1
|
Liang L, Lin Y, Zhou W, Peng Y, Ge J, Jiang J, Ouyang J. Formate and CO* Radicals Intermediated Atmospheric CO 2 Conversion over Co-Ni Bimetallic Catalysts Assembled on Diatomite. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63440-63454. [PMID: 39512219 DOI: 10.1021/acsami.4c10819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
There exists an imperative exigency to ascertain catalysts of cost-effectiveness and energy efficiency for the facilitation of industrial CO2 methanation. In this area, the dual metal synergistic enhancement of the metal-support interaction emerges as a highly promising strategy. Here, Diatomite (Dt) was used as the support, and a series of CoyNi/Dt (Co as the first component and Ni as the second component) composite catalysts were constructed using an ultrasound-assisted coimpregnation method. Different Co/Ni molar ratios had a significant impact on the phase structure, chemical properties, morphological characteristics, and NiCo crystal structure of the xCoyNi/Dt materials. When the Co/Ni molar ratio was set to 2.0, a Ni-Co alloy was obtained, which is the key to improve the catalytic activity. Compared to the other xCoyNi/Dt catalysts, the bimetallic catalyst 2Co1Ni/Dt exhibited superior CO2 catalytic performance and stability, achieving a 76% CO2 conversion and 98% CH4 selectivity at 425 °C. The in situ DRIFTS results indicated that CO2 methanation over the 2Co1Ni/Dt catalyst followed the reaction pathway with formate and CO* radicals as the intermediates.
Collapse
Affiliation(s)
- Lixing Liang
- Hunan Key Lab of Mineral Materials and Application, Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, P. R. China
- Engineering Research Center of Ministry of Education for Carbon Emission Reduction in Metal Resource Exploitation and Utilization, Central South University, Changsha 410083, P. R. China
| | - Yujie Lin
- Hunan Key Lab of Mineral Materials and Application, Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, P. R. China
- Engineering Research Center of Ministry of Education for Carbon Emission Reduction in Metal Resource Exploitation and Utilization, Central South University, Changsha 410083, P. R. China
| | - Wentao Zhou
- Hunan Key Lab of Mineral Materials and Application, Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, P. R. China
- Engineering Research Center of Ministry of Education for Carbon Emission Reduction in Metal Resource Exploitation and Utilization, Central South University, Changsha 410083, P. R. China
| | - Yonghui Peng
- Hunan Key Lab of Mineral Materials and Application, Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, P. R. China
- Engineering Research Center of Ministry of Education for Carbon Emission Reduction in Metal Resource Exploitation and Utilization, Central South University, Changsha 410083, P. R. China
| | - Jianyu Ge
- Hunan Key Lab of Mineral Materials and Application, Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, P. R. China
- Engineering Research Center of Ministry of Education for Carbon Emission Reduction in Metal Resource Exploitation and Utilization, Central South University, Changsha 410083, P. R. China
| | - Jinlong Jiang
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian 223003, P. R. China
| | - Jing Ouyang
- Hunan Key Lab of Mineral Materials and Application, Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, P. R. China
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian 223003, P. R. China
- Engineering Research Center of Ministry of Education for Carbon Emission Reduction in Metal Resource Exploitation and Utilization, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
2
|
Ye R, Wang X, Lu ZH, Zhang R, Feng G. Construction of robust Ni-based catalysts for low-temperature Sabatier reaction. Chem Commun (Camb) 2024; 60:11466-11482. [PMID: 39279413 DOI: 10.1039/d4cc04342a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
CO2 hydrogenation to methane, namely, CO2 methanation or Sabatier reaction, is a significant approach to convert CO2 and H2 to storable and transportable CH4. Low reaction temperature is the key to industrialization and has attracted plenty of research interest. Ni-based catalysts are commonly utilized owing to their favorable properties of excellent activity and economical price. However, it is still challenging to perform the Sabatier reaction under temperatures lower than 300 °C owing to the inertness of CO2. Hence, in this article, we summarize the advances of four important design principles of the Ni-based catalysts for low-temperature Sabatier reaction, namely, optimizing Ni active sites, tuning support properties, considering metal-support interactions, and choosing a suitable preparation method, which provides deep insights for the design of low-temperature CO2 methanation catalysts. Additionally, typical low-temperature CO2 methanation reaction mechanisms with *CO or *HCOO as the main intermediate and perspectives on this topic have been provided. We highlight that the rare-earth oxide-supported Ni-based catalysts with the potential reaction mechanism and corresponding reactor design would be promising for low-temperature Sabatier reaction.
Collapse
Affiliation(s)
- Runping Ye
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Xuemei Wang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Zhang-Hui Lu
- Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Rongbin Zhang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Gang Feng
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
3
|
Kuhaudomlap S, Srifa A, Koo-Amornpattana W, Fukuhara C, Ratchahat S. Insight and comprehensive study of Ni-based catalysts supported on various metal oxides for CO 2 methanation. Sci Rep 2024; 14:23149. [PMID: 39367183 PMCID: PMC11452388 DOI: 10.1038/s41598-024-73848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024] Open
Abstract
In this study, nickel supported on various metal oxides were prepared by simple impregnation and the performance for CO2 methanation was tested. The oxide supports were all prepared by thermal decomposition of metal salts to provide comparable oxide properties such as surface area. Among the investigated oxides, nickel supported on CeO2 and Y2O3 showed the highest CO2 conversion of 90% at 320 °C with highest CH4 selectivity of 99%. The order of catalyst activity (XCO2@320°C) was reported: Ni/CeO2 ~ Ni/Y2O3 > > Ni/La2O3 > Ni/ZrO2 > Ni/Al2O3 > Ni/MgO > Ni/CaO > > Ni/MnO. The physicochemical properties of the catalysts were analyzed by TEM, BET, XRD, ICP, H2-TPR, CO2-TPD, H2 chemisorption, TGA, Raman, and XPS. From the characterization results, the catalyst activity was independent to specific surface area of catalyst and crystallite size of Ni. The amount of oxygen vacancies and weak-to-medium basic sites exhibited major roles for enhancing catalyst activity. The CeO2 and Y2O3 as reducible oxide supports not only provided abundant oxygen vacancies / basic sites, but also promoted Ni dispersion with appropriate interaction between metal and support, resulting in higher reducibility at low temperature. The reduction of catalyst at high temperature can significantly improve the performance of Ni supported on non-reducible MgO. However, the Ni/CeO2 and Ni/Y2O3 reduced at high temperature suffered from coalescence of CeO2 and Y2O3, though Ni crystallite sizes are well preserved from sintering.
Collapse
Affiliation(s)
- Sasithorn Kuhaudomlap
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Atthapon Srifa
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Wanida Koo-Amornpattana
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Choji Fukuhara
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University, Shizuoka, 432-8561, Japan
| | - Sakhon Ratchahat
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
4
|
Chen S, Fu J, Peng Y, Liang L, Ouyang J. Effective CO 2 Thermocatalytic Hydrogenation with High Coke Resistance on Ni-CZ/Attapulgite Composite. Molecules 2024; 29:4550. [PMID: 39407480 PMCID: PMC11478108 DOI: 10.3390/molecules29194550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Converting CO2 into methane is considered a promising and economically viable technology for global transportation and utilization of this greenhouse gas. This study involves the preparation of a Ni-CZ (CeO2-ZrO2)/ATP (attapulgite) catalyst through the co-precipitation and impregnation methods. XRD, SEM, TEM, N2 absorption-desorption isotherms, XPS, H2-TPR, CO2-TPD, TG/DSC, and Raman were adapted to characterize the obtained samples. Real-time GC was used to measure the catalytic performances and to intensively study the impact of Ni loading content and ATP to CZ ratio on the catalytic performance of the products. DRIFTs was used to monitor the interstitial radicals in the catalytic reactions and to deduce the catalytic mechanisms. The results indicate that the composite catalytic matrix composed of CZ assembled on ATP demonstrated higher CO2 methanation stability and better carbon deposition resistance ability than the single CZ or ATP as the carrier, which should be attributed to the improved specific surface area and pore volume of the ATP assembled matrix and the enhanced dispersibility of the CZ and Ni species. The adoption of CZ solid solutions improves the oxygen storage capability of the catalyst, thereby providing continued mobile O2- in the matrix and accelerating the molecular exchange rate in the catalytic reactions. The ideal loading quantity of nickel contents on the CZA matrix is 15%, as the CO2 conversion decreases at elevated temperatures when the Ni loading content reaches 20%. Among the tested samples, the 15Ni-0.8CZA sample showed the best catalytic performance of 75% CO2 conversion and 100% CH4 selectivity at 400 °C. After 50 h of stability tests, the CO2 conversion rate still remained 70.84%, and the CH4 selectivity obtained 97.46%. No obvious coke was detected according to the Raman spectra of the used catalyst. The in situ DRIFTS experiment showed that formate is the main intermediate of the CO2 hydrogenation reaction on the 15Ni-0.8CZA catalyst.
Collapse
Affiliation(s)
- Shumei Chen
- Hunan Key Lab of Mineral Materials and Application, Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China (J.F.)
- Engineering Research Center of Ministry of Education for Carbon Emission Reduction in Metal Resource Exploitation and Utilization, Central South University, Changsha 410083, China
| | - Jiacheng Fu
- Hunan Key Lab of Mineral Materials and Application, Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China (J.F.)
- Engineering Research Center of Ministry of Education for Carbon Emission Reduction in Metal Resource Exploitation and Utilization, Central South University, Changsha 410083, China
| | - Yonghui Peng
- Hunan Key Lab of Mineral Materials and Application, Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China (J.F.)
- Engineering Research Center of Ministry of Education for Carbon Emission Reduction in Metal Resource Exploitation and Utilization, Central South University, Changsha 410083, China
| | - Lixing Liang
- Hunan Key Lab of Mineral Materials and Application, Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China (J.F.)
