ernst
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Colin Bundschu
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Aileen Luo
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Danielle Markovich
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Meixue Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Cheng He
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Robert A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Andrej Singer
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kevin J T Noonan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Li Xiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bryan S Pivovar
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Piotr Zelenay
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Enrique Herrero
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Juan M Feliu
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Jin Suntivich
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Emmanuel P Giannelis
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | | | - Tomás Arias
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joel D Brock
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Francis J DiSalvo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Center for Alkaline Based Energy Solutions (CABES), Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
20
|
Guo M, Zhang M, Liu R, Zhang X, Li G. State-of-the-Art Advancements in Photocatalytic Hydrogenation: Reaction Mechanism and Recent Progress in Metal-Organic Framework (MOF)-Based Catalysts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103361. [PMID: 34716687 PMCID: PMC8728825 DOI: 10.1002/advs.202103361] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/22/2021] [Indexed: 05/07/2023]
Abstract
Photocatalytic hydrogenation provides an effective alternative way for the synthesis of industrial chemicals to meet the economic and environment expectations. Especially, over the past few years, metal-organic frameworks (MOFs), featured with tunable structure, porosity, and crystallinity, have been significantly developed as many high-performance catalysts in the field of photocatalysis. In this review, the background and development of photocatalytic hydrogenation are systemically summarized. In particular, the comparison between photocatalysis and thermal catalysis, and the fundamental understanding of photohydrogenation, including reaction pathways, reducing species, regulation of selectivity, and critical parameters of light, are proposed. Moreover, this review highlights the advantages of MOFs-based photocatalysts in the area of photohydrogenation. Typical effective strategies for modifying MOFs-based composites to produce their advantages are concluded. The recent progress in the application of various types of MOFs-based photocatalysts for photohydrogenation of unsaturated organic chemicals and carbon dioxide (CO2 ) is summarized and discussed in detail. Finally, a brief conclusion and personal perspective on current challenges and future developments of photocatalytic hydrogenation processes and MOFs-based photocatalysts are also highlighted.
Collapse
Affiliation(s)
- Mengya Guo
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Mingwei Zhang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Runze Liu
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
| | - Guozhu Li
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
| |
Collapse
|
21
|
Jašik J, Fortunelli A, Vajda S. Exploring the materials space in the smallest particle size range: From heterogeneous catalysis to electrocatalysis and photocatalysis. Phys Chem Chem Phys 2022; 24:12083-12115. [DOI: 10.1039/d1cp05677h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrasmall clusters of subnanometer size can possess unique and even unexpected physical and chemical propensities which make them interesting in various fields of basic science and for potential applications, such...
Collapse
|
22
|
Butera V, Massaro A, Muñoz-García AB, Pavone M, Detz H. d-Glucose Adsorption on the TiO 2 Anatase (100) Surface: A Direct Comparison Between Cluster-Based and Periodic Approaches. Front Chem 2021; 9:716329. [PMID: 34532310 PMCID: PMC8438178 DOI: 10.3389/fchem.2021.716329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Titanium dioxide (TiO2) has been extensively studied as a suitable material for a wide range of fields including catalysis and sensing. For example, TiO2-based nanoparticles are active in the catalytic conversion of glucose into value-added chemicals, while the good biocompatibility of titania allows for its application in innovative biosensing devices for glucose detection. A key process for efficient and selective biosensors and catalysts is the interaction and binding mode between the analyte and the sensor/catalyst surface. The relevant features regard both the molecular recognition event and its effects on the nanoparticle electronic structure. In this work, we address both these features by combining two first-principles methods based on periodic boundary conditions and cluster approaches (CAs). While the former allows for the investigation of extended materials and surfaces, CAs focus only on a local region of the surface but allow for using hybrid functionals with low computational cost, leading to a highly accurate description of electronic properties. Moreover, the CA is suitable for the study of reaction mechanisms and charged systems, which can be cumbersome with PBC. Here, a direct and detailed comparison of the two computational methodologies is applied for the investigation of d-glucose on the TiO2 (100) anatase surface. As an alternative to the commonly used PBC calculations, the CA is successfully exploited to characterize the formation of surface and subsurface oxygen vacancies and to determine their decisive role in d-glucose adsorption. The results of such direct comparison allow for the selection of an efficient, finite-size structural model that is suitable for future investigations of biosensor electrocatalytic processes and biomass conversion catalysis.
Collapse
Affiliation(s)
- Valeria Butera
- CEITEC - Central European Institute of Technology Central European Institute of Technology, Brno University of Technology, Brno, Czech
| | - Arianna Massaro
- Department of Chemical Sciences, Università di Napoli Federico II, Comp Univ Monte Sant’Angelo, Naples, Italy
| | - Ana B. Muñoz-García
- Department of Physics “Ettore Pancini”, Università di Napoli Federico II, Comp Univ Monte Sant’Angelo, Naples, Italy
| | - Michele Pavone
- Department of Chemical Sciences, Università di Napoli Federico II, Comp Univ Monte Sant’Angelo, Naples, Italy
| | - Hermann Detz
- CEITEC - Central European Institute of Technology Central European Institute of Technology, Brno University of Technology, Brno, Czech
- Center for Micro and Nanostructures and Institute of Solid State Electronics, Vienna, Austria
| |
Collapse
|
23
|
Zhao W, Li Y, Shen W. Tuning the shape and crystal phase of TiO 2 nanoparticles for catalysis. Chem Commun (Camb) 2021; 57:6838-6850. [PMID: 34137748 DOI: 10.1039/d1cc01523k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Synthesis of TiO2 nanoparticles with tunable shape and crystal phase has attracted considerable attention for the design of highly efficient heterogeneous catalysts. Tailoring the shape of TiO2, in the crystal phases of anatase, rutile, brookite and TiO2(B), allows tuning of the atomic configurations on the dominantly exposed facets for maximizing the active sites and regulating the reaction route towards a specific channel for achieving high selectivity. Moreover, the shape and crystal phase of TiO2 nanoparticles alter their interactions with metal species, which are commonly termed as strong metal-support interactions involving interfacial strain and charge transfer. On the other hand, metal particles, clusters and single atoms interact differently with TiO2, because of the variation of the electronic structure, while the surface of TiO2 determines the interfacial bonding via a geometric effect. The dynamic behavior of the metal-titania interfaces, driven by the chemisorption of the reactive molecules at elevated temperatures, also plays a decisive role in elaborating the structure-reactivity relationship.
Collapse
Affiliation(s)
- Wenning Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Wenjie Shen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|