1
|
Wang X, Xu S, Zhang B, Wu H, Liu Y, Zhang X, Wang ZG. Dynamic control of His-hemin coordination and catalysis by reversible host-guest inclusion in peptide assemblies. J Colloid Interface Sci 2025; 678:421-426. [PMID: 39213994 DOI: 10.1016/j.jcis.2024.08.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Dynamic self-assembly has significant implications in the regulation of the enzyme activities. In this study, we present a histidine-based enzyme-mimicking catalyst, formed by the self-assembly of carefully-engineered FH-based short peptides with hemin, showcasing switchable catalytic activity of hemin due to externally induced reversible inclusion of a cucurbit[7]uril-peptide hybrid. 1H NMR, ITC and theoretical simulation are employed to examine the binding affinity between the guest and host components, and UV-vis spectra are used to investigate changes in the hemin coordination environment. The histidine segment of the short peptide can be partially shielded by the cucurbituril and released following addition of the azo compound, leading to a decrease and subsequent restoration of the histidine-hemin coordination affinity and hemin activity. The photoisomeriziable nature of the azo compound enabled the activation of FHH/hemin activity to be switched on and off by exposure to different wavelengths of light. During the operation, the Phe residue remained within the cucurbituril, allowing reversible inclusion and exposure of the histidine residues. The hemin stayed connected to FHH/cucurbit[7]uril hybrid, preventing the severe aggregation of hemin and irreversible deactivation. This work may provide insights into engineering the dynamic behaviors of the cofactor-dependent catalytic assemblies.
Collapse
Affiliation(s)
- Xinyue Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shichao Xu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Baoli Zhang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haifeng Wu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanxi Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xianxue Zhang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Wu Y, Zhu Z, Ji T, Wang J, Zhu H, Peng W, Cong H, Yang J, Chen M, Zhao H. Water-mediated cytosine self-assembly in infrared perspective. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125708. [PMID: 39799807 DOI: 10.1016/j.saa.2025.125708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/15/2025]
Abstract
Self-assembly plays a crucial role in the formation and allosteric processes of many biomolecules, water molecules can affect these processes. Cytosine (Cyt) has excellent self-assembly ability, forming a flat and ordered structure through hydrogen bonds (HBs) in the presence of water molecules. However, the vibration dynamics and interaction mechanism of water induced Cyt self-assembly are still unclear. In this work, infrared spectroscopy techniques, combined with density functional theory (DFT) theoretical calculations, were employed to investigate the vibrational characteristics and interactions of water molecule mediated self-assembly of Cyt and its reverse process. The results indicate that the induction of Cyt self-assembly by water molecules has differential effects on the various vibrational modes of the Cyt molecule. Multi-view infrared spectroscopy provides a powerful tool for the characterization of biomolecules in situ. This study will contribute to a deeper understanding and application of nucleic acid biological nanostructures.
Collapse
Affiliation(s)
- Yu Wu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 China; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 China; University of Chinese Academy of Sciences, Beijing 100049 China
| | - Zhongjie Zhu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 China.
| | - Te Ji
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 China
| | - Jie Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 China
| | - Huachun Zhu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 China
| | - Weiwei Peng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 China
| | - Haixia Cong
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 China
| | - Jianzhong Yang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 China
| | - Min Chen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 China
| | - Hongwei Zhao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 China; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 China.
| |
Collapse
|
3
|
Wang CH, Jhang YY, Yu SS. Catalytic peptide/hemin complex from ester-amide exchange reaction mediated by deep eutectic solvents. RSC Adv 2025; 15:119-123. [PMID: 39758916 PMCID: PMC11694504 DOI: 10.1039/d4ra08607d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025] Open
Abstract
The functions of peptides often emerge upon their self-assembly or binding with other co-factors. However, the synthetic complexity makes these functional peptides intractable. Here, we utilize the ester-amide exchange reaction in deep eutectic solvents to generate peptide libraries from unactivated amino acids. This strategy leads to peptide mixtures that exhibit hemin-binding capability and peroxidase-like activity.
Collapse
Affiliation(s)
- Cheng-Hsi Wang
- Department of Chemical Engineering, National Cheng Kung University Tainan 70101 Taiwan
| | - Yao-Yu Jhang
- Department of Chemical Engineering, National Cheng Kung University Tainan 70101 Taiwan
| | - Sheng-Sheng Yu
- Department of Chemical Engineering, National Cheng Kung University Tainan 70101 Taiwan
- Core Facility Center, National Cheng Kung University Tainan 70101 Taiwan
- Program on Smart and Sustainable Manufacturing, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University Tainan 70101 Taiwan
| |
Collapse
|
4
|
He S, Ma L, Zheng Q, Wang Z, Chen W, Yu Z, Yan X, Fan K. Peptide nanozymes: An emerging direction for functional enzyme mimics. Bioact Mater 2024; 42:284-298. [PMID: 39285914 PMCID: PMC11403911 DOI: 10.1016/j.bioactmat.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
The abundance of molecules on early Earth likely enabled a wide range of prebiotic chemistry, with peptides playing a key role in the development of early life forms and the evolution of metabolic pathways. Among peptides, those with enzyme-like activities occupy a unique position between peptides and enzymes, combining both structural flexibility and catalytic functionality. However, their full potential remains largely untapped. Further exploration of these enzyme-like peptides at the nanoscale could provide valuable insights into modern nanotechnology, biomedicine, and even the origins of life. Hence, this review introduces the groundbreaking concept of "peptide nanozymes (PepNzymes)", which includes single peptides exhibiting enzyme-like activities, peptide-based nanostructures with enzyme-like activities, and peptide-based nanozymes, thus enabling the investigation of biological phenomena at nanoscale dimensions. Through the rational design of enzyme-like peptides or their assembly with nanostructures and nanozymes, researchers have found or created PepNzymes capable of catalyzing a wide range of reactions. By scrutinizing the interactions between the structures and enzyme-like activities of PepNzymes, we have gained valuable insights into the underlying mechanisms governing enzyme-like activities. Generally, PepNzymes play a crucial role in biological processes by facilitating small-scale enzyme-like reactions, speeding up molecular oxidation-reduction, cleavage, and synthesis reactions, leveraging the functional properties of peptides, and creating a stable microenvironment, among other functions. These discoveries make PepNzymes useful for diagnostics, cellular imaging, antimicrobial therapy, tissue engineering, anti-tumor treatments, and more while pointing out opportunities. Overall, this research provides a significant journey of PepNzymes' potential in various biomedical applications, pushing them towards new advancements.
Collapse
Affiliation(s)
- Shaobin He
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Long Ma
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qionghua Zheng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Zhuoran Wang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Zihang Yu
- Department of Biomedical Engineering, Hajim School of Engineering & Applied Sciences, University of Rochester, Rochester, 14627, USA
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
| |
Collapse
|
5
|
D’Andrea LD, Romanelli A. Morphology and Applications of Self-Assembled Peptide Nucleic Acids. Int J Mol Sci 2024; 25:12435. [PMID: 39596501 PMCID: PMC11594392 DOI: 10.3390/ijms252212435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Obtaining new materials by exploiting the self-assembly of biomolecules is a very challenging field. In recent years, short peptides and nucleic acids have been used as scaffolds to produce supramolecular structures for different applications in the biomedical and technological fields. In this review, we will focus on the self-assembly of peptide nucleic acids (PNAs), their conjugates with peptides, or other molecules. We will describe the physical properties of the assembled systems and, where described, the application they were designed for.