- Engineering Research Center of Ministry of Education for Carbon Emission Reduction in Metal Resource Exploitation and Utilization, Central South University, Changsha 410083, China
| | - Jing Ouyang
- Hunan Key Lab of Mineral Materials and Application, Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China (J.F.)
- Engineering Research Center of Ministry of Education for Carbon Emission Reduction in Metal Resource Exploitation and Utilization, Central South University, Changsha 410083, China
| |
Collapse
|
5
|
Sun X, Yu J, Zada H, Han Y, Zhang L, Chen H, Yin W, Sun J. Reaction-induced unsaturated Mo oxycarbides afford highly active CO 2 conversion catalysts. Nat Chem 2024:10.1038/s41557-024-01628-4. [PMID: 39251842 DOI: 10.1038/s41557-024-01628-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024]
Abstract
Sustainable CO2 conversion is crucial in curbing excess emissions. Molybdenum carbide catalysts have demonstrated excellent performances for catalytic CO2 conversion, but harsh carburization syntheses and poor stabilities make studies challenging. Here an unsaturated Mo oxide (Mo17O47) shows a high activity for the reverse water-gas shift reaction, without carburization pretreatments, and remains stable for 2,000 h at 600 °C. Flame spray pyrolysis synthesis and Ir promoter facilitate the formation of Mo17O47 and its in situ carburization during reaction. The reaction-induced cubic α-MoC with unsaturated Mo oxycarbide (MoOxCy) on the surface serves as the active sites that are crucial for catalysis. Mechanistic studies indicate that the C atom in CO2 inserts itself in the vacancy between two Mo atoms, and releases CO by taking another C atom from the oxycarbide to regenerate the vacancy, following a carbon cycle pathway. The design of Mo catalysts with unsaturated oxycarbide active sites affords new territory for high-temperature applications and provides alternative pathways for CO2 conversion.
Collapse
Affiliation(s)
- Xingtao Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiafeng Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Habib Zada
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Han
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ling Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huaican Chen
- Spallation Neutron Source Science Center, Dalang, Dongguan, China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Wen Yin
- University of Chinese Academy of Sciences, Beijing, China
- Spallation Neutron Source Science Center, Dalang, Dongguan, China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Jian Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| |
Collapse
|
6
|
Dyachenko A, Ischenko O, Pryhunova O, Gaidai S, Diyuk V, Goncharuk O, Mischanchuk O, Bonarowska M, Nikiforow K, Kaszkur Z, Hołdyński M, Lisnyak VV. NiFe and CoFe nanocatalysts supported on highly dispersed alumina-silica: Structure, surface properties, and performance in CO 2 methanation. ENVIRONMENTAL RESEARCH 2024; 255:119203. [PMID: 38782347 DOI: 10.1016/j.envres.2024.119203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/12/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
The hydrogenation of CO2 to CH4 has gained considerable interest in terms of sustainable energy and environmental mitigation. In this regard, the present work aims to investigate the adsorptive concentration and CO2 methanation performance over CoFe and NiFe bimetallic catalysts supported on fumed alumina-silica SA96 support at 170-450 °C and under atmospheric pressure. The catalysts were prepared by wet impregnation method, subjected to calcination and further reduced with hydrogen, and their performance in CO2 methanation was investigated in a hydrogen-rich 2%CO2-55%H2-43%He gas mixture. In this study, we describe the crystal and mesoporous structures of the prepared catalysts by in-situ XRD and ex-situ nitrogen adsorption, evaluate the NiFe and CoFe metal surface states before and after catalysis by XPS, visualize the surface morphology by SEM, estimate the catalytic activity by gas chromatography, and investigate the adsorbed surface species, showing the presence of *HCOO/*HCO and *CO intermediates, determine two possible pathways of CH4 formation on the studied catalysts by temperature-programmed desorption mass spectrometry, and correlate the structural and surface properties with high CO2 conversions up to 100% and methanation selectivities up to 72%. The latter is related to changes in the elemental chemical states and surface composition of CoFe and NiFe nanocatalysts induced by treatment under reaction conditions, and the surface reconstruction during catalysis transfers the part of active 3d transition metals into the pores of the SA96 support. Our thorough characterization study with complementary techniques allowed us to conclude that this high activity is related to the formation of catalytically active Ni/Ni3Fe and Co/CoFeOx nanoscale crystallites under H2 reduction and their maintenance under CO2 methanation conditions. The successfully applied combination of CO2 chemisorption and thermodesorption techniques demonstrates the ability to adsorb the CO2 molecules by supported NiFe and CoFe nanocatalysts and the pure alumina-silica SA96 support.
Collapse
Affiliation(s)
- Alla Dyachenko
- Institute of Physical Chemistry, PAS, Warsaw, Poland; Chuiko Institute of Surface Chemistry, NASU, Kyiv, Ukraine
| | - Olena Ischenko
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Olha Pryhunova
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | | | - Vitaliy Diyuk
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Olena Goncharuk
- National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
| | | | | | | | | | | | | |
Collapse
|
7
|
Lucas J, Padmanabha Naveen NS, Janik MJ, Alexopoulos K, Noh G, Aireddy D, Ding K, Dorman JA, Dooley KM. Improved Selectivity and Stability in Methane Dry Reforming by Atomic Layer Deposition on Ni-CeO 2-ZrO 2/Al 2O 3 Catalysts. ACS Catal 2024; 14:9115-9133. [PMID: 38933468 PMCID: PMC11197040 DOI: 10.1021/acscatal.4c02019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Ni can be used as a catalyst for dry reforming of methane (DRM), replacing more expensive and less abundant noble metal catalysts (Pt, Pd, and Rh) with little sacrifice in activity. Ni catalysts deactivate quickly under realistic DRM conditions. Rare earth oxides such as CeO2, or as CeO2-ZrO2-Al2O3 (CZA), are supports that improve both the activity and stability of Ni DRM systems due to their redox activity. However, redox-active supports can also enhance the undesired reverse water gas shift (RWGS) reaction, reducing the hydrogen selectivity. In this work, Ni on CZA was coated with an ultrathin Al2O3 overlayer using atomic layer deposition (ALD) to study the effects of the overlayer on catalyst activity, stability, and H2/CO ratio. A low-conversion screening method revealed improved DRM activity and lower coking rate upon the addition of the Al2O3 ALD overcoat, and improvements were subsequently confirmed in a high-conversion reactor at long times onstream. The overcoated samples gave an H2/CO ratio of ∼1 at high conversion, much greater than uncoated catalysts, and no evidence of deactivation. Characterization of used (but still active) catalysts using several techniques suggests that active Ni is in formal oxidation state >0, Ni-Ce-Al is most likely present as a mixed oxide at the surface, and a nominal thickness of 0.5 nm for the Al2O3 overcoat is optimal.
Collapse
Affiliation(s)
- Jonathan Lucas
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | | | - Michael J. Janik
- Department
of Chemical Engineering, The Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| | - Konstantinos Alexopoulos
- Department
of Chemical Engineering, The Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| | - Gina Noh
- Department
of Chemical Engineering, The Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| | - Divakar Aireddy
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Kunlun Ding
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - James A. Dorman
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Kerry M. Dooley
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
8
|
Safdar M, Shezad N, Akhtar F, Arellano-García H. Development of Ni-doped A-site lanthanides-based perovskite-type oxide catalysts for CO 2 methanation by auto-combustion method. RSC Adv 2024; 14:20240-20253. [PMID: 38919281 PMCID: PMC11197019 DOI: 10.1039/d4ra02106a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Engineering the interfacial interaction between the active metal element and support material is a promising strategy for improving the performance of catalysts toward CO2 methanation. Herein, the Ni-doped rare-earth metal-based A-site substituted perovskite-type oxide catalysts (Ni/AMnO3; A = Sm, La, Nd, Ce, Pr) were synthesized by auto-combustion method, thoroughly characterized, and evaluated for CO2 methanation reaction. The XRD analysis confirmed the perovskite structure and the formation of nano-size particles with crystallite sizes ranging from 18 to 47 nm. The Ni/CeMnO3 catalyst exhibited a higher CO2 conversion rate of 6.6 × 10-5 molCO2 gcat -1 s-1 and high selectivity towards CH4 formation due to the surface composition of the active sites and capability to activate CO2 molecules under redox property adopted associative and dissociative mechanisms. The higher activity of the catalyst could be attributed to the strong metal-support interface, available active sites, surface basicity, and higher surface area. XRD analysis of spent catalysts showed enlarged crystallite size, indicating particle aggregation during the reaction; nevertheless, the cerium-containing catalyst displayed the least increase, demonstrating resilience, structural stability, and potential for CO2 methanation reaction.
Collapse
Affiliation(s)
- Muddasar Safdar
- Department of Process and Plant Technology, Brandenburg University of Technology (BTU) Cottbus-Senftenberg Platz der Deutschen 1 03046 Cottbus Germany
- Department of Chemical Engineering Technology, Government College University Faisalabad: GCUF Allama Iqbal Road Faisalabad Punjab 38000 Pakistan
| | - Nasir Shezad
- Department of Engineering Science and Mathematics, Division of Materials Science, Luleå University of Technology 97187 Luleå Sweden
| | - Farid Akhtar
- Department of Engineering Science and Mathematics, Division of Materials Science, Luleå University of Technology 97187 Luleå Sweden
| | - Harvey Arellano-García
- Department of Process and Plant Technology, Brandenburg University of Technology (BTU) Cottbus-Senftenberg Platz der Deutschen 1 03046 Cottbus Germany
| |
Collapse
|
9
|
Sun S, Higham MD, Zhang X, Catlow CRA. Multiscale Investigation of the Mechanism and Selectivity of CO 2 Hydrogenation over Rh(111). ACS Catal 2024; 14:5503-5519. [PMID: 38660604 PMCID: PMC11036393 DOI: 10.1021/acscatal.3c05939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/26/2024]
Abstract
CO2 hydrogenation over Rh catalysts comprises multiple reaction pathways, presenting a wide range of possible intermediates and end products, with selectivity toward either CO or methane being of particular interest. We investigate in detail the reaction mechanism of CO2 hydrogenation to the single-carbon (C1) products on the Rh(111) facet by performing periodic density functional theory (DFT) calculations and kinetic Monte Carlo (kMC) simulations, which account for the adsorbate interactions through a cluster expansion approach. We observe that Rh readily facilitates the dissociation of hydrogen, thus contributing to the subsequent hydrogenation processes. The reverse water-gas shift (RWGS) reaction occurs via three different reaction pathways, with CO hydrogenation to the COH intermediate being a key step for CO2 methanation. The effects of temperature, pressure, and the composition ratio of the gas reactant feed are considered. Temperature plays a pivotal role in determining the surface coverage and adsorbate composition, with competitive adsorption between CO and H species influencing the product distribution. The observed adlayer configurations indicate that the adsorbed CO species are separated by adsorbed H atoms, with a high ratio of H to CO coverage on the Rh(111) surface being essential to promote CO2 methanation.
Collapse
Affiliation(s)
- Shijia Sun
- Kathleen
Lonsdale Materials Chemistry, Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Michael D. Higham
- Kathleen
Lonsdale Materials Chemistry, Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
- Research
Complex at Harwell, Rutherford Appleton
Laboratory, Harwell, Oxon OX11 0FA, United Kingdom
| | - Xingfan Zhang
- Kathleen
Lonsdale Materials Chemistry, Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - C. Richard A. Catlow
- Kathleen
Lonsdale Materials Chemistry, Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
- Research
Complex at Harwell, Rutherford Appleton
Laboratory, Harwell, Oxon OX11 0FA, United Kingdom
- School
of Chemistry, Cardiff University, Park Place, Cardiff CF10 1AT, United
Kingdom
| |
Collapse
|
10
|
Zang Y, Zhang Z, Qu J, Gao F, Gu J, Wei T, Lin X. K-guided selective regulation mechanism for CO 2 hydrogenation over Ni/CeO 2 catalyst. J Colloid Interface Sci 2024; 658:167-178. [PMID: 38100973 DOI: 10.1016/j.jcis.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/01/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Regulating the selectivity between CO and CH4 during CO2 hydrogenation is a challenging research topic. Previous research has indicated that potassium (K) modification can adjust the product selectivity by regulating the adsorption strength of formate/CO* intermediates. Going beyond the regulation mechanism described above, this study proposes a K-guided selectivity control method based on the regulation of key intermediates HCO*/H3CO* for Ni catalysts supported on reducible carrier CeO2. By incorporating K, the CO selectivity of CO2 hydrogenation shifts from around 25.4% for Ni/CeO2 to approximately 93.8% for Ni/CeO2-K. This can be attributed to K modification causes electron aggregation in the bonding regions of HCO* and H3CO* intermediates, thus enhancing their adsorption strength. Consequently, the reaction pathway from HCO*/H3CO* to CH4 is limited, favoring the decomposition of formates to CO products. Moreover, the addition of K leads to a moderate decrease in CO2 conversion from 55.2% to 48.6%, which still surpasses values reported in most other studies. This reduction is associated with a decline in reducible Ni species and oxygen vacancy concentration in Ni/CeO2-K. As a result, the adsorption capacity for CO2 and H2 reduces, ultimately reducing CO2 hydrogenation activity.
Collapse
Affiliation(s)
- Yunhao Zang
- Dongguan Key Laboratory of Low-Carbon Recycling and Utilization, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Ziyi Zhang
- Dongguan Key Laboratory of Low-Carbon Recycling and Utilization, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Jiangying Qu
- Dongguan Key Laboratory of Low-Carbon Recycling and Utilization, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, PR China.
| | - Feng Gao
- Dongguan Key Laboratory of Low-Carbon Recycling and Utilization, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, PR China.
| | - Jianfeng Gu
- Dongguan Key Laboratory of Low-Carbon Recycling and Utilization, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Taipeng Wei
- Dongguan Key Laboratory of Low-Carbon Recycling and Utilization, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Xuetan Lin
- Dongguan Key Laboratory of Low-Carbon Recycling and Utilization, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| |
Collapse
|
11
|
Zhang T, Zheng P, Gao J, Han Z, Gu F, Xu W, Li L, Zhu T, Zhong Z, Xu G, Su F. Single-Atom Ru Alloyed with Ni Nanoparticles Boosts CO 2 Methanation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308193. [PMID: 37953460 DOI: 10.1002/smll.202308193] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/23/2023] [Indexed: 11/14/2023]
Abstract
Designing catalysts to proceed with catalytic reactions along the desired reaction pathways, e.g., CO2 methanation, has received much attention but remains a huge challenge. This work reports one Ru1Ni single-atom alloy (SAA) catalyst (Ru1Ni/SiO2) prepared via a galvanic replacement reaction between RuCl3 and Ni nanoparticles (NPs) derived from the reduction of Ni phyllosilicate (Ni-ph). Ru1Ni/SiO2 achieved much improved selectivity toward hydrogenation of CO2 to CH4 and catalytic activity (Turnover frequency (TOF) value: 40.00 × 10-3 s-1), much higher than those of Ni/SiO2 (TOF value: 4.40 × 10-3 s-1) and most reported Ni-based catalysts (TOF value: 1.03 × 10-3-11.00 × 10-3 s-1). Experimental studies verify that Ru single atoms are anchored onto the Ni NPs surface via the Ru1-Ni coordination accompanied by electron transfer from Ru1 to Ni. Both in situ experiments and theoretical calculations confirm that the interface sites of Ru1Ni-SAA are the intrinsic active sites, which promote the direct dissociation of CO2 and lower the energy barrier for the hydrogenation of CO* intermediate, thereby directing and enhancing the CO2 hydrogenation to CH4.
Collapse
Affiliation(s)
- Tengfei Zhang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peng Zheng
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Jiajian Gao
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology, and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Zhennan Han
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Fangna Gu
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, P. R. China
| | - Wenqing Xu
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Tingyu Zhu
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ziyi Zhong
- Department of Chemical Engineering, Guangdong Technion Israel Institute of Technology (GTIIT), and Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), 241 Daxue Road, Shantou, 515063, P. R. China
| | - Guangwen Xu
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
- Institute of Industrial Chemistry and Energy Technology, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Fabing Su
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Institute of Industrial Chemistry and Energy Technology, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| |
Collapse
|
12
|
Chen H, Brubach JB, Tran NH, Robinson AL, Romdhane FB, Frégnaux M, Penas-Hidalgo F, Solé-Daura A, Mialane P, Fontecave M, Dolbecq A, Mellot-Draznieks C. Zr-Based MOF-545 Metal-Organic Framework Loaded with Highly Dispersed Small Size Ni Nanoparticles for CO 2 Methanation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38415586 DOI: 10.1021/acsami.3c18154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
We report the use of Zr-based metal-organic frameworks (MOFs) MOF-545 and MOF-545(Cu) as supports to prepare catalysts with uniformly and highly dispersed Ni nanoparticles (NPs) for CO2 hydrogenation into CH4. In the first step, we studied the MOF support under catalytic conditions using operando diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, ex situ characterizations (PXRD, XPS, TEM, and EDX-element mapping), and DFT calculations. We showed that the high-temperature conditions undoubtedly confer a potential for catalytic functionality to the solids toward CH4 production, while no role of the Cu could be evidenced. The MOF was shown to be transformed into a catalytically active material, amorphized but still structured with dehydroxylated Zr-oxoclusters, in line with DFT calculations. In the second step, Ni@MOF-545 catalysts were prepared using either impregnation (IM) or double solvent (DS) methods, followed by a dry reduction (R) route under H2 to immobilize Ni NPs. The highest catalytic activity was obtained with the Ni@MOF-545 DS R catalyst (595 mmolCH4 gNi-1 h-1) with 100% CH4 selectivity and 60% CO2 conversion after ∼3 h. The higher catalytic activity of Ni@MOF-545 DS R is a result of much smaller (∼5 nm) and better dispersed Ni NPs than in the IM sample (20-40 nm), the latter exhibiting sintering. The advantages of the encapsulation of Ni NPs by the DS method and of the use of a MOF-545-based support are discussed, highlighting the interest of designing yet-unexplored Zr-based MOFs loaded with Ni NPs for CO2 hydrogenation.
Collapse
Affiliation(s)
- Hongmei Chen
- Laboratoire de Chimie des Processus Biologiques (LCPB), CNRS UMR 8229, Collège de France, PSL University, Sorbonne Université, Paris 75231, France
| | - Jean-Blaise Brubach
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, Saint-Aubin 91190, France
| | - Ngoc-Huan Tran
- Laboratoire de Chimie des Processus Biologiques (LCPB), CNRS UMR 8229, Collège de France, PSL University, Sorbonne Université, Paris 75231, France
| | - Amanda L Robinson
- Laboratoire de Chimie des Processus Biologiques (LCPB), CNRS UMR 8229, Collège de France, PSL University, Sorbonne Université, Paris 75231, France
- Institut Lavoisier de Versailles, UVSQ, CNRS UMR 8180, Université Paris-Saclay, Versailles 78000, France
| | - Ferdaous Ben Romdhane
- Fédération de Chimie et Matériaux de Paris-Centre (FCMat), 4 Place Jussieu, Paris 75005, France
| | - Mathieu Frégnaux
- Institut Lavoisier de Versailles, UVSQ, CNRS UMR 8180, Université Paris-Saclay, Versailles 78000, France
| | - Francesc Penas-Hidalgo
- Laboratoire de Chimie des Processus Biologiques (LCPB), CNRS UMR 8229, Collège de France, PSL University, Sorbonne Université, Paris 75231, France
| | - Albert Solé-Daura
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, Tarragona 43007, Spain
| | - Pierre Mialane
- Institut Lavoisier de Versailles, UVSQ, CNRS UMR 8180, Université Paris-Saclay, Versailles 78000, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques (LCPB), CNRS UMR 8229, Collège de France, PSL University, Sorbonne Université, Paris 75231, France
| | - Anne Dolbecq
- Institut Lavoisier de Versailles, UVSQ, CNRS UMR 8180, Université Paris-Saclay, Versailles 78000, France
| | - Caroline Mellot-Draznieks
- Laboratoire de Chimie des Processus Biologiques (LCPB), CNRS UMR 8229, Collège de France, PSL University, Sorbonne Université, Paris 75231, France
- Institut Lavoisier de Versailles, UVSQ, CNRS UMR 8180, Université Paris-Saclay, Versailles 78000, France
| |
Collapse
|
13
|
Abahussain AM, Al-Fatesh AS, Rajput Y, Osman AI, Alreshaidan SB, Ahmed H, Fakeeha AH, Al-Awadi AS, El-Salamony RA, Kumar R. Impact of Sr Addition on Zirconia-Alumina-Supported Ni Catalyst for CO x-Free CH 4 Production via CO 2 Methanation. ACS OMEGA 2024; 9:9309-9320. [PMID: 38434824 PMCID: PMC10905718 DOI: 10.1021/acsomega.3c08536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 03/05/2024]
Abstract
Zirconia-alumina-supported Ni (5Ni/10ZrO2+Al2O3) and Sr-promoted 5Ni/10ZrO2+Al2O3 are prepared, tested for carbon dioxide (CO2) methanation at 400 °C, and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, surface area and porosity, infrared spectroscopy, and temperature-programmed reduction/desorption techniques. The CO2 methanation is found to depend on the dispersion of Nickel (Ni) sites as well as the extent of stabilization of CO2-interacted species. The Ni active sites are mainly derived from the reduction of 'moderately interacted NiO species'. The dispersion of Ni over 1 wt % Sr-promoted 5Ni/10ZrO2+Al2O3 is 1.38 times that of the unpromoted catalyst, and it attains 72.5% CO2 conversion (against 65% over the unpromoted catalyst). However, increasing strontium (Sr) loading to 2 wt % does not affect the Ni dispersion much, but the concentration of strong basic sites is increased, which achieves 80.6% CO2 conversion. The 5Ni4Sr/10ZrO2+Al2O3 catalyst has the highest density of strong basic sites and the highest concentration of active sites with maximum Ni dispersion. This catalyst displays exceptional performance and achieves approximately 80% CO2 conversion and 70% methane (CH4) yield for up to 25 h on steam. The unique acidic-basic profiles composed of strong basic and moderate acid sites facilitate the sequential hydrogenation of formate species in the COx-free CH4 route.
Collapse
Affiliation(s)
- Abdulaziz
A. M. Abahussain
- Chemical
Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Ahmed S. Al-Fatesh
- Chemical
Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | | | - Ahmed I. Osman
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, Belfast, Northern Ireland BT9 5AG, U.K.
| | - Salwa B. Alreshaidan
- Chemical
Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Hamid Ahmed
- Chemical
Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Anis H. Fakeeha
- Chemical
Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Abdulrhman S. Al-Awadi
- Chemical
Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Radwa A. El-Salamony
- Process
Development Department, Egyptian Petroleum
Research Institute (EPRI), Cairo 11727, Egypt
| | - Rawesh Kumar
- Department
of Chemistry, Indus University, Ahmedabad, Gujarat 382115, India
| |
Collapse
|
14
|
Cui Y, He S, Yang J, Gao R, Hu K, Chen X, Xu L, Deng C, Lin C, Peng S, Zhang C. Research Progress of Non-Noble Metal Catalysts for Carbon Dioxide Methanation. Molecules 2024; 29:374. [PMID: 38257287 PMCID: PMC10821115 DOI: 10.3390/molecules29020374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The extensive utilization of fossil fuels has led to a rapid increase in atmospheric CO2 concentration, resulting in various environmental issues. To reduce reliance on fossil fuels and mitigate CO2 emissions, it is important to explore alternative methods of utilizing CO2 and H2 as raw materials to obtain high-value-added chemicals or fuels. One such method is CO2 methanation, which converts CO2 and H2 into methane (CH4), a valuable fuel and raw material for other chemicals. However, CO2 methanation faces challenges in terms of kinetics and thermodynamics. The reaction rate, CO2 conversion, and CH4 yield need to be improved to make the process more efficient. To overcome these challenges, the development of suitable catalysts is essential. Non-noble metal catalysts have gained significant attention due to their high catalytic activity and relatively low cost. In this paper, the thermodynamics and kinetics of the CO2 methanation reaction are discussed. The focus is primarily on reviewing Ni-based, Co-based, and other commonly used catalysts such as Fe-based. The effects of catalyst supports, preparation methods, and promoters on the catalytic performance of the methanation reaction are highlighted. Additionally, the paper summarizes the impact of reaction conditions such as temperature, pressure, space velocity, and H2/CO2 ratio on the catalyst performance. The mechanism of CO2 methanation is also summarized to provide a comprehensive understanding of the process. The objective of this paper is to deepen the understanding of non-noble metal catalysts in CO2 methanation reactions and provide insights for improving catalyst performance. By addressing the limitations of CO2 methanation and exploring the factors influencing catalyst effectiveness, researchers can develop more efficient and cost-effective catalysts for this reaction.
Collapse
Affiliation(s)
- Yingchao Cui
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.C.); (S.H.); (C.L.); (S.P.)
| | - Shunyu He
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.C.); (S.H.); (C.L.); (S.P.)
| | - Jun Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (K.H.); (X.C.); (L.X.); (C.D.)
| | - Ruxing Gao
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.C.); (S.H.); (C.L.); (S.P.)
| | - Kehao Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (K.H.); (X.C.); (L.X.); (C.D.)
| | - Xixi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (K.H.); (X.C.); (L.X.); (C.D.)
| | - Lujing Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (K.H.); (X.C.); (L.X.); (C.D.)
| | - Chao Deng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (K.H.); (X.C.); (L.X.); (C.D.)
| | - Congji Lin
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.C.); (S.H.); (C.L.); (S.P.)
| | - Shuai Peng
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.C.); (S.H.); (C.L.); (S.P.)
| | - Chundong Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (K.H.); (X.C.); (L.X.); (C.D.)
| |
Collapse
|
15
|
Zou X, Meng Y, Liu J, Cao Y, Cui L, Shen Z, Xia Q, Li X, Zhang S, Ge Z, Pan Y, Wang Y. Niobium Modification of CeO 2 Tuning Electron Density of Nickel-Ceria Interfacial Sites for Enhanced CO 2 Methanation. Inorg Chem 2024; 63:881-890. [PMID: 38130105 DOI: 10.1021/acs.inorgchem.3c03881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
CO2 methanation has attracted considerable attention as a promising strategy for recycling CO2 and generating valuable methane. This study presents a niobium-doped CeO2-supported Ni catalyst (Ni/NbCe), which demonstrates remarkable performance in terms of CO2 conversion and CH4 selectivity, even when operating at a low temperature of 250 °C. Structural analysis reveals the incorporation of Nb species into the CeO2 lattice, resulting in the formation of a Nb-Ce-O solid solution. Compared with the Ni/CeO2 catalyst, this solid solution demonstrates an improved spatial distribution. To comprehend the impact of the Nb-Ce-O solid solution on refining the electronic properties of the Ni-Ce interfacial sites, facilitating H2 activation, and accelerating the hydrogenation of CO2* into HCOO*, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis and density functional theory (DFT) calculations were conducted. These investigations shed light on the mechanism through which the activity of CO2 methanation is enhanced, which differs from the commonly observed CO* pathway triggered by oxygen vacancies (OV). Consequently, this study provides a comprehensive understanding of the intricate interplay between the electronic properties of the catalyst's active sites and the reaction pathway in CO2 methanation over Ni-based catalysts.
Collapse
Affiliation(s)
- Xuhui Zou
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuxiao Meng
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Jianqiao Liu
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yongyong Cao
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Lifeng Cui
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhangfeng Shen
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Qineng Xia
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Xi Li
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Siqian Zhang
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Zhigang Ge
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yunxiang Pan
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yangang Wang
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
16
|
Villora-Picó JJ, González-Arias J, Pastor-Pérez L, Odriozola JA, Reina TR. A review on high-pressure heterogeneous catalytic processes for gas-phase CO 2 valorization. ENVIRONMENTAL RESEARCH 2024; 240:117520. [PMID: 37923108 DOI: 10.1016/j.envres.2023.117520] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
This review discusses the importance of mitigating CO2 emissions by valorizing CO2 through high-pressure catalytic processes. It focuses on various key processes, including CO2 methanation, reverse water-gas shift, methane dry reforming, methanol, and dimethyl ether synthesis, emphasizing pros and cons of high-pressure operation. CO2 methanation, methanol synthesis, and dimethyl ether synthesis reactions are thermodynamically favored under high-pressure conditions. However, in the case of methane dry reforming and reverse water-gas shift, applying high pressure, results in decreased selectivity toward desired products and an increase in coke production, which can be detrimental to both the catalyst and the reaction system. Nevertheless, high-pressure utilization proves industrially advantageous for cost reduction when these processes are integrated with Fischer-Tropsch or methanol synthesis units. This review also compiles recent advances in heterogeneous catalysts design for high-pressure applications. By examining the impact of pressure on CO2 valorization and the state of the art, this work contributes to improving scientific understanding and optimizing these processes for sustainable CO2 management, as well as addressing challenges in high-pressure CO2 valorization that are crucial for industrial scaling-up. This includes the development of cost-effective and robust reactor materials and the development of low-cost catalysts that yield improved selectivity and long-term stability under realistic working environments.
Collapse
Affiliation(s)
- J J Villora-Picó
- Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, Seville, Spain.
| | - J González-Arias
- Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, Seville, Spain
| | - L Pastor-Pérez
- Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, Seville, Spain
| | - J A Odriozola
- Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, Seville, Spain
| | - T R Reina
- Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, Seville, Spain
| |
Collapse
|
17
|
Wang J, Wang T, Xi Y, Gao G, Sun P, Li F. In-Situ-Formed Potassium-Modified Nickel-Zinc Carbide Boosts Production of Higher Alcohols beyond CH 4 in CO 2 Hydrogenation. Angew Chem Int Ed Engl 2023; 62:e202311335. [PMID: 37646093 DOI: 10.1002/anie.202311335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023]
Abstract
Ni-based catalysts have been widely studied in the hydrogenation of CO2 to CH4 , but selective and efficient synthesis of higher alcohols (C2+ OH) from CO2 hydrogenation over Ni-based catalyst is still challenging due to successive hydrogenation of C1 intermediates leading to methanation. Herein, we report an unprecedented synthesis of C2+ OH from CO2 hydrogenation over K-modified Ni-Zn bimetal catalyst with promising activity and selectivity. Systematic experiments (including XRD, in situ spectroscopic characterization) and computational studies reveal the in situ generation of an active K-modified Ni-Zn carbide (K-Ni3 Zn1 C0.7 ) by carburization of Zn-incorporated Ni0 , which can significantly enhance CO2 adsorption and the surface coverage of alkyl intermediates, and boost the C-C coupling to C2+ OH rather than conventional CH4 . This work opens a new catalytic avenue toward CO2 hydrogenation to C2+ OH, and also provides an insightful example for the rational design of selective and efficient Ni-based catalysts for CO2 hydrogenation to multiple carbon products.
Collapse
Affiliation(s)
- Jia Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Tingting Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yongjie Xi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Guang Gao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Peng Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Fuwei Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
18
|
Aristizábal-Alzate CE, Dongil AB, Romero-Sáez M. Coffee Pulp Gasification for Syngas Obtention and Methane Production Simulation Using Ni Catalysts Supported on Al 2O 3 and ZrO 2 in a Packed Bed Reactor. Molecules 2023; 28:7026. [PMID: 37894505 PMCID: PMC10609619 DOI: 10.3390/molecules28207026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/28/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
The methanation of CO2 is of great interest in power-to-gas systems and contributes to the mitigation of climate change through carbon dioxide capture and the subsequent production of high-added-value products. This study investigated CO2 methanation with three Ni catalysts supported on Al2O3 and ZrO2, which were simulated using a mathematical model of a packed bed reactor designed based on their chemical kinetics reported in the literature. The simulated reactive system was fed with syngas obtained from residual coffee pulp obtained after a solvent phytochemical extraction process under several gasification conditions. The results reflect a high degree of influence of the catalyst support, preparation method, and syngas composition on CO2 and H2 conversions and CH4 selectivity. For all the syngas compositions, the Ni/ZrO2 catalysts showed the best values for CO2 conversion and H2 conversion for the Ni/Al2O3 catalyst except in gasification at 700 °C and using the Ni/ZrO2p catalyst.
Collapse
Affiliation(s)
- Carlos Esteban Aristizábal-Alzate
- Grupo Química Básica, Aplicada y Ambiente—Alquimia, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano—ITM, Medellín 050034, Colombia;
| | - Ana Belén Dongil
- Instituto de Catálisis y Petroleoquímica, CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Manuel Romero-Sáez
- Grupo Química Básica, Aplicada y Ambiente—Alquimia, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano—ITM, Medellín 050034, Colombia;
| |
Collapse
|
19
|
Bao S, Liu T, Fu H, Xu Z, Qu X, Zheng S, Zhu D. Ni 12P 5 Confined in Mesoporous SiO 2 with Near-Unity CO Selectivity and Enhanced Catalytic Activity for CO 2 Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45949-45959. [PMID: 37748196 DOI: 10.1021/acsami.3c12413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
CO2 hydrogenation via the reverse water gas shift (RWGS) reaction is a promising strategy for CO2 utilization while constructing Ni-based catalysts with high catalytic activity and perfect CO selectivity remains a great challenging. Here, we demonstrate that the product selectivity for CO2 hydrogenation can be significantly tuned from CH4 to CO by phosphating of SiO2-supported Ni catalysts due to the geometric effect. Interestingly, nickel phosphide catalysts with different crystalline phases (Ni12P5 and Ni2P) differ sharply in CO2 conversion, and Ni12P5 is remarkably more active. Furthermore, we developed a facile strategy to confine small Ni12P5 nanoparticles in mesoporous SiO2 channels (Ni12P5@SBA-15). Enhanced activity is exhibited on Ni12P5@SBA-15, ascribed to the highly effective confinement effect. The in situ diffuse reflectance infrared Fourier transform spectroscopy and density functional theory calculations unveil that catalytic CO2 hydrogenation follows a direct CO2 dissociation route with adsorbed CO as the key intermediate. Notably, strong multibonded CO (threefold and bridge-bonded CO) is feasibly formed on the Ni catalyst accounting for CH4 as the dominant product whereas only weak linearly bonded CO exists on nickel phosphide catalysts resulting in almost 100% CO selectivity. The present results indicate that Ni12P5@SBA-15 combining the geometric effect and the confinement effect can achieve near-unity CO selectivity and enhanced activity for CO2 hydrogenation.
Collapse
Affiliation(s)
- Shidong Bao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Tao Liu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhaoyi Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shourong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Dongqiang Zhu
- School of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
Khandelwal K, Boahene P, Nanda S, Dalai AK. A Review of the Design and Performance of Catalysts for Hydrothermal Gasification of Biomass to Produce Hydrogen-Rich Gas Fuel. Molecules 2023; 28:5137. [PMID: 37446799 DOI: 10.3390/molecules28135137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Supercritical water gasification has emerged as a promising technology to sustainably convert waste residues into clean gaseous fuels rich in combustible gases such as hydrogen and methane. The composition and yield of gases from hydrothermal gasification depend on process conditions such as temperature, pressure, reaction time, feedstock concentration, and reactor geometry. However, catalysts also play a vital role in enhancing the gasification reactions and selectively altering the composition of gas products. Catalysts can also enhance hydrothermal reforming and cracking of biomass to achieve desired gas yields at moderate temperatures, thereby reducing the energy input of the hydrothermal gasification process. However, due to the complex hydrodynamics of supercritical water, the literature is limited regarding the synthesis, application, and performance of catalysts used in hydrothermal gasification. Hence, this review provides a detailed discussion of different heterogeneous catalysts (e.g., metal oxides and transition metals), homogeneous catalysts (e.g., hydroxides and carbonates), and novel carbonaceous catalysts deployed in hydrothermal gasification. The article also summarizes the advantages, disadvantages, and performance of these catalysts in accelerating specific reactions during hydrothermal gasification of biomass, such as water-gas shift, methanation, hydrogenation, reforming, hydrolysis, cracking, bond cleavage, and depolymerization. Different reaction mechanisms involving a variety of catalysts during the hydrothermal gasification of biomass are outlined. The article also highlights recent advancements with recommendations for catalytic supercritical water gasification of biomass and its model compounds, and it evaluates process viability and feasibility for commercialization.
Collapse
Affiliation(s)
- Kapil Khandelwal
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Philip Boahene
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Sonil Nanda
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Ajay K Dalai
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
21
|
Varvoutis G, Lampropoulos A, Oikonomou P, Andreouli CD, Stathopoulos V, Lykaki M, Marnellos GE, Konsolakis M. Fabrication of highly active and stable Ni/CeO2-nanorods wash-coated on ceramic NZP structured catalysts for scaled-up CO2 methanation. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2023.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
22
|
Pan Y, Han X, Chang X, Zhang H, Zi X, Hao Z, Chen J, Lin Z, Li M, Ma X. Enhanced Low-Temperature CO 2 Methanation over Bimetallic Ni–Ru Catalysts. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Yutong Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, Haihe Laboratory of Sustainable Chemical Transformations, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiaoyu Han
- International Campus of Tianjin University, Joint School of National University of Singapore and Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Xiao Chang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Haihe Laboratory of Sustainable Chemical Transformations, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Heng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Haihe Laboratory of Sustainable Chemical Transformations, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiaohui Zi
- Key Laboratory for Green Chemical Technology of Ministry of Education, Haihe Laboratory of Sustainable Chemical Transformations, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Ziwen Hao
- International Campus of Tianjin University, Joint School of National University of Singapore and Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Jiyi Chen
- International Campus of Tianjin University, Joint School of National University of Singapore and Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Ziji Lin
- Key Laboratory for Green Chemical Technology of Ministry of Education, Haihe Laboratory of Sustainable Chemical Transformations, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Maoshuai Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, Haihe Laboratory of Sustainable Chemical Transformations, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- International Campus of Tianjin University, Joint School of National University of Singapore and Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Haihe Laboratory of Sustainable Chemical Transformations, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- International Campus of Tianjin University, Joint School of National University of Singapore and Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
23
|
Fu H, Sun S, Lian H. Enhanced low-temperature CO2 methanation over Ni/ ZrO2-Al2O3 catalyst: Effect of Al addition on catalytic performance and reaction mechanism. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2023.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
24
|
CO2 Methanation over Nickel Catalysts: Support Effects Investigated through Specific Activity and Operando IR Spectroscopy Measurements. Catalysts 2023. [DOI: 10.3390/catal13020448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Renewed interest in CO2 methanation is due to its role within the framework of the Power-to-Methane processes. While the use of nickel-based catalysts for CO2 methanation is well stablished, the support is being subjected to thorough research due to its complex effects. The objective of this work was the study of the influence of the support with a series of catalysts supported on alumina, ceria, ceria–zirconia, and titania. Catalysts’ performance has been kinetically and spectroscopically evaluated over a wide range of temperatures (150–500 °C). The main results have shown remarkable differences among the catalysts as concerns Ni dispersion, metallic precursor reducibility, basic properties, and catalytic activity. Operando infrared spectroscopy measurements have evidenced the presence of almost the same type of adsorbed species during the course of the reaction, but with different relative intensities. The results indicate that using as support of Ni a reducible metal oxide that is capable of developing the basicity associated with medium-strength basic sites and a suitable balance between metallic sites and centers linked to the support leads to high CO2 methanation activity. In addition, the results obtained by operando FTIR spectroscopy suggest that CO2 methanation follows the formate pathway over the catalysts under consideration.
Collapse
|
25
|
Reddy KP, Kim D, Hong S, Kim KJ, Ryoo R, Park JY. Tuning CO 2 Hydrogenation Selectivity through Reaction-Driven Restructuring on Cu-Ni Bimetal Catalysts. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9373-9381. [PMID: 36763569 DOI: 10.1021/acsami.2c20832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Tuning the selectivity of CO2 hydrogenation is of significant scientific interest, especially using nickel-based catalysts. Fundamental insights into CO2 hydrogenation on Ni-based catalysts demonstrate that CO is a primary intermediate, and product selectivity is strongly dependent on the oxidation state of Ni. Therefore, modifying the electronic structure of the nickel surface is a compelling strategy for tuning product selectivity. Herein, we synthesized well dispersed Cu-Ni bimetallic nanoparticles (NPs) using a simple hydrothermal method for CO selective CO2 hydrogenation. A detailed study on the monometallic (Ni and Cu) and bimetallic (CuxNi1-x) catalysts supported on γ-Al2O3 was performed to increase CO selectivity while maintaining the high reaction rate. The Cu0.5Ni0.5/γ-Al2O3 catalyst shows a high CO2 conversion and more CO product selectivity than its monometallic counterparts. The surface electronic and geometric structure of Cu0.5Ni0.5 bimetallic NPs was studied using ambient pressure X-ray photoelectron spectroscopy (AP-XPS) and in situ diffuse reflectance infrared Fourier-transform spectroscopy under reaction conditions. The Cu core atoms migrate toward the surface, resulting in the restructuring of the Cu@Ni core-shell structure to a Cu-Ni alloy during the reaction and functioning as the active site by enhancing CO desorption. A systematic correlation is obtained between catalytic activity from a continuous fixed-bed flow reactor and the surface electronic structural details derived from AP-XPS results, establishing the structure-activity relationship. This investigation contributes to providing a strategy for controlling CO2 hydrogenation selectivity by modifying the surface structure of bimetallic NP catalysts.
Collapse
Affiliation(s)
- Kasala Prabhakar Reddy
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Daeho Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seunghwa Hong
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ki-Jeong Kim
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang 37673, Republic of Korea
| | - Ryong Ryoo
- KENTECH Laboratory for Chemical, Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksinro, Naju 58330, Republic of Korea
| | - Jeong Young Park
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
26
|
Visser NL, Verschoor JC, Smulders LC, Mattarozzi F, Morgan DJ, Meeldijk JD, van der Hoeven JE, Stewart JA, Vandegehuchte BD, de Jongh PE. Influence of Carbon Support Surface Modification on the Performance of Nickel Catalysts in Carbon Dioxide Hydrogenation. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
27
|
Ghosh S, Ourlin T, Fazzini PF, Lacroix LM, Tricard S, Esvan J, Cayez S, Chaudret B. Magnetically Induced CO 2 Methanation In Continuous Flow Over Supported Nickel Catalysts with Improved Energy Efficiency. CHEMSUSCHEM 2023; 16:e202201724. [PMID: 36379873 DOI: 10.1002/cssc.202201724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/21/2022] [Indexed: 06/16/2023]
Abstract
A new selective and efficient catalytic system for magnetically induced catalytic CO2 methanation was developed, composed of an abundant iron-based heating agent, namely a commercial iron wool, combined with supported Nickel nanoparticles (Ni NPs) as catalysts. The effect of metal oxide support was evaluated by preparing different 10 wt % Ni catalyst (TiO2 , ZrO2 , CeO2 , and CeZrO2 ) via organometallic decomposition route. As-prepared catalysts were thoroughly characterized using powder X-ray diffraction, electron microscopy, elemental analysis, vibrating sample magnetometer, and X-ray photoelectron spectroscopy techniques. High conversion and selectivity toward methane were observed at mid-temperature range, hence improving energy efficiency of the process with respect to the previous results under magnetic heating conditions. To gain further insight into the catalytic system, the effects of the synthesis method and of 0.5 wt % Ru doping were evaluated. Finally, the dynamic nature of magnetically induced heating was demonstrated through fast stop-and-go experiments, proving the suitability of this technology for the storage of intermittent renewable energy through P2G process.
Collapse
Affiliation(s)
- Sourav Ghosh
- LPCNO (Laboratoire de Physique et Chimie des Nano-Objets), Université de Toulouse, CNRS, INSA, UPS, 31077, Toulouse, France
| | - Thibault Ourlin
- LPCNO (Laboratoire de Physique et Chimie des Nano-Objets), Université de Toulouse, CNRS, INSA, UPS, 31077, Toulouse, France
| | - Pier-Francesco Fazzini
- LPCNO (Laboratoire de Physique et Chimie des Nano-Objets), Université de Toulouse, CNRS, INSA, UPS, 31077, Toulouse, France
| | - Lise-Marie Lacroix
- LPCNO (Laboratoire de Physique et Chimie des Nano-Objets), Université de Toulouse, CNRS, INSA, UPS, 31077, Toulouse, France
| | - Simon Tricard
- LPCNO (Laboratoire de Physique et Chimie des Nano-Objets), Université de Toulouse, CNRS, INSA, UPS, 31077, Toulouse, France
| | - Jerome Esvan
- CIRIMAT-ENSIACET, INP-ENSIACET, 4 allée Emile Monso, BP 44362, 31030, Toulouse cedex 4, France
| | - Simon Cayez
- LPCNO (Laboratoire de Physique et Chimie des Nano-Objets), Université de Toulouse, CNRS, INSA, UPS, 31077, Toulouse, France
| | - Bruno Chaudret
- LPCNO (Laboratoire de Physique et Chimie des Nano-Objets), Université de Toulouse, CNRS, INSA, UPS, 31077, Toulouse, France
| |
Collapse
|
28
|
Methanation of CO2 over High Surface Nickel/Aluminates Compounds Prepared by a Self-Generated Carbon Template. Catalysts 2023. [DOI: 10.3390/catal13010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Catalytic gas-phase hydrogenation of CO2 into CH4 was tested under three different nickel/aluminate catalysts obtained from precursors of hexaaluminate composition (MAl16O19, M = Mg, Ca, Ba). These catalysts were prepared using a carbon template method, where carbon is self-generated from a sol-gel that contains an excess of citric acid and the Al and M salts (Ba2+, Ca2+, Mg2+) by two-step calcination in an inert/oxidizing atmosphere. This procedure yielded Ni particles decorating the surface of a porous high surface area matrix, which presents a typical XRD pattern of aluminate structure. Ni particles are obtained with a homogeneous distribution over the surface and an average diameter of ca 25–30 nm. Obtained materials exhibit a high conversion of CO2 below 500 °C, yielding CH4 as a final product with selectivity >95%. The observed trend with the alkaline earth cation follows the order NiBaAlO-PRx > NiCaAlO-PRx > NiMgAlO-PRx. We propose that the high performance of the NiBaAlO sample is derived from both an appropriate distribution of Ni particle size and the presence of BaCO3, acting as a CO2 buffer in the process.
Collapse
|
29
|
Szoldatits E, Essmeister J, Schachtner L, Konegger T, Föttinger K. Polymer-derived SiOC as support material for Ni-based catalysts: CO 2 methanation performance and effect of support modification with La 2O 3. Front Chem 2023; 11:1163503. [PMID: 37035112 PMCID: PMC10073567 DOI: 10.3389/fchem.2023.1163503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
In this study, we investigated Ni supported on polymer-derived ceramics as a new class of catalyst materials. Catalysts have to withstand harsh reaction conditions requiring the use of a support with outstanding thermal and mechanical stability. Polymer-derived ceramics meet these requirements and bring the additional opportunity to realize complex porous structures. Ni-SiOC and La-modified Ni-SiOC catalysts were prepared by wet impregnation methods with target concentrations of 5 wt% for both metal and oxide content. Polymer-derived SiOC supports were produced using a photoactive methyl-silsesquioxane as preceramic polymer. Catalysts were characterized by N2-adsorption-desorption, XRD, SEM, H2-TPR, and in-situ DRIFTS. CO2 methanation was performed as a test reaction to evaluate the catalytic performance of these new materials at atmospheric pressure in the temperature range between 200°C and 400°C. XDR, H2-TPR, and in-situ DRIFTS results indicate both improved dispersion and stability of Ni sites and increased adsorption capacities for CO2 in La-modified samples. Also, modified catalysts exhibited excellent performance in the CO2 methanation with CO2 conversions up to 88% and methane selectivity >99% at 300°C reaction temperature. Furthermore, the pyrolysis temperature of the support material affected the catalytic properties, the surface area, the stability of active sites, and the hydrophobicity of the surface. Overall, the materials show promising properties for catalytic applications.
Collapse
Affiliation(s)
- E. Szoldatits
- Institute of Materials Chemistry, TUWien, Vienna, Austria
| | - J. Essmeister
- Institute of Chemical Technologies and Analytics, TUWien, Vienna, Austria
| | - L. Schachtner
- Institute of Chemical Technologies and Analytics, TUWien, Vienna, Austria
| | - T. Konegger
- Institute of Chemical Technologies and Analytics, TUWien, Vienna, Austria
| | - K. Föttinger
- Institute of Materials Chemistry, TUWien, Vienna, Austria
- *Correspondence: K. Föttinger,
| |
Collapse
|
30
|
Sterk E, Nieuwelink AE, Monai M, Louwen JN, Vogt ETC, Filot IAW, Weckhuysen BM. Structure Sensitivity of CO 2 Conversion over Nickel Metal Nanoparticles Explained by Micro-Kinetics Simulations. JACS AU 2022; 2:2714-2730. [PMID: 36590272 PMCID: PMC9795468 DOI: 10.1021/jacsau.2c00430] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 05/21/2023]
Abstract
Nickel metal nanoparticles are intensively researched for the catalytic conversion of carbon dioxide. They are commercially explored in the so-called power-to-methane application in which renewably resourced H2 reacts with CO2 to produce CH4, which is better known as the Sabatier reaction. Previous work has shown that this reaction is structure-sensitive. For instance, Ni/SiO2 catalysts reveal a maximum performance when nickel metal nanoparticles of ∼2-3 nm are used. Particularly important to a better understanding of the structure sensitivity of the Sabatier reaction over nickel-based catalysts is to understand all relevant elementary reaction steps over various nickel metal facets because this will tell as to which type of nickel facets and which elementary reaction steps are crucial for designing an efficient nickel-based methanation catalyst. In this work, we have determined by density functional theory (DFT) calculations and micro-kinetics modeling (MKM) simulations that the two terrace facets Ni(111) and Ni(100) and the stepped facet Ni(211) barely show any activity in CO2 methanation. The stepped facet Ni(110) turned out to be the most effective in CO2 methanation. Herein, it was found that the dominant kinetic route corresponds to a combination of the carbide and formate reaction pathways. It was found that the dissociation of H2CO* toward CH2* and O* is the most critical elementary reaction step on this Ni(110) facet. The calculated activity of a range of Wulff-constructed nickel metal nanoparticles, accounting for varying ratios of the different facets and undercoordinated atoms exposed, reveals the same trend of activity-versus-nanoparticle size, as was observed in previous experimental work from our research group, thereby providing an explanation for the structure-sensitive nature of the Sabatier reaction.
Collapse
Affiliation(s)
- Ellen
B. Sterk
- Inorganic
Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CGUtrecht, The Netherlands
| | - Anne-Eva Nieuwelink
- Inorganic
Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CGUtrecht, The Netherlands
| | - Matteo Monai
- Inorganic
Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CGUtrecht, The Netherlands
| | - Jaap N. Louwen
- Inorganic
Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CGUtrecht, The Netherlands
| | - Eelco T. C. Vogt
- Inorganic
Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CGUtrecht, The Netherlands
| | - Ivo A. W. Filot
- Schuit
Institute of Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MBEindhoven, The Netherlands
| | - Bert M. Weckhuysen
- Inorganic
Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CGUtrecht, The Netherlands
| |
Collapse
|
31
|
A Review on Green Hydrogen Valorization by Heterogeneous Catalytic Hydrogenation of Captured CO2 into Value-Added Products. Catalysts 2022. [DOI: 10.3390/catal12121555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The catalytic hydrogenation of captured CO2 by different industrial processes allows obtaining liquid biofuels and some chemical products that not only present the interest of being obtained from a very low-cost raw material (CO2) that indeed constitutes an environmental pollution problem but also constitute an energy vector, which can facilitate the storage and transport of very diverse renewable energies. Thus, the combined use of green H2 and captured CO2 to obtain chemical products and biofuels has become attractive for different processes such as power-to-liquids (P2L) and power-to-gas (P2G), which use any renewable power to convert carbon dioxide and water into value-added, synthetic renewable E-fuels and renewable platform molecules, also contributing in an important way to CO2 mitigation. In this regard, there has been an extraordinary increase in the study of supported metal catalysts capable of converting CO2 into synthetic natural gas, according to the Sabatier reaction, or in dimethyl ether, as in power-to-gas processes, as well as in liquid hydrocarbons by the Fischer-Tropsch process, and especially in producing methanol by P2L processes. As a result, the current review aims to provide an overall picture of the most recent research, focusing on the last five years, when research in this field has increased dramatically.
Collapse
|
32
|
Sun Z, Shao B, Zhang Y, Gao Z, Wang M, Liu H, Hu J. Integrated CO2 capture and methanation from the intermediate-temperature flue gas on dual functional hybrids of AMS/CaMgO||Ni Co. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
He Y, Shen H, Bai Y, Niu X, Zhao Y, Wu C, Yang S, Cao Y, Zhang Q, Zhang H. Construction of the Low-Loading Ni/CeO 2 Catalyst with a Boosted CO 2 Methanation Performance via the Facile Pyrolysis CeO 2 Support. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuan He
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen518057, China
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an710129, China
| | - Haidong Shen
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen518057, China
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an710129, China
| | - Yunhai Bai
- Drilling & Production Technology Research Institute, CNPC Chuanqing Drilling Engineering Company Ltd., Xi’an710129, China
- National Engineering Laboratory for Exploration and Development of Low-Permeability Oil & Gas Fields, Xi’an710129, China
| | - Xin Niu
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen518057, China
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an710129, China
| | - Yike Zhao
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen518057, China
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an710129, China
| | - Chen Wu
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen518057, China
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an710129, China
| | - Shaowei Yang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen518057, China
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an710129, China
| | - Yueling Cao
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen518057, China
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an710129, China
| | - Qiuyu Zhang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen518057, China
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an710129, China
| | - Hepeng Zhang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen518057, China
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an710129, China
| |
Collapse
|
34
|
Regulation of product distribution in CO2 hydrogenation by modifying Ni/CeO2 catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Song M, Shi L, Xu X, Du X, Chen Y, Zhuang W, Tao X, Sun L, Xu Y. Ni/M/SiO2 catalyst (M=La, Ce or Mg) for CO2 methanation: Importance of the Ni active sites. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
36
|
Shen X, Wang Z, Wang Q, Tumurbaatar C, Bold T, Liu W, Dai Y, Tang Y, Yang Y. Modified Ni-carbonate interfaces for enhanced CO2 methanation activity: Tuned reaction pathway and reconstructed surface carbonates. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
37
|
Chen J, Shen X, Wang Q, Wang J, Yang D, Bold T, Dai Y, Tang Y, Yang Y. CO2 methanation over γ-Al2O3 nanosheets-stabilized Ni catalysts: Effects of MnOx and MoOx additives on catalytic performance and reaction pathway. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
38
|
Zou X, Shen Z, Li X, Cao Y, Xia Q, Zhang S, Liu Y, Jiang L, Li L, Cui L, Wang Y. Boosting CO2 methanation on ceria supported transition metal catalysts via chelation coupled wetness impregnation. J Colloid Interface Sci 2022; 620:77-85. [DOI: 10.1016/j.jcis.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 01/30/2023]
|
39
|
Ho PH, Sanghez de Luna G, Schiaroli N, Natoli A, Ospitali F, Battisti M, di Renzo F, Lucarelli C, Vaccari A, Fornasari G, Benito P. Effect of Fe and La on the Performance of NiMgAl HT-Derived Catalysts in the Methanation of CO 2 and Biogas. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Phuoc Hoang Ho
- Dipartimento di Chimica Industriale “Toso Montanari”, Alma Mater Studiorum − Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- ICGM, Univ Montpellier-CNRS-ENSCM, Centre Balard, 1919 Route de Mende, 34090 Montpellier, France
| | - Giancosimo Sanghez de Luna
- Dipartimento di Chimica Industriale “Toso Montanari”, Alma Mater Studiorum − Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Nicola Schiaroli
- Dipartimento di Chimica Industriale “Toso Montanari”, Alma Mater Studiorum − Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Alejandro Natoli
- Dipartimento di Chimica Industriale “Toso Montanari”, Alma Mater Studiorum − Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- Center for Chemical Catalysis − C3, Alma Mater Studiorum − Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Francesca Ospitali
- Dipartimento di Chimica Industriale “Toso Montanari”, Alma Mater Studiorum − Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Martina Battisti
- Dipartimento di Chimica Industriale “Toso Montanari”, Alma Mater Studiorum − Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Francesco di Renzo
- ICGM, Univ Montpellier-CNRS-ENSCM, Centre Balard, 1919 Route de Mende, 34090 Montpellier, France
| | - Carlo Lucarelli
- Dipartimento di Scienza e Alta tecnologia, Università degli Studi dell’Insubria, Via Valleggio 9, 22100 Como, Italy
| | - Angelo Vaccari
- Dipartimento di Chimica Industriale “Toso Montanari”, Alma Mater Studiorum − Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Giuseppe Fornasari
- Dipartimento di Chimica Industriale “Toso Montanari”, Alma Mater Studiorum − Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- Center for Chemical Catalysis − C3, Alma Mater Studiorum − Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Patricia Benito
- Dipartimento di Chimica Industriale “Toso Montanari”, Alma Mater Studiorum − Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- Center for Chemical Catalysis − C3, Alma Mater Studiorum − Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
40
|
Li B, Ma B, Wang SY, Yu MM, Zhang ZQ, Xiao MJ, Zhang H, Wu JF, Peng Y, Wang Q, Zhang HL. Vacancy engineering of two-dimensional W 2N 3 nanosheets for efficient CO 2 hydrogenation. NANOSCALE 2022; 14:9736-9742. [PMID: 35765938 DOI: 10.1039/d2nr02262a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Peaking carbon emissions and achieving carbon neutrality have become the consensus goal of the international community to solve the environmental problems threatening mankind caused by accumulative greenhouse gases like CO2. Herein we proposed vacancy engineering of two-dimensional (2D) topological W2N3 for efficient CO2 hydrogenation into high value-added chemicals and fuels. Spherical aberration corrected scanning transmission electron microscopy (Cs-corrected STEM) confirmed a large amount of N vacancies on the catalyst surface, which significantly reduced the energy barrier for the formation of the essential intermediates of *CO and *CHO as revealed by density functional theory (DFT) calculations. Consequently, the highly stable catalyst exhibited efficient CO2 hydrogenation superior to many previous reports with a maximum CO2 conversion rate of 24% and a high selectivity of 23% for C2+ hydrocarbons. This work provided not only insight into the vacancy-controlled CO2 hydrogenation mechanism, but also fresh ammunition to bring the remaining potential of 2D topological transition metal nitrides in the field of catalysis.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| | - Bo Ma
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| | - Shu-Yan Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| | - Ming-Ming Yu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| | - Ze-Qi Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| | - Ming-Jun Xiao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| | - Hong Zhang
- Electron Microscopy Centre of Lanzhou University and Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Jian-Feng Wu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| | - Yong Peng
- Electron Microscopy Centre of Lanzhou University and Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Qiang Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
41
|
Dependency of CO2 Methanation on the Strong Metal-Support Interaction for Supported Ni/CeO2 Catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.07.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Gäßler M, Stahl J, Schowalter M, Pokhrel S, Rosenauer A, Mädler L, Güttel R. The Impact of Support Material of Cobalt‐Based Catalysts Prepared by Double Flame Spray Pyrolysis on CO2 Methanation Dynamics. ChemCatChem 2022. [DOI: 10.1002/cctc.202200286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Max Gäßler
- Ulm University: Universitat Ulm Institute of Chemical Engineering GERMANY
| | - Jakob Stahl
- University of Bremen: Universitat Bremen Faculty of Production Engineering GERMANY
| | - Marco Schowalter
- University of Bremen: Universitat Bremen Institute of Solid State Physics GERMANY
| | - Suman Pokhrel
- University of Bremen: Universitat Bremen Faculty of Production Engineering GERMANY
| | - Andreas Rosenauer
- University of Bremen: Universitat Bremen Institute of Solid State Physics GERMANY
| | - Lutz Mädler
- University of Bremen: Universitat Bremen Faculty of Production Engineering GERMANY
| | - Robert Güttel
- Universitat Ulm Institute of Chemical Process Engineering Albert-Einstein-Allee 11 89081 Ulm GERMANY
| |
Collapse
|
43
|
Jo S, Cruz L, Shah S, Wasantwisut S, Phan A, Gilliard-AbdulAziz KL. Perspective on Sorption Enhanced Bifunctional Catalysts to Produce Hydrocarbons. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Seongbin Jo
- Department of Chemical and Environmental Engineering, University of California−Riverside, Riverside, California92521, United States
| | - Luz Cruz
- Department of Material Science and Engineering, University of California−Riverside, Riverside, California92521, United States
| | - Soham Shah
- Department of Chemical and Environmental Engineering, University of California−Riverside, Riverside, California92521, United States
| | - Somchate Wasantwisut
- Department of Chemical and Environmental Engineering, University of California−Riverside, Riverside, California92521, United States
| | - Annette Phan
- Department of Chemical and Environmental Engineering, University of California−Riverside, Riverside, California92521, United States
| | - Kandis Leslie Gilliard-AbdulAziz
- Department of Chemical and Environmental Engineering, University of California−Riverside, Riverside, California92521, United States
- Department of Material Science and Engineering, University of California−Riverside, Riverside, California92521, United States
| |
Collapse
|
44
|
Cao X, Han YF, Peng C, Zhu M. A Review on the Water‐Gas Shift Reaction over Nickel‐Based Catalysts. ChemCatChem 2022. [DOI: 10.1002/cctc.202200190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xinyu Cao
- East China University of Science and Technology School of Chemical Engineering CHINA
| | - Yi-Fan Han
- East China University of Science and Technology School of Chemical Engineering CHINA
| | - Chong Peng
- Sinopec: China Petrochemical Corporation School of Chemical Engineering CHINA
| | - Minghui Zhu
- East China University of Science and Technology Department of Chemical Engineering 130 Meilong Road 200237 Shanghai CHINA
| |
Collapse
|
45
|
Summa P, Gajewska M, Li L, Hu C, Samojeden B, Motak M, Da Costa P. Solution combustion synthesis as an alternative synthesis route for novel Ni-Mg-Al mixed-oxide catalyst for CO2 methanation. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
46
|
Mesoporous nano Ni-Al2O3 catalyst for CO2 methanation in a continuously stirred tank reactor. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
47
|
Sun H, Wang H, Liu X, Zhang Z, Zhang S, Wang X, Liu Y. Stable and Highly Dispersed Nickel Catalysts on Ce‐Zr‐O Solid Solutions for CO
2
Methanation. ChemistrySelect 2022. [DOI: 10.1002/slct.202200113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Huayu Sun
- Collaborative Innovation Center of Chemical Science & Engineering (Tianjin) Department of Catalysis Science and Technology School of Chemical Engineering Tianjin University Tianjin 300072 P. R. China
| | - Hong Wang
- College of Chemical Engineering Inner Mongolia University of Technology Hohhot 010051 P. R. China
| | - Xuemei Liu
- Collaborative Innovation Center of Chemical Science & Engineering (Tianjin) Department of Catalysis Science and Technology School of Chemical Engineering Tianjin University Tianjin 300072 P. R. China
| | - Ziyang Zhang
- Collaborative Innovation Center of Chemical Science & Engineering (Tianjin) Department of Catalysis Science and Technology School of Chemical Engineering Tianjin University Tianjin 300072 P. R. China
| | - Siran Zhang
- Collaborative Innovation Center of Chemical Science & Engineering (Tianjin) Department of Catalysis Science and Technology School of Chemical Engineering Tianjin University Tianjin 300072 P. R. China
| | - Xitao Wang
- Collaborative Innovation Center of Chemical Science & Engineering (Tianjin) Department of Catalysis Science and Technology School of Chemical Engineering Tianjin University Tianjin 300072 P. R. China
| | - Yuan Liu
- Collaborative Innovation Center of Chemical Science & Engineering (Tianjin) Department of Catalysis Science and Technology School of Chemical Engineering Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
48
|
Research Progress and Reaction Mechanism of CO2 Methanation over Ni-Based Catalysts at Low Temperature: A Review. Catalysts 2022. [DOI: 10.3390/catal12020244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The combustion of fossil fuels has led to a large amount of carbon dioxide emissions and increased greenhouse effect. Methanation of carbon dioxide can not only mitigate the greenhouse effect, but also utilize the hydrogen generated by renewable electricity such as wind, solar, tidal energy, and others, which could ameliorate the energy crisis to some extent. Highly efficient catalysts and processes are important to make CO2 methanation practical. Although noble metal catalysts exhibit higher catalytic activity and CH4 selectivity at low temperature, their large-scale industrial applications are limited by the high costs. Ni-based catalysts have attracted extensive attention due to their high activity, low cost, and abundance. At the same time, it is of great importance to study the mechanism of CO2 methanation on Ni-based catalysts in designing high-activity and stability catalysts. Herein, the present review focused on the recent progress of CO2 methanation and the key parameters of catalysts including the essential nature of nickel active sites, supports, promoters, and preparation methods, and elucidated the reaction mechanism on Ni-based catalysts. The design and preparation of catalysts with high activity and stability at low temperature as well as the investigation of the reaction mechanism are important areas that deserve further study.
Collapse
|
49
|
Gioria E, Ingale P, Pohl F, Naumann d'Alnoncourt R, Thomas A, Rosowski F. Boosting the performance of Ni/Al2O3 for the reverse water gas shift reaction through formation of CuNi nanoalloys. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01585k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adding Cu to Ni/Al2O3 is an excellent strategy to suppress methane formation and enhance carbon monoxide yield through formation of alloyed nanoparticles.
Collapse
Affiliation(s)
- Esteban Gioria
- BasCat – UniCat BASF JointLab, Technische Universität Berlin, Berlin 10623, Germany
| | - Piyush Ingale
- BasCat – UniCat BASF JointLab, Technische Universität Berlin, Berlin 10623, Germany
| | - Felix Pohl
- BasCat – UniCat BASF JointLab, Technische Universität Berlin, Berlin 10623, Germany
| | | | - Arne Thomas
- Functional Materials, Department of Chemistry, Technische Universität Berlin, Berlin 10623, Germany
| | - Frank Rosowski
- BasCat – UniCat BASF JointLab, Technische Universität Berlin, Berlin 10623, Germany
- BASF SE, Process Research and Chemical Engineering, Ludwigshafen 67056, Germany
| |
Collapse
|
50
|
Review of CO2 Reduction on Supported Metals (Alloys) and Single-Atom Catalysts (SACs) for the Use of Green Hydrogen in Power-to-Gas Concepts. Catalysts 2021. [DOI: 10.3390/catal12010016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The valorization of carbon dioxide by diverting it into useful chemicals through reduction has recently attracted much interest due to the pertinent need to curb increasing global warming, which is mainly due to the huge increase of CO2 emissions from domestic and industrial activities. This approach would have a double benefit when using the green hydrogen generated from the electrolysis of water with renewable electricity (solar and wind energy). Strategies for the chemical storage of green hydrogen involve the reduction of carbon dioxide to value-added products such as methane, syngas, methanol, and their derivatives. The reduction of CO2 at ambient pressure to methane or carbon monoxide are rather facile processes that can be easily used to store renewable energy or generate an important starting material for chemical industry. While the methanation pathway can benefit from existing infrastructure of natural gas grids, the production of syngas could be also very essential to produce liquid fuels and olefins, which will also be in great demand in the future. In this review, we focus on the recent advances in the thermocatalytic reduction of CO2 at ambient pressure to basically methane and syngas on the surface of supported metal nanoparticles, single-atom catalyst (SACs), and supported bimetallic alloys. Basically, we will concentrate on activity, selectivity, stability during reaction, support effects, metal-support interactions (MSIs), and on some recent approaches to control and switch the CO2 reduction selectivity between methane and syngas. Finally, we will discuss challenges and requirements for the successful introduction of these processes in the cycle of renewable energies. All these aspects are discussed in the frame of sustainable use of renewable energies.
Collapse
|