1
|
Liu YY, Zhai YT. Iron-Catalyzed One-Pot Cascade Reactions of Oximes with Inactivated Saturated Ketones: Entry to Highly Substituted Pyridines. J Org Chem 2024; 89:17598-17608. [PMID: 39509683 DOI: 10.1021/acs.joc.4c02361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
An iron-catalyzed oxidative [3 + 3] annulation of oxime esters with inactivated saturated ketones is described. This cascade strategy allows one-step rapid synthesis of various structurally important pyridines through an oxidative dehydrogenation/annulation/oxidative aromatization sequence via direct α,β-dehydrogenation of simple saturated ketones followed by annulation with oximes. This method shows good functional group tolerance, readily accessible starting materials, a wide substrate scope, high chemoselectivity, and no need for extra stoichiometric oxidant and is also applicable to the late-stage functionalization of natural products.
Collapse
Affiliation(s)
- Yan-Yun Liu
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Yu-Ting Zhai
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| |
Collapse
|
2
|
Wang H, Gao B, Cheng H, Cao S, Ma X, Chen Y, Ye Y. Unmasking the reverse catalytic activity of 'ene'-reductases for asymmetric carbonyl desaturation. Nat Chem 2024:10.1038/s41557-024-01671-1. [PMID: 39592841 DOI: 10.1038/s41557-024-01671-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/10/2024] [Indexed: 11/28/2024]
Abstract
Carbonyl desaturation is a fundamental reaction widely practised in organic synthesis. While numerous methods have been developed to expand the scope of this important transformation, most of them necessitate multi-step protocols or suffer from the use of high loadings of metal or strong oxidizing conditions. Moreover, approaches that can achieve precise stereochemical control of the desaturation process are extremely rare. Here we report a biocatalytic platform for desymmetrizing desaturation of cyclohexanones to generate diverse cyclohexenones bearing a remote quaternary stereogenic centre, by reengineering 'ene'-reductases to efficiently mediate dehydrogenation, the reverse process of their native activity. This 'ene'-reductase-based desaturation system operates under mild conditions with air as the terminal oxidant, tolerates oxidation-sensitive or metal-incompatible functional groups and, more importantly, exhibits unparalleled stereoselectivity compared with those achieved with small-molecule catalysts. Mechanistic investigations suggest that the reaction proceeded through α-deprotonation followed by a rate-determining β-hydride transfer.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Bin Gao
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Heli Cheng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Shixuan Cao
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Xinyi Ma
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Yinjuan Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou, China
| | - Yuxuan Ye
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China.
| |
Collapse
|
3
|
An S, Lai G, Liu WH. Catalytic dehydrogenative synthesis of α,β-unsaturated secondary amides without external oxidants. Chem Sci 2024:d4sc04419c. [PMID: 39246373 PMCID: PMC11376141 DOI: 10.1039/d4sc04419c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Direct dehydrogenative synthesis of α,β-unsaturated secondary amides still represents an elusive transformation. Herein we describe a palladium-catalyzed redox-neutral desaturation to prepare α,β-conjugated secondary amides. Without external oxidants, this approach relies on the N-O bond cleavage as the driving force to achieve formal dehydrogenation. Complementary to known protocols, this transformation is enabled by the unique reactivity of hydroxamate, thereby representing a novel strategy to accomplish carbonyl desaturation. Desired conjugated secondary amides can be efficiently synthesized in the presence of more reactive esters and even ketones, thus providing a solution to the long-standing issue of α,β-unsaturated secondary amides via C-C desaturation.
Collapse
Affiliation(s)
- Shaokang An
- School of Chemistry, Sun Yat-sen University Guangzhou 510006 China
| | - Guoyin Lai
- Guangzhou Flower Flavours & Fragrances Co., Ltd Guangzhou 510442 China
| | - Wenbo H Liu
- School of Chemistry, Sun Yat-sen University Guangzhou 510006 China
| |
Collapse
|
4
|
Botlik BB, Finkelstein P, Paschke ASK, Reisenbauer JC, Morandi B. Versatile dehydrogenation of carbonyls enabled by an iodine(III) reagent. Chem Commun (Camb) 2024; 60:9254-9257. [PMID: 39118590 PMCID: PMC11310745 DOI: 10.1039/d4cc02609h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
We report the utilisation of an iodine(III) reagent to access α,β-unsaturated carbonyls from the corresponding silyl enol ethers of ketones and aldehydes, and from enol phosphates of lactones and lactams. The transformation is rapid, scalable, and can be carried out in one pot, directly dehydrogenating saturated carbonyls.
Collapse
Affiliation(s)
- Bence B Botlik
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir Prelog Weg 3, HCI, 8093 Zürich, Switzerland.
| | - Patrick Finkelstein
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir Prelog Weg 3, HCI, 8093 Zürich, Switzerland.
| | - Ann-Sophie K Paschke
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir Prelog Weg 3, HCI, 8093 Zürich, Switzerland.
| | - Julia C Reisenbauer
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir Prelog Weg 3, HCI, 8093 Zürich, Switzerland.
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir Prelog Weg 3, HCI, 8093 Zürich, Switzerland.
| |
Collapse
|
5
|
Zhu C, Chen ZL, Li H, Lu L, Kang X, Xuan J, Zhu M. Rational Design of Highly Phosphorescent Nanoclusters for Efficient Photocatalytic Oxidation. J Am Chem Soc 2024; 146:23212-23220. [PMID: 39084600 DOI: 10.1021/jacs.4c05530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Analyzing the molecular structure-photophysical property correlations of metal nanoclusters to accomplish function-oriented photocatalysis could be challenging. Here, the selective heteroatom alloying has been exploited to a Au15 nanocluster, making up a structure-correlated nanocluster series, including homogold Au15, bimetallic AgxAu15-x and CuxAu15-x, trimetallic AgxCuyAu15-x-y, and tetrametallic Pt1AgxCuyAu15-x-y. Their structure-dependent photophysical properties were investigated due to the atomically precise structures of these nanoclusters. Cu-alloyed CuxAu15-x showed intense phosphorescence and the highest singlet oxygen production efficiency. Moreover, the generation of 1O2 species from excited nanoclusters enabled CuxAu15-x as a suitable catalyst for efficient photocatalytic oxidation of silyl enol ethers to produce α,β-unsaturated carbonyl compounds. The generality and applicability of the CuxAu15-x catalysts toward different photocatalytic oxidations were assessed. Overall, this study presents an intriguing Au15-based cluster series enabling an atomic-level understanding of structure-photophysical property correlations, which hopefully provides guidance for the fabrication of cluster-based catalysts with customized photocatalytic performance.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Ze-Le Chen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Luyao Lu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Jun Xuan
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
6
|
Xu Y, Zhang R, Zhou B, Dong G. Iridium-Catalyzed Oxidant-Free Transfer Dehydrogenation of Carboxylic Acids. J Am Chem Soc 2024; 146:22899-22905. [PMID: 39113204 DOI: 10.1021/jacs.4c07115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Direct dehydrogenation of carboxylic acids to their unsaturated counterparts represents a valuable transformation for complex molecule synthesis, which, however, has been challenging to achieve. In addition, the current carbonyl desaturation methods are almost all based on oxidative conditions. Here we report an Ir-catalyzed redox-neutral transfer dehydrogenation approach to directly convert carboxylic acids to either α,β- or β,γ-unsaturated counterparts. These reactions avoid using oxidants or strong bases, thus, tolerating various functional groups. The combined experimental and computational mechanistic studies suggest that this transfer hydrogenation reaction involves directed C-H oxidative addition, β-H elimination, and dihydride transfer to an alkene acceptor with C(sp3)-H reductive elimination as the turnover-limiting step.
Collapse
Affiliation(s)
- Yin Xu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Rui Zhang
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Bo Zhou
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
7
|
Zhang X, Chang M, Ni T, Zhang X, Zhao Q, Li W, Li T. Dehydrogenative [4 + 2] Annulation of 1-Indanones with Alkynes Enabled by In-Situ-Generated Nickel Hydride. Org Lett 2024; 26:6619-6624. [PMID: 39072679 DOI: 10.1021/acs.orglett.4c02272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A practical and effective nickel-catalyzed dehydrogenative [4 + 2] annulation of 1-indanones with alkynes was reported. In this protocol, nickel-catalyzed desaturation of 1-indanones and nickel hydride catalyzed coupling with alkynes were first incorporated. A cyclopentadiene-type nickel hydride species was generated in situ via β-H elimination, and they subsequently reacted with a wide variety of alkynes to afford various benzo[a]fluorenone derivatives in good yields and regioselectivity.
Collapse
Affiliation(s)
- Xu Zhang
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Mengfan Chang
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Tongtong Ni
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xuhan Zhang
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Qiang Zhao
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Wenguang Li
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Ting Li
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
8
|
Mak JYW, Rivero RJD, Hoang HN, Lim XY, Deng J, McWilliam HEG, Villadangos JA, McCluskey J, Corbett AJ, Fairlie DP. Potent Immunomodulators Developed from an Unstable Bacterial Metabolite of Vitamin B2 Biosynthesis. Angew Chem Int Ed Engl 2024; 63:e202400632. [PMID: 38679861 DOI: 10.1002/anie.202400632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024]
Abstract
Bacterial synthesis of vitamin B2 generates a by-product, 5-(2-oxopropylideneamino)-d-ribityl-aminouracil (5-OP-RU), with potent immunological properties in mammals, but it is rapidly degraded in water. This natural product covalently bonds to the key immunological protein MR1 in the endoplasmic reticulum of antigen presenting cells (APCs), enabling MR1 refolding and trafficking to the cell surface, where it interacts with T cell receptors (TCRs) on mucosal associated invariant T lymphocytes (MAIT cells), activating their immunological and antimicrobial properties. Here, we strategically modify this natural product to understand the molecular basis of its recognition by MR1. This culminated in the discovery of new water-stable compounds with extremely powerful and distinctive immunological functions. We report their capacity to bind MR1 inside APCs, triggering its expression on the cell surface (EC50 17 nM), and their potent activation (EC50 56 pM) or inhibition (IC50 80 nM) of interacting MAIT cells. We further derivatize compounds with diazirine-alkyne, biotin, or fluorophore (Cy5 or AF647) labels for detecting, monitoring, and studying cellular MR1. Computer modeling casts new light on the molecular mechanism of activation, revealing that potent activators are first captured in a tyrosine- and serine-lined cleft in MR1 via specific pi-interactions and H-bonds, before more tightly attaching via a covalent bond to Lys43 in MR1. This chemical study advances our molecular understanding of how bacterial metabolites are captured by MR1, influence cell surface expression of MR1, interact with T cells to induce immunity, and offers novel clues for developing new vaccine adjuvants, immunotherapeutics, and anticancer drugs.
Collapse
Affiliation(s)
- Jeffrey Y W Mak
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Ryan J D Rivero
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Huy N Hoang
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Xin Yi Lim
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Jieru Deng
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Hamish E G McWilliam
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
- Department of Biochemistry and Pharmacology Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - David P Fairlie
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
9
|
Marquès C, González-Lizana D, Diaba F, Bonjoch J. Synthesis of the ABC Core of Daphniphyllum Alkaloids with a [5-6-7] Azatricyclic Scaffold via Ring Expansion of Azabicyclic and Azatricyclic Building Blocks. J Org Chem 2024; 89:10212-10222. [PMID: 38950520 PMCID: PMC11267610 DOI: 10.1021/acs.joc.4c01090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
The [5-6-7] azatricyclic ABC core, found in several Daphniphyllum alkaloids, has been synthesized through a novel route involving ring expansion of a perhydroindolone to afford the AC ring system and a radical B ring closure as key steps. The level of functionalization of the reported octahydro-1,7-ethanocyclohepta[b]pyrroles suggests that they can serve as valuable building blocks in this alkaloid field. Also reported is the first synthesis of homomorphans by the ring enlargement of 2-azabicyclo[3.3.1]nonanes.
Collapse
Affiliation(s)
- Clàudia Marquès
- Laboratori de Química
Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - David González-Lizana
- Laboratori de Química
Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Faïza Diaba
- Laboratori de Química
Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Josep Bonjoch
- Laboratori de Química
Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| |
Collapse
|
10
|
Pal T, Ghosh P, Islam M, Guin S, Maji S, Dutta S, Das J, Ge H, Maiti D. Tandem dehydrogenation-olefination-decarboxylation of cycloalkyl carboxylic acids via multifold C-H activation. Nat Commun 2024; 15:5370. [PMID: 38918374 PMCID: PMC11199700 DOI: 10.1038/s41467-024-49359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
Dehydrogenation chemistry has long been established as a fundamental aspect of organic synthesis, commonly encountered in carbonyl compounds. Transition metal catalysis revolutionized it, with strategies like transfer-dehydrogenation, single electron transfer and C-H activation. These approaches, extended to multiple dehydrogenations, can lead to aromatization. Dehydrogenative transformations of aliphatic carboxylic acids pose challenges, yet engineered ligands and metal catalysis can initiate dehydrogenation via C-H activation, though outcomes vary based on substrate structures. Herein, we have developed a catalytic system enabling cyclohexane carboxylic acids to undergo multifold C-H activation to furnish olefinated arenes, bypassing lactone formation. This showcases unique reactivity in aliphatic carboxylic acids, involving tandem dehydrogenation-olefination-decarboxylation-aromatization sequences, validated by control experiments and key intermediate isolation. For cyclopentane carboxylic acids, reluctant to aromatization, the catalytic system facilitates controlled dehydrogenation, providing difunctionalized cyclopentenes through tandem dehydrogenation-olefination-decarboxylation-allylic acyloxylation sequences. This transformation expands carboxylic acids into diverse molecular entities with wide applications, underscoring its importance.
Collapse
Affiliation(s)
- Tanay Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Premananda Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, India
| | - Minhajul Islam
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, India
| | - Srimanta Guin
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Suman Maji
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Suparna Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Jayabrata Das
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Haibo Ge
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, USA.
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
11
|
Bodnar AK, Newhouse TR. Accessing Z-Enynes via Cobalt-Catalyzed Propargylic Dehydrogenation. Angew Chem Int Ed Engl 2024; 63:e202402638. [PMID: 38591826 DOI: 10.1002/anie.202402638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
Alkenes constitute an enabling motif in organic synthesis, as they can be functionalized to form highly substituted molecules. Z-alkenes are generally challenging to access due to the thermodynamic preference for the formation of E-alkenes compared to Z-alkenes. Dehydrogenation methodologies to selectively form Z-alkenes have not yet been reported. Herein, we report a Z-selective, propargylic dehydrogenation that provides 1,3-enynes through the invention of a Co-catalyzed oxidation system. Observation of a kinetic isotope effect (KIE) revealed that deprotonation of the propargylic position is the rate limiting step. Additionally, isomerization experiments were conducted and confirmed that the observed Z-selectivity is a kinetic effect. A proposed stereomechanistic model for the Z-selectivity is included.
Collapse
Affiliation(s)
- Alexandra K Bodnar
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, Connecticut, 06520-8107, United States
| | - Timothy R Newhouse
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, Connecticut, 06520-8107, United States
| |
Collapse
|
12
|
Jin Y, Li M, Chen Y, Li J, Wu W, Jiang H. Synthesis of Dienamides via Palladium-catalyzed Oxidative N-α,β-Dehydrogenation of Amides. Org Lett 2024; 26:4218-4223. [PMID: 38747898 DOI: 10.1021/acs.orglett.4c01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Enamides and their derivatives are prominent bioactive pharmacophores found in various bioactive molecules. Herein we report a palladium-catalyzed oxidative N-α,β-dehydrogenation of amides to produce a range of enamides with high yields and excellent tolerance toward different functional groups. Mechanistic studies indicate that the reaction involves allylic C(sp3)-H activation followed by β-H elimination. The effectiveness of this approach is demonstrated through late-stage functionalization of bioactive molecules and the synthesis of valuable compounds through product elaboration.
Collapse
Affiliation(s)
- Yangbin Jin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mingda Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yupeng Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiarui Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
13
|
Zhao C, Gao R, Ma W, Li M, Li Y, Zhang Q, Guan W, Fu J. A facile synthesis of α,β-unsaturated imines via palladium-catalyzed dehydrogenation. Nat Commun 2024; 15:4329. [PMID: 38773128 PMCID: PMC11109338 DOI: 10.1038/s41467-024-48737-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/13/2024] [Indexed: 05/23/2024] Open
Abstract
The dehydrogenation adjacent to an electron-withdrawing group provides an efficient access to α,β-unsaturated compounds that serving as versatile synthons in organic chemistry. However, the α,β-desaturation of aliphatic imines has hitherto proven to be challenging due to easy hydrolysis and preferential dimerization. Herein, by employing a pre-fluorination and palladium-catalyzed dehydrogenation reaction sequence, the abundant simple aliphatic amides are amendable to the rapid construction of complex molecular architectures to produce α,β-unsaturated imines. Mechanistic investigations reveal a Pd(0)/Pd(II) catalytic cycle involving oxidative H-F elimination of N-fluoroamide followed by a smooth α,β-desaturation of the in-situ generated aliphatic imine intermediate. This protocol exhibits excellent functional group tolerance, and even the carbonyl groups are compatible without any competing dehydrogenation, allowing for late-stage functionalization of complex bioactive molecules. The synthetic utility of this transformation has been further demonstrated by a diversity-oriented derivatization and a concise formal synthesis of (±)-alloyohimbane.
Collapse
Affiliation(s)
- Chunyang Zhao
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis and Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Rongwan Gao
- Department of Chemistry, Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Wenxuan Ma
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis and Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Miao Li
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis and Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yifei Li
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis and Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qian Zhang
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis and Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Wei Guan
- Department of Chemistry, Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China.
| | - Junkai Fu
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis and Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
14
|
Xu B, Liu X, Deng L, Shang Y, Jie X, Su W. Dehydrogenative synthesis of N-functionalized 2-aminophenols from cyclohexanones and amines: Molecular complexities via one-shot assembly. SCIENCE ADVANCES 2024; 10:eadn7656. [PMID: 38691610 PMCID: PMC11062582 DOI: 10.1126/sciadv.adn7656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/28/2024] [Indexed: 05/03/2024]
Abstract
Polyfunctionalized arenes are privileged structural motifs in both academic and industrial chemistry. Conventional methods for accessing this class of chemicals usually involve stepwise modification of phenyl rings, often necessitating expensive noble metal catalysts and suffering from low reactivity and selectivity when introducing multiple functionalities. We herein report dehydrogenative synthesis of N-functionalized 2-aminophenols from cyclohexanones and amines. The developed reaction system enables incorporating amino and hydroxyl groups into aromatic rings in a one-shot fashion, which simplifies polyfunctionalized 2-aminophenol synthesis by circumventing issues associated with traditional arene modifications. The wide substrate scope and excellent functional group tolerance are exemplified by late-stage modification of complex natural products and pharmaceuticals