Collapse
Affiliation(s)
- Luca Domenico D’Andrea
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, via M. Bianco 9, 20131 Milano, Italy;
| | - Alessandra Romanelli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Venezian 21, 20133 Milan, Italy
| |
Collapse
|
6
|
Xu H, Ge L, Zhou S, Guo Q, Mondarte EAQ, Jiang X, Yu J. Enzyme-Mimetic, Cascade Catalysis-Based Triblock Polypeptide-Assembled Micelles for Enhanced Chemodynamic Therapy. Biomacromolecules 2024; 25:7349-7360. [PMID: 39479882 DOI: 10.1021/acs.biomac.4c01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
Peptides and their conjugates are appealing as molecular scaffolds for constructing supramolecular biomaterials from the bottom up. Through strategic sequence design and interaction modulation, these peptides can self-assemble into diverse nanostructures that can, in turn, mimic the structural and catalytic functions of contemporary proteins. Here, inspired by the histidine brace active site identified in the metalloenzyme, we developed a triblock polypeptide with a hydrophobic polyleucine segment, a hydrophilic polylysine segment, and a terminal oligohistidine segment. This polypeptide demonstrates tunable and adaptive self-assembly morphologies. Moreover, copper ions can interact with the oligohistidine chelator and mediate the supramolecular assembly, generating metal-ligand centers for redox flow. The triblock polypeptide-based peptide micelles show Fenton-type activity with high substrate affinity when coassembled with copper ions. We have also engineered therapeutic micelles by coassembling two polypeptides, one integrated with copper ions and the other conjugated with glucose oxidase. This coassembled nanoplatform shows high in vitro and in vivo antitumor efficacy through a mechanism that combines triggered starvation and chemodynamic therapy. The versatility of this polypeptide sequence, which is compatible with various metal ions and functional ligands, paves the way for a broad spectrum of therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Hanyan Xu
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Lei Ge
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 639798 Singapore
| | - Sensen Zhou
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qi Guo
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | | | - Xiqun Jiang
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 639798 Singapore
| |
Collapse
|
7
|
Liu Y, Li Y, Wu H, Xu S, Zhang B, Li S, Du R, Jiang M, Chen Z, Lv Y, Wang ZG. Robust Oxidase-Mimetic Supramolecular Nanocatalyst for Lignin Biodegradation. NANO LETTERS 2024; 24:2520-2528. [PMID: 38359360 DOI: 10.1021/acs.nanolett.3c04505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Enzymatic catalysis presents an eco-friendly, energy-efficient method for lignin degradation. However, challenges arise due to the inherent incompatibility between enzymes and native lignin. In this work, we introduce a supramolecular catalyst composed of fluorenyl-modified amino acids and Cu2+, designed based on the aromatic stacking of the fluorenyl group, which can operate in ionic liquid environments suitable for the dissolution of native lignin. Amino acids and halide anions of ionic liquids shape the copper site's coordination sphere, showcasing remarkable catechol oxidase-mimetic activity. The catalyst exhibits thermophilic property, and maintains oxidative activity up to 75 °C, which allows the catalyzed degradation of the as-dissolved native lignin with high efficiency even without assistance of the electron mediator. In contrast, at this condition, the native copper-dependent oxidase completely lost its activity. This catalyst with superior stability and activity offer promise for sustainable lignin valorization through biocatalytic routes compatible with ionic liquid pretreatment, addressing limitations in native enzymes for industrially relevant conditions.
Collapse
Affiliation(s)
- Yuanxi Liu
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yan Li
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haifeng Wu
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shichao Xu
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Baoli Zhang
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shan Li
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruikai Du
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Minquan Jiang
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ziman Chen
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yongqin Lv
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
8
|
Liu Y, Ni S, Wang W, Rong M, Cai H, Xing H, Yang L. Functionalized hydrogen-bonded organic superstructures via molecular self-assembly for enhanced uranium extraction. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:133002. [PMID: 37988939 DOI: 10.1016/j.jhazmat.2023.133002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/23/2023] [Accepted: 11/11/2023] [Indexed: 11/23/2023]
Abstract
Effective uranium extraction from water is essential for the development of nuclear power industry and the protection of human health and environment. Nevertheless, it still remains challenging to realize efficient and cost-effective uranium extraction. Herein, a fast and simple method for the direct fabrication of novel functionalized hydrogen-bonded organic superstructures via molecular self-assembly is reported. The as-constructed flower-like superstructures (MCP-5) can allow the exposure of adsorption sites and facilitate the transport of uranyl ions, while synergism between amino and phosphate groups can realize selective uranium extraction. Consequently, MCP-5 possesses excellent uranium adsorption ability with a high saturated adsorption capacity of 950.52 mg g-1, high utilization rate of adsorption sites and adsorption equilibrium time of simply 5 min in uranium-spiked aqueous solution. Furthermore, MCP-5 offers selective uranium adsorption over a broad range of metal ions. The facile synthesis and low-cost raw materials make it have promising potential for uranium capture. Simultaneously, this study opens a design avenue of functionalized hydrogen-bonded organic material for efficient uranium extraction.
Collapse
Affiliation(s)
- Yafeng Liu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Ni
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Wenjie Wang
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Rong
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Hui Cai
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huifang Xing
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangrong Yang
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Liu N, Gao P, Lu HY, Fang L, Nicolas J, Ha-Duong T, Shen JS. Polyfluoroalkyl Chain-Based Assemblies for Biomimetic Catalysis. Chemistry 2024; 30:e202302669. [PMID: 37823686 DOI: 10.1002/chem.202302669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/13/2023]
Abstract
Amphiphobic fluoroalkyl chains are exploited for creating robust and diverse self-assembled biomimetic catalysts. Long terminal perfluoroalkyl chains (Cn F2n+1 with n=6, 8, and 10) linked with a short perhydroalkyl chains (Cm H2m with m=2 and 3) were used to synthesize several 1,4,7-triazacyclononane (TACN) derivatives, Cn F2n+1 -Cm H2m -TACN. In the presence of an equimolar amount of Zn2+ ions that coordinate the TACN moiety and drive the self-assembly into micelle-like aggregates, the critical aggregation concentration of polyfluorinated Cn F2n+1 -Cm H2m -TACN⋅Zn2+ was lowered by ∼1 order of magnitude compared to the traditional perhyroalkyl counterpart with identical carbon number of alkyl chain. When 2'-hydroxypropyl-4-nitrophenyl phosphate was used as the model phosphate substrate, polyfluorinated Cn F2n+1 -Cm H2m -TACN⋅Zn2+ assemblies showed higher affinity and catalytic activity, compared to its perhyroalkyl chain-based counterpart. Coarse-grained molecular dynamic simulations have been introduced to explore the supramolecular assembly of polyfluoroalkyl chains in the presence of Zn2+ ions and to better understand their enhanced catalytic activity.
Collapse
Affiliation(s)
- Ning Liu
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Ping Gao
- Institut Galien Paris-Saclay, Université Paris-Saclay, CNRS, Orsay, 91400, France
- BioCIS, Université Paris-Saclay, CNRS, Orsay, 91400, France
| | - Hai-Yan Lu
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Lei Fang
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Julien Nicolas
- Institut Galien Paris-Saclay, Université Paris-Saclay, CNRS, Orsay, 91400, France
| | - Tâp Ha-Duong
- BioCIS, Université Paris-Saclay, CNRS, Orsay, 91400, France
| | - Jiang-Shan Shen
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| |
Collapse
|
10
|
Du P, Xu S, Wu H, Liu Y, Wang ZG. Histidine-Based Supramolecular Nanoassembly Exhibiting Dual Enzyme-Mimetic Functions: Altering the Tautomeric Preference of Histidine to Tailor Oxidative/Hydrolytic Catalysis. NANO LETTERS 2023; 23:11461-11468. [PMID: 38079506 DOI: 10.1021/acs.nanolett.3c02934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Challenges persist in replicating enzyme-like active sites with functional group arrangements in supramolecular catalysis. In this study, we present a supramolecular material comprising Fmoc-modified histidine and copper. We also investigated the impact of noncanonical amino acids (δmH and εmH), isomers of histidine, on the catalytic process. The Fmoc-δmH-based nanoassembly exhibits an approximately 15-fold increase in oxidative activity and an ∼50-fold increase in hydrolytic activity compared to Fmoc-εmH (kcat/Km). This distinction arises from differences in basicity and ligation properties between the ε- and δ-nitrogen of histidine. The addition of guanosine monophosphate further enhances the oxidative activity of the histidine- and methylated histidine-based catalysts. The Fmoc-δmH/Cu2+-based nanoassembly catalyzes the oxidation/hydrolysis cascade of 2',7'-dichlorofluorescein diacetate, benefiting from the synergistic effect between the copper center and the nonligating ε-nitrogen of histidine. These findings advance the biomimetic catalyst design and provide insights into the mechanistic role of essential residues in natural systems.
Collapse
Affiliation(s)
- Peidong Du
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shichao Xu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haifeng Wu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanxi Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
11
|
Bhendale M, Indra A, Singh JK. Does freezing induce self-assembly of polymers? A molecular dynamics study. SOFT MATTER 2023; 19:7570-7579. [PMID: 37751160 DOI: 10.1039/d3sm00892d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
This work investigates the freezing-induced self-assembly (FISA) of polyvinyl alcohol (PVA) and PVA-like polymers using molecular dynamics simulations. In particular, the effect of the degree of supercooling, degree of polymerization, polymer type, and initial local concentration on the FISA was studied. It was found that the preeminent factor responsible for FISA is not the diffusion of the polymers away from the nucleating ice front, but the increase in the polymer's local concentration upon freezing of the solvent (water). At a higher degree of supercooling, the polymers are engulfed by the growing ice front, impeding their diffusion into the supercooled solution and finally inhibiting their self-assembly. Conversely, at a relatively lower degree of supercooling, the rate of diffusion of the polymers into the supercooled solution is higher, which increases their local concentration and results in FISA. FISA was also observed to depend on the polymer-solvent interactions. Strongly favorable solute-solvent interactions hinder the self-assembly, whereas unfavorable solute-solvent interactions promote the self-assembly. The polymer and aggregate morphology were investigated using the radius of gyration, end-to-end distance, and asphericity analysis. This study brings molecular insights into the quintessential factors governing self-assembly via freezing of the solvent, which is a novel self-assembly technique especially suitable for biomedical applications.
Collapse
Affiliation(s)
- Mangesh Bhendale
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India.
| | - Aindrila Indra
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India.
| | - Jayant K Singh
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India.
- Prescience Insilico Private Limited, 5th floor, Novel MSR Building, Marathalli, Bengaluru, Karnataka 560037, India
| |
Collapse
|
12
|
Nguyen HD, Jana RD, Campbell DT, Tran TV, Do LH. Lewis acid-driven self-assembly of diiridium macrocyclic catalysts imparts substrate selectivity and glutathione tolerance. Chem Sci 2023; 14:10264-10272. [PMID: 37772092 PMCID: PMC10530542 DOI: 10.1039/d3sc02836d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/02/2023] [Indexed: 09/30/2023] Open
Abstract
Molecular inorganic catalysts (MICs) tend to have solvent-exposed metal centers that lack substrate specificity and are easily inhibited by biological nucleophiles. Unfortunately, these limitations exclude many MICs from being considered for in vivo applications. To overcome this challenge, a strategy to spatially confine MICs using Lewis acid-driven self-assembly is presented. It was shown that in the presence of external cations (e.g., Li+, Na+, K+, or Cs+) or phosphate buffered saline, diiridium macrocycles spontaneously formed supramolecular iridium-cation species, which were characterized by X-ray crystallography and dynamic light scattering. These nanoassemblies selectively reduced sterically unhindered C[double bond, length as m-dash]O groups via transfer hydrogenation and tolerated up to 1 mM of glutathione. In contrast, when non-coordinating tetraalkylammonium cations were used, the diiridium catalysts were unable to form higher-ordered structures and discriminate between different aldehyde substrates. This work suggests that in situ coordination self-assembly could be a versatile approach to enable or enhance the integration of MICs with biological hosts.
Collapse
Affiliation(s)
- Hieu D Nguyen
- Department of Chemistry, University of Houston 4800 Calhoun Road Houston Texas USA
| | - Rahul D Jana
- Department of Chemistry, University of Houston 4800 Calhoun Road Houston Texas USA
| | - Dylan T Campbell
- Department of Chemistry, University of Houston 4800 Calhoun Road Houston Texas USA
| | - Thi V Tran
- Department of Chemistry, University of Houston 4800 Calhoun Road Houston Texas USA
| | - Loi H Do
- Department of Chemistry, University of Houston 4800 Calhoun Road Houston Texas USA
| |
Collapse
|
13
|
Li Z, Wang J, O’Hagan MP, Huang F, Xia F, Willner I. Dynamic Fusion of Nucleic Acid Functionalized Nano-/Micro-Cell-Like Containments: From Basic Concepts to Applications. ACS NANO 2023; 17:15308-15327. [PMID: 37549398 PMCID: PMC10448756 DOI: 10.1021/acsnano.3c04415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Membrane fusion processes play key roles in biological transformations, such as endocytosis/exocytosis, signal transduction, neurotransmission, or viral infections, and substantial research efforts have been directed to emulate these functions by artificial means. The recognition and dynamic reconfiguration properties of nucleic acids provide a versatile means to induce membrane fusion. Here we address recent advances in the functionalization of liposomes or membranes with structurally engineered lipidated nucleic acids guiding the fusion of cell-like containments, and the biophysical and chemical parameters controlling the fusion of the liposomes will be discussed. Intermembrane bridging by duplex or triplex nucleic acids and light-induced activation of membrane-associated nucleic acid constituents provide the means for spatiotemporal fusion of liposomes or nucleic acid modified liposome fusion with native cell membranes. The membrane fusion processes lead to exchange of loads in the fused containments and are a means to integrate functional assemblies. This is exemplified with the operation of biocatalytic cascades and dynamic DNA polymerization/nicking or transcription machineries in fused protocell systems. Membrane fusion processes of protocell assemblies are found to have important drug-delivery, therapeutic, sensing, and biocatalytic applications. The future challenges and perspectives of DNA-guided fused containments and membranes are addressed.
Collapse
Affiliation(s)
- Zhenzhen Li
- The
Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jianbang Wang
- The
Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Michael P. O’Hagan
- The
Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Fujian Huang
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, People’s Republic of China
| | - Fan Xia
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, People’s Republic of China
| | - Itamar Willner
- The
Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
14
|
Zhang Z, Ding D, Liu J, Huang C, Li W, Lu K, Cheng N. Supramolecular Nanozyme System Based on Polydopamine and Polyoxometalate for Photothermal-Enhanced Multienzyme Cascade Catalytic Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38214-38229. [PMID: 37535452 DOI: 10.1021/acsami.3c04723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The advent of enzyme-facilitated cascade events in which endogenous substrates within the human body are used to generate reactive oxygen species (ROS) has spawned novel cancer treatment possibilities. In this study, a supramolecular cascade catalytic nanozyme system was successfully developed, exhibiting photothermal-enhanced multienzyme cascade catalytic and glutathione (GSH) depletion activities and ultimately triggering the apoptosis-ferroptosis synergistic tumor therapy. The nanozyme system was fabricated using β-cyclodextrin-functionalized polydopamine (PDA) as the substrate, which was then entangled with polyoxometalate (POM) via electrostatic forces and assembled with adamantane-grafted hyaluronic acid and glucose oxidase (GOx) via host-guest supramolecular interaction for tumor targeting and GOx loading. The catalytic function of GOx facilitates the conversion of glucose to H2O2 and gluconic acid. In turn, this process affirms the propitious generation of hydroxyl radical (•OH) through the POM-mediated cascade catalysis. Additionally, the POM species actively deplete the intracellular GSH pool, initiating a cascade catalytic tumor therapy. In addition, the PDA-POM-mediated photothermal hyperthermia boosted the cascade catalytic effect and increased ROS production. This confers considerable promise for photothermal therapy (PTT)/nanocatalytic cancer therapy on supramolecular nanozyme systems. The in vitro and in vivo antitumor efficacy studies demonstrated that the supramolecular cascade catalytic nanozyme system was effective at reducing tumor development while maintaining an acceptable level of biocompatibility. Henceforth, this study is to widen the scope of cascade catalytic nanoenzyme production using supramolecular techniques, as well as endeavor to delineate a prospective pathway for the application of PTT-enhanced nanocatalytic tumor therapy.
Collapse
Affiliation(s)
- Zhengchao Zhang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, P. R. China
| | - Dejun Ding
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, P. R. China
| | - Jinxiang Liu
- Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, P. R. China
- Department of Special Inspection, Changyi People's Hospital, Weifang, Shandong 261399, P. R. China
| | - Changbao Huang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, P. R. China
| | - Wentong Li
- Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, P. R. China
| | - Keliang Lu
- School of Anesthesiology, Affiliated Hospital, Weifang Medical University, Weifang, Shandong 261053, P. R. China
| | - Ni Cheng
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, P. R. China
| |
Collapse
|
15
|
Richardson BJ, Zhang C, Rauthe P, Unterreiner AN, Golberg DV, Poad BLJ, Frisch H. Peptide Self-Assembly Controlled Photoligation of Polymers. J Am Chem Soc 2023. [PMID: 37433011 DOI: 10.1021/jacs.3c03961] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Highly efficient chemical ligations that operate in water under mild conditions are the foundation of bioorthogonal chemistry. However, the toolbox of suitable reactions is limited. Conventional approaches to expand this toolbox aim at altering the inherent reactivity of functional groups to design new reactions that meet the required benchmarks. Inspired by controlled reaction environments that enzymes provide, we report a fundamentally different approach that makes inefficient reactions highly efficient within defined local environments. Contrasting enzymatically catalyzed reactions, the reactivity controlling self-assembled environment is brought about by the ligation targets themselves─avoiding the use of a catalyst. Targeting [2 + 2] photocycloadditions, which are inefficient at low concentrations and readily quenched by oxygen, short β-sheet encoded peptide sequences are inserted between a hydrophobic photoreactive styrylpyrene unit and a hydrophilic polymer. In water, electrostatic repulsion of deprotonated amino acid residues governs the formation of small self-assembled structures, which enable a highly efficient photoligation of the polymer, reaching ∼90% ligation within 2 min (0.034 mM). Upon protonation at low pH, the self-assembly changes into 1D fibers, altering photophysical properties and shutting down the photocycloaddition reaction. Using the reversible morphology change, it is possible to switch the photoligation "ON" or "OFF" under constant irradiation simply by varying the pH. Importantly, in dimethylformamide, the photoligation reaction did not occur even at 10-fold higher concentrations (0.34 mM). The self-assembly into a specific architecture, encoded into the polymer ligation target, enables a highly efficient ligation that overcomes the concentration limitations and high oxygen sensitivity of [2 + 2] photocycloadditions.
Collapse
Affiliation(s)
- Bailey J Richardson
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Chao Zhang
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
- Central Analytical Research Facility, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Pascal Rauthe
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, Karlsruhe 76131, Germany
| | - Andreas-Neil Unterreiner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, Karlsruhe 76131, Germany
| | - Dmitri V Golberg
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
- Central Analytical Research Facility, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| |
Collapse
|
16
|
Xu S, Wu H, Liu S, Du P, Wang H, Yang H, Xu W, Chen S, Song L, Li J, Shi X, Wang ZG. A supramolecular metalloenzyme possessing robust oxidase-mimetic catalytic function. Nat Commun 2023; 14:4040. [PMID: 37419896 PMCID: PMC10328989 DOI: 10.1038/s41467-023-39779-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023] Open
Abstract
Enzymes fold into unique three-dimensional structures to distribute their reactive amino acid residues, but environmental changes can disrupt their essential folding and lead to irreversible activity loss. The de novo synthesis of enzyme-like active sites is challenging due to the difficulty of replicating the spatial arrangement of functional groups. Here, we present a supramolecular mimetic enzyme formed by self-assembling nucleotides with fluorenylmethyloxycarbonyl (Fmoc)-modified amino acids and copper. This catalyst exhibits catalytic functions akin those of copper cluster-dependent oxidases, and catalytic performance surpasses to date-reported artificial complexes. Our experimental and theoretical results reveal the crucial role of periodic arrangement of amino acid components, enabled by fluorenyl stacking, in forming oxidase-mimetic copper clusters. Nucleotides provide coordination atoms that enhance copper activity by facilitating the formation of a copper-peroxide intermediate. The catalyst shows thermophilic behavior, remaining active up to 95 °C in an aqueous environment. These findings may aid the design of advanced biomimetic catalysts and offer insights into primordial redox enzymes.
Collapse
Affiliation(s)
- Shichao Xu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Haifeng Wu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Siyuan Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Peidong Du
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hui Wang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Haijun Yang
- Department of Chemistry, Tsinghua University, Beijing, 10084, China
| | - Wenjie Xu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230029, China
| | - Shuangming Chen
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230029, China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230029, China
| | - Jikun Li
- Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, China
| | - Xinghua Shi
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
17
|
Xie R, Hu Y, Lee SL. A Paradigm Shift from 2D to 3D: Surface Supramolecular Assemblies and Their Electronic Properties Explored by Scanning Tunneling Microscopy and Spectroscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300413. [PMID: 36922729 DOI: 10.1002/smll.202300413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/21/2023] [Indexed: 06/15/2023]
Abstract
Exploring supramolecular architectures at surfaces plays an increasingly important role in contemporary science, especially for molecular electronics. A paradigm of research interest in this context is shifting from 2D to 3D that is expanding from monolayer, bilayers, to multilayers. Taking advantage of its high-resolution insight into monolayers and a few layers, scanning tunneling microscopy/spectroscopy (STM/STS) turns out a powerful tool for analyzing such thin films on a solid surface. This review summarizes the representative efforts of STM/STS studies of layered supramolecular assemblies and their unique electronic properties, especially at the liquid-solid interface. The superiority of the 3D molecular networks at surfaces is elucidated and an outlook on the challenges that still lie ahead is provided. This review not only highlights the profound progress in 3D supramolecular assemblies but also provides researchers with unusual concepts to design surface supramolecular structures with increasing complexity and desired functionality.
Collapse
Affiliation(s)
- Rongbin Xie
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yi Hu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Shern-Long Lee
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
18
|
Li X, Zhou Y, Lu Z, Shan R, Sun D, Li J, Li P. Switchable enzyme mimics based on self-assembled peptides for polyethylene terephthalate degradation. J Colloid Interface Sci 2023; 646:198-208. [PMID: 37196493 DOI: 10.1016/j.jcis.2023.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/03/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Polyethylene terephthalate (PET), the most abundant polyester plastic, has become a global concern due to its refractoriness and accumulation in the environment. In this study, inspired by the structure and catalytic mechanism of the native enzyme, peptides, based on supramolecular self-assembly, were developed to construct enzyme mimics for PET degradation, which were achieved by combining the enzymatic active sites of serine, histidine and aspartate with the self-assembling polypeptide MAX. The two designed peptides with differences in hydrophobic residues at two positions exhibited a conformational transition from random coil to β-sheet by changing the pH and temperature, and the catalytic activity followed the self-assembly "switch" with the fibrils formed β-sheet, which could catalyze PET efficiently. Although the two peptides possessed same catalytic site, they showed different catalytic activities. Analysis of the structure - activity relationship of the enzyme mimics suggested that the high catalytic activity of the enzyme mimics for PET could be attributed to the formation of stable fibers of peptides and ordered arrangement of molecular conformation; in addition, hydrogen bonding and hydrophobic interactions, as the major forces, promoted effects of enzyme mimics on PET degradation. Enzyme mimics with PET-hydrolytic activity are a promising material for degrading PET and reducing environmental pollution.
Collapse
Affiliation(s)
- Xia Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China; School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China
| | - Yaoling Zhou
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China
| | - Zirui Lu
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China
| | - Ruida Shan
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China
| | - Dengyue Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China; School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China
| | - Jianpeng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China; School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China.
| |
Collapse
|
19
|
Wang Y, Geng Q, Zhang Y, Adler-Abramovich L, Fan X, Mei D, Gazit E, Tao K. Fmoc-diphenylalanine gelating nanoarchitectonics: A simplistic peptide self-assembly to meet complex applications. J Colloid Interface Sci 2023; 636:113-133. [PMID: 36623365 DOI: 10.1016/j.jcis.2022.12.166] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
9-fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF), has been has been extensively explored due to its ultrafast self-assembly kinetics, inherent biocompatibility, tunable physicochemical properties, and especially, the capability of forming self-sustained gels under physiological conditions. Consequently, various methodologies to develop Fmoc-FF gels and their corresponding applications in biomedical and industrial fields have been extensively studied. Herein, we systemically summarize the mechanisms underlying Fmoc-FF self-assembly, discuss the preparation methodologies of Fmoc-FF hydrogels, and then deliberate the properties as well as the diverse applications of Fmoc-FF self-assemblies. Finally, the contemporary shortcomings which limit the development of Fmoc-FF self-assembly are raised and the alternative solutions are proposed, along with future research perspectives.
Collapse
Affiliation(s)
- Yunxiao Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China
| | - Qiang Geng
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Yan Zhang
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China.
| | - Xinyuan Fan
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman, Tel Aviv University, 6997801 Tel Aviv, Israel; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China.
| | - Kai Tao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China; Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China.
| |
Collapse
|
20
|
Jayasinghe-Arachchige VM, Serafim LF, Hu Q, Ozen C, Moorkkannur SN, Schenk G, Prabhakar R. Elucidating the Roles of Distinct Chemical Factors in the Hydrolytic Activities of Hetero- and Homonuclear Synthetic Analogues of Binuclear Metalloenzymes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
| | - Leonardo F. Serafim
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Qiaoyu Hu
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Cihan Ozen
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Sreerag N. Moorkkannur
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
21
|
Sugiura S, Shintani Y, Mori D, Higashi SL, Shibata A, Kitamura Y, Kawano SI, Hirosawa KM, Suzuki KGN, Ikeda M. Design of supramolecular hybrid nanomaterials comprising peptide-based supramolecular nanofibers and in situ generated DNA nanoflowers through rolling circle amplification. NANOSCALE 2023; 15:1024-1031. [PMID: 36444534 DOI: 10.1039/d2nr04556g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The artificial construction of multicomponent supramolecular materials comprising plural supramolecular architectures that are assembled orthogonally from their constituent molecules has attracted growing attention. Here, we describe the design and development of multicomponent supramolecular materials by combining peptide-based self-assembled fibrous nanostructures with globular DNA nanoflowers constructed by the rolling circle amplification reaction. The orthogonally constructed architectures were dissected by fluorescence imaging using the selective fluorescence staining procedures adapted to this study. The present, unique hybrid materials developed by taking advantage of each supramolecular architecture based on their peptide and DNA functions may offer distinct opportunities to explore their bioapplications as a soft matrix.
Collapse
Affiliation(s)
- Shintaro Sugiura
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Yuki Shintani
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Daisuke Mori
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Sayuri L Higashi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Aya Shibata
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Yoshiaki Kitamura
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Shin-Ichiro Kawano
- Department of Chemistry, Faculty of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Koichiro M Hirosawa
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kenichi G N Suzuki
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Masato Ikeda
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
22
|
Engineering synergistic effects of immobilized cooperative catalysts. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Abstract
Natural enzymes catalyze biochemical transformations in superior catalytic efficiency and remarkable substrate specificity. The excellent catalytic repertoire of enzymes is attributed to the sophisticated chemical structures of their active sites, as a result of billions-of-years natural evolution. However, large-scale practical applications of natural enzymes are restricted due to their poor stability, difficulty in modification, and high costs of production. One viable solution is to fabricate supramolecular catalysts with enzyme-mimetic active sites. In this review, we introduce the principles and strategies of designing peptide-based artificial enzymes which display catalytic activities similar to those of natural enzymes, such as aldolases, laccases, peroxidases, and hydrolases (mainly the esterases and phosphatases). We also discuss some multifunctional enzyme-mimicking systems which are capable of catalyzing orthogonal or cascade reactions. We highlight the relationship between structures of enzyme-like active sites and the catalytic properties, as well as the significance of these studies from an evolutionary point of view.
Collapse
|
24
|
Zhu B, Li L, Wang B, Miao L, Zhang J, Wu J. Introducing Nanozymes: New Horizons in Periodontal and Dental Implant Care. Chembiochem 2022; 24:e202200636. [PMID: 36510344 DOI: 10.1002/cbic.202200636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
The prevalence of periodontal and peri-implant diseases has been increasing worldwide and has gained a lot of attention. As multifunctional nanomaterials with enzyme-like activity, nanozymes have earned a place in the biomedical field. In periodontics and implantology, nanozymes have contributed greatly to research on maintaining periodontal health and improving implant success rates. To highlight this progress, we review nanozymes for antimicrobial therapy, anti-inflammatory therapy, tissue regeneration promotion, and synergistic effects in periodontal and peri-implant diseases. The future prospects of nanozymes in periodontology and implantology are also discussed along with challenges.
Collapse
Affiliation(s)
- Bijun Zhu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, P. R. China
| | - Linfeng Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Bao Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Leiying Miao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, P. R. China
| | - Jinli Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Jiangjiexing Wu
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
25
|
Enzyme-inspired dry-powder polymeric catalyst for green and fast pharmaceutical manufacturing processes. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
26
|
Raghuwanshi VS, Lin M, Garnier G. Biomolecules adsorption to trigger the self-assembly of nanospheres and nanorods. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Zhao Z, Zhang Z, Zhang H, Liang Z. Small Peptides in the Detection of Mycotoxins and Their Potential Applications in Mycotoxin Removal. Toxins (Basel) 2022; 14:toxins14110795. [PMID: 36422969 PMCID: PMC9698726 DOI: 10.3390/toxins14110795] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Mycotoxins pose significant risks to humans and livestock. In addition, contaminated food- and feedstuffs can only be discarded, leading to increased economic losses and potential ecological pollution. Mycotoxin removal and real-time toxin level monitoring are effective approaches to solve this problem. As a hot research hotspot, small peptides derived from phage display peptide libraries, combinatorial peptide libraries, and rational design approaches can act as coating antigens, competitive antigens, and anti-immune complexes in immunoassays for the detection of mycotoxins. Furthermore, as a potential approach to mycotoxin degradation, small peptides can mimic the natural enzyme catalytic site to construct artificial enzymes containing oxidoreductases, hydrolase, and lyase activities. In summary, with the advantages of mature synthesis protocols, diverse structures, and excellent biocompatibility, also sharing their chemical structure with natural proteins, small peptides are widely used for mycotoxin detection and artificial enzyme construction, which have promising applications in mycotoxin degradation. This paper mainly reviews the advances of small peptides in the detection of mycotoxins, the construction of peptide-based artificial enzymes, and their potential applications in mycotoxin control.
Collapse
Affiliation(s)
- Zitong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenzhen Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Haoxiang Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Correspondence: ; Tel.: +86-010-62737055
| |
Collapse
|
28
|
Chen H, Chen X, Chen X, Lin S, Cheng J, You L, Xiong C, Cai X, Wang S. New perspectives on fabrication of peptide-based nanomaterials in food industry: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Das N, Maity C. Switchable aqueous catalytic systems for organic transformations. Commun Chem 2022; 5:115. [PMID: 36697818 PMCID: PMC9814960 DOI: 10.1038/s42004-022-00734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/12/2022] [Indexed: 01/28/2023] Open
Abstract
In living organisms, enzyme catalysis takes place in aqueous media with extraordinary spatiotemporal control and precision. The mechanistic knowledge of enzyme catalysis and related approaches of creating a suitable microenvironment for efficient chemical transformations have been an important source of inspiration for the design of biomimetic artificial catalysts. However, in "nature-like" environments, it has proven difficult for artificial catalysts to promote effective chemical transformations. Besides, control over reaction rate and selectivity are important for smart application purposes. These can be achieved via incorporation of stimuli-responsive features into the structure of smart catalytic systems. Here, we summarize such catalytic systems whose activity can be switched 'on' or 'off' by the application of stimuli in aqueous environments. We describe the switchable catalytic systems capable of performing organic transformations with classification in accordance to the stimulating agent. Switchable catalytic activity in aqueous environments provides new possibilities for the development of smart materials for biomedicine and chemical biology. Moreover, engineering of aqueous catalytic systems can be expected to grow in the coming years with a further broadening of its application to diverse fields.
Collapse
Affiliation(s)
- Nikita Das
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Chandan Maity
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
30
|
Liu Y, Gan L, Feng P, Huang L, Chen L, Li S, Chen H. An artificial self-assembling peptide with carboxylesterase activity and substrate specificity restricted to short-chain acid p-nitrophenyl esters. Front Chem 2022; 10:996641. [PMID: 36199662 PMCID: PMC9527324 DOI: 10.3389/fchem.2022.996641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Natural enzymes possess remarkable catalytic activity and high substrate specificity. Many efforts have been dedicated to construct artificial enzymes with high catalytic activity. However, how to mimic the exquisite substrate specificity of a natural enzyme remains challenging because of the complexity of the enzyme structure. Here, we report artificial carboxylesterases that are specific for short chain fatty acids and were constructed via peptide self-assembly. These artificial systems have esterase-like activity rather than lipase-like activity towards p-nitrophenyl esters. The designer peptides self-assembled into nanofibers with strong β-sheet character. The extending histidine units and the hydrophobic edge of the fibrillar structure collectively form the active center of the artificial esterase. These artificial esterases show substrate specificity for short-chain acids esters. Moreover, 1-isopropoxy-4-nitrobenzene could function as a competitive inhibitor of hydrolysis of p-nitrophenyl acetate for an artificial esterase.
Collapse
Affiliation(s)
- Yanfei Liu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
- *Correspondence: Yanfei Liu,
| | - Lili Gan
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Peili Feng
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Lei Huang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Luoying Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Shuhua Li
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Hui Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
31
|
Huang H, Kiick KL. Peptide-based assembled nanostructures that can direct cellular responses. Biomed Mater 2022; 17. [DOI: 10.1088/1748-605x/ac92b5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/16/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Natural originated materials have been well-studied over the past several decades owing to their higher biocompatibility compared to the traditional polymers. Peptides, consisting of amino acids, are among the most popular programable building blocks, which is becoming a growing interest in nanobiotechnology. Structures assembled using those biomimetic peptides allow the exploration of chemical sequences beyond those been routinely used in biology. In this Review, we discussed the most recent experimental discoveries on the peptide-based assembled nanostructures and their potential application at the cellular level such as drug delivery. In particular, we explored the fundamental principles of peptide self-assembly and the most recent development in improving their interactions with biological systems. We believe that as the fundamental knowledge of the peptide assemblies evolves, the more sophisticated and versatile nanostructures can be built, with promising biomedical applications.
Collapse
|
32
|
Liang S, Wu XL, Zong MH, Lou WY. Construction of Zn-heptapeptide bionanozymes with intrinsic hydrolase-like activity for degradation of di(2-ethylhexyl) phthalate. J Colloid Interface Sci 2022; 622:860-870. [PMID: 35561606 DOI: 10.1016/j.jcis.2022.04.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022]
Abstract
Nanozyme with intrinsic enzyme-like activity has emerged as favorite artificial catalyst during recent years. However, current nanozymes are mainly limited to inorganic-derived nanomaterials, while biomolecule-sourced nanozyme (bionanozyme) are rarely reported. Herein, inspired by the basic structure of natural hydrolase family, we constructed 3 oligopeptide-based bionanozymes with intrinsic hydrolase-like activity by implementing zinc induced self-assembly of histidine-rich heptapeptides. Under mild condition, divalent zinc (Zn2+) impelled the spontaneous assembly of short peptides (i.e. Ac-IHIHIQI-CONH2, Ac-IHIHIYI-CONH2, and Ac-IHVHLQI-CONH2), forming hydrolase-mimicking bionanozymes with β-sheet secondary conformation and nanofibrous architecture. As expected, the resultant bionanozymes were able to hydrolyze a serious of p-nitrophenyl esters, including not only the simple substrate with short side-chain (p-NPA), but also more complicated ones (p-NPB, p-NPH, p-NPO, and p-NPS). Moreover, the self-assembled Zn-heptapeptide bionanozymes were also proven to be capable of degrading di(2-ethylhexyl) phthalate (DEHP), a typical plasticizer, showing great potential for environmental remediation. Based on this study, we aim to provide theoretical references and exemplify a specific case for directing the construction and application of bionanozyme.
Collapse
Affiliation(s)
- Shan Liang
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiao-Ling Wu
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Min-Hua Zong
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wen-Yong Lou
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
33
|
Teng Q, Wu H, Sun H, Liu Y, Wang H, Wang ZG. Switchable Enzyme-mimicking catalysts Self-Assembled from de novo designed peptides and DNA G-quadruplex/hemin complex. J Colloid Interface Sci 2022; 628:1004-1011. [PMID: 35970126 DOI: 10.1016/j.jcis.2022.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 01/02/2023]
Abstract
Reconstruction of enzymatic active site in an artificial system is key to achieving high catalytic efficiency. Herein, we report the self-assembly of the lysine-containing peptides with guanine-rich DNA and hemin to form peroxidase-mimicking active sites and catalytic nanoparticles. The DNA strand self-folds into a G-quadruplex structure that provides a supramolecular scaffold and a potential axial ligand for hemin. The β-sheet forming capability of the lysine-containing peptides is found to affect the catalytic synergy between the G-quadruplex DNA and the peptide. It is hypothesized that the β-sheet formation of the peptides results in the enrichment of the lysine residues, which distribute on the distal side of hemin to promote the formation of Compound I, like distal arginine residue in natural heme pocket. Incorporation of the histidine residues into the lysine-containing peptides further enhanced the hemin activities, indicating the cooperation between the lysine and histidine. Furthermore, the peptide/DNA/hemin complexes can be switched between active and inactive state by reversible formation and deformation of the DNA G-quadruplex, which was attributed to the peptides-promoted conformational changes of the DNA components. This work opens an avenue to mimic the catalytic residues and their spatial distribution in the natural enzymes, and shed light on the design of the smart biocatalysts that can respond to the environmental stimuli.
Collapse
Affiliation(s)
- Qiao Teng
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haifeng Wu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hao Sun
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanxi Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hui Wang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
34
|
Chen J, Zhang S, Chen X, Wang L, Yang W. A Self-Assembled Fmoc-Diphenylalanine Hydrogel-Encapsulated Pt Nanozyme as Oxidase- and Peroxidase-Like Breaking pH Limitation for Potential Antimicrobial Application. Chemistry 2022; 28:e202104247. [PMID: 35191569 DOI: 10.1002/chem.202104247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Indexed: 12/13/2022]
Abstract
Nanomaterials with oxidase- and peroxidase-like activities have potential in antibacterial therapy. The optimal activity of most nanozymes occurred in acidic pH (3.0-5.0), while the pH in biological systems is mostly near neutral. Herein, a general system using 9-fluorenylmethoxycarbonyl-modified diphenylalanine (Fmoc-FF) hydrogel for enhancing oxidase- and peroxidase-like activities of Pt NPs and other typical enzyme-like nanomaterials at neutral or even alkaline pH is proposed. In this system, Fmoc-FF hydrogel provides an acidic microenvironment for Pt NPs due to hydrogen protons (H+ ) produced by the dissociation of F at neutral pH. As a result, Pt NPs exhibits 6-fold enhanced oxidase-like and 26-fold peroxidase-like activity after being encapsulated into Fmoc-FF hydrogel at pH 7.0. Based on outstanding enzymatic activities and the antibacterial activity of Fmoc-FF hydrogel itself, Pt-Fmoc-FF hydrogel realizes excellent antibacterial effect. This design provides a universal strategy to break pH limitation of nanozymes and promotes the biological applications of nanozymes.
Collapse
Affiliation(s)
- Jun Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shuo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xu Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lianying Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wensheng Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
35
|
Zhang Y, Tian X, Li X. Supramolecular assemblies of histidine-containing peptides with switchable hydrolase and peroxidase activities through Cu(II) binding and co-assembling. J Mater Chem B 2022; 10:3716-3722. [PMID: 35451448 DOI: 10.1039/d2tb00375a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Modulating enzyme activities or functionalities is one of the primary features of biological systems, which is, however, a great challenge for artificial enzyme systems. In this work, we designed and synthesized a series of self-assembling peptides from histidine and other amino acids (Asp, Ser, Lys or Arg), which exist in the active site of natural enzymes. These peptides could undergo a conformational transition from random coils to β-sheet structures under physiological conditions and formed self-assembled nanotubes with obvious hydrolase activities. After incorporation of transition metal ions such as Cu2+, these peptides could coordinate with Cu2+ ions, switch molecular conformations, and self-assemble into hybrid nanomaterials with altered morphologies and peroxidase-like activities. This work illustrates a facile approach for constructing artificial enzymes from self-assembling peptides with histidine residues whose catalytic functions could be modulated by incorporation of Cu2+ ions.
Collapse
Affiliation(s)
- Yue Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xin Tian
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China.
| | - Xinming Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
36
|
Abstract
DNA strands with unique secondary structures can catalyze various chemical reactions and mimic natural enzymes with the assistance of cofactors, which have attracted much research attention. At the same time, the emerging DNA nanotechnology provides an efficient platform to organize functional components of the enzymatic systems and regulate their catalytic performances. In this review, we summarize the recent progress of DNA-based enzymatic systems. First, DNAzymes (Dzs) are introduced, and their versatile utilities are summarized. Then, G-quadruplex/hemin (G4/hemin) Dzs with unique oxidase/peroxidase-mimicking activities and representative examples where these Dzs served as biosensors are explicitly elaborated. Next, the DNA-based enzymatic cascade systems fabricated by the structural DNA nanotechnology are depicted. In addition, the applications of catalytic DNA nanostructures in biosensing and biomedicine are included. At last, the challenges and the perspectives of the DNA-based enzymatic systems for practical applications are also discussed.
Collapse
|
37
|
Chatterjee A, Reja A, Pal S, Das D. Systems chemistry of peptide-assemblies for biochemical transformations. Chem Soc Rev 2022; 51:3047-3070. [PMID: 35316323 DOI: 10.1039/d1cs01178b] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During the billions of years of the evolutionary journey, primitive polymers, involved in proto metabolic pathways with low catalytic activity, played critical roles in the emergence of modern enzymes with remarkable substrate specificity. The precise positioning of amino acid residues and the complex orchestrated interplay in the binding pockets of evolved enzymes promote covalent and non-covalent interactions to foster a diverse set of complex catalytic transformations. Recent efforts to emulate the structural and functional information of extant enzymes by minimal peptide based assemblies have attempted to provide a holistic approach that could help in discerning the prebiotic origins of catalytically active binding pockets of advanced proteins. In addition to the impressive sets of advanced biochemical transformations, catalytic promiscuity and cascade catalysis by such small molecule based dynamic systems can foreshadow the ancestral catalytic processes required for the onset of protometabolism. Looking beyond minimal systems that work close to equilibrium, catalytic systems and compartments under non-equilibrium conditions utilizing simple prebiotically relevant precursors have attempted to shed light on how bioenergetics played an essential role in chemical emergence of complex behaviour. Herein, we map out these recent works and progress where diverse sets of complex enzymatic transformations were demonstrated by utilizing minimal peptide based self-assembled systems. Further, we have attempted to cover the examples of peptide assemblies that could feature promiscuous activity and promote complex multistep cascade reaction networks. The review also covers a few recent examples of minimal transient catalytic assemblies under non-equilibrium conditions. This review attempts to provide a broad perspective for potentially programming functionality via rational selection of amino acid sequences leading towards minimal catalytic systems that resemble the traits of contemporary enzymes.
Collapse
Affiliation(s)
- Ayan Chatterjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Antara Reja
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Sumit Pal
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Dibyendu Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| |
Collapse
|
38
|
Mangalath S, Karunakaran SC, Newnam G, Schuster GB, Hud NV. Supramolecular assembly-enabled homochiral polymerization of short (dA) n oligonucleotides. Chem Commun (Camb) 2021; 57:13602-13605. [PMID: 34852364 DOI: 10.1039/d1cc05420a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A goal of supramolecular chemistry is to create covalent polymers of precise composition and stereochemistry from complex mixtures by the reversible assembly of specific monomers prior to covalent bond formation. We illustrate the power of this approach with short oligomers of deoxyadenosine monophosphate ((dA)n3'p), n ≥ 3, which form supramolecular assemblies with cyanuric acid. The addition of a condensing agent to these assemblies results in their selective, non-enzymatic polymerization to form long polymers (e.g., (dA)1003'p). Significantly, mixtures of D- and L-(dA)53'p form homochiral covalent polymers, which demonstrates self-sorting of racemic monomers and covalent bond formation exclusively in homochiral assemblies.
Collapse
Affiliation(s)
- Sreejith Mangalath
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, USA.
| | - Suneesh C Karunakaran
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, USA.
| | - Gary Newnam
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, USA.
| | - Gary B Schuster
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, USA.
| | - Nicholas V Hud
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, USA.
| |
Collapse
|
39
|
Marshall LR, Korendovych IV. Catalytic amyloids: Is misfolding folding? Curr Opin Chem Biol 2021; 64:145-153. [PMID: 34425319 PMCID: PMC8585703 DOI: 10.1016/j.cbpa.2021.06.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022]
Abstract
Originally regarded as a disease symptom, amyloids have shown a rich diversity of functions, including biologically beneficial ones. As such, the traditional view of polypeptide aggregation into amyloid-like structures being 'misfolding' should rather be viewed as 'alternative folding.' Various amyloid folds have been recently used to create highly efficient catalysts with specific catalytic efficiencies rivaling those of enzymes. Here we summarize recent developments and applications of catalytic amyloids, derived from both de novo and bioinspired designs, and discuss how progress in the last 2 years reflects on the field as a whole.
Collapse
Affiliation(s)
- Liam R Marshall
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Ivan V Korendovych
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA.
| |
Collapse
|
40
|
Pal S, Goswami S, Das D. Cross β amyloid assemblies as complex catalytic machinery. Chem Commun (Camb) 2021; 57:7597-7609. [PMID: 34278403 DOI: 10.1039/d1cc02880d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
How modern enzymes evolved as complex catalytic machineries to facilitate diverse chemical transformations is an open question for the emerging field of systems chemistry. Inspired by Nature's ingenuity in creating complex catalytic structures for exotic functions, short peptide-based cross β amyloid sequences have been shown to access intricate binding surfaces demonstrating the traits of extant enzymes and proteins. Based on their catalytic proficiencies reported recently, these amyloid assemblies have been argued as the earliest protein folds. Herein, we map out the recent progress made by our laboratory and other research groups that demonstrate the catalytic diversity of cross β amyloid assemblies. The important role of morphology and specific mutations in peptide sequences has been underpinned in this review. We have divided the feature article into different sections where examples from biology have been covered demonstrating the mechanism of extant biocatalysts and compared with recent works on cross β amyloid folds showing covalent catalysis, aldolase, hydrolase, peroxidase-like activities and complex cascade catalysis. Beyond equilibrium, we have extended our discussion towards transient catalytic amyloid phases mimicking the energy driven cytoskeleton polymerization. Finally, a future outlook has been provided on the way ahead for short peptide-based systems chemistry approaches that can lead to the development of robust catalytic networks with improved enzyme-like proficiencies and higher complexities. The discussed examples along with the rationale behind selecting specific amino acids sequence will benefit readers to design systems for achieving catalytic reactivity similar to natural complex enzymes.
Collapse
Affiliation(s)
- Sumit Pal
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Surashree Goswami
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Dibyendu Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| |
Collapse
|
41
|
Lee H, Kim H, Lee SY. Self-Assembling Peptidic Bolaamphiphiles for Biomimetic Applications. ACS Biomater Sci Eng 2021; 7:3545-3572. [PMID: 34309378 DOI: 10.1021/acsbiomaterials.1c00576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bolaamphiphile, which is a class of amphiphilic molecules, has a unique structure of two hydrophilic head groups at the ends of the hydrophobic center. Peptidic bolaamphiphiles that employ peptides or amino acids as their hydrophilic groups exhibit unique biochemical activities when they self-organize into supramolecular structures, which are not observed in a single molecule. The self-assembled peptidic bolaamphiphiles hold considerable promise for imitating proteins with biochemical activities, such as specific affinity toward heterogeneous substances, a catalytic activity similar to a metalloenzyme, physicochemical activity from harmonized amino acid segments, and the capability to encapsulate genes like a viral vector. These diverse activities give rise to large research interest in biomaterials engineering, along with the synthesis and characterization of the assembled structures. This review aims to address the recent progress in the applications of peptidic bolaamphiphile assemblies whose densely packed peptide motifs on their surface and their stacked hydrophobic centers exhibit unique protein-like activity and designer functionality, respectively.
Collapse
Affiliation(s)
- Hyesung Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hanbee Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sang-Yup Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
42
|
Mahato RR, Shandilya E, Dasgupta B, Maiti S. Dictating Catalytic Preference and Activity of a Nanoparticle by Modulating Its Multivalent Engagement. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Rishi Ram Mahato
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Ekta Shandilya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Basundhara Dasgupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| |
Collapse
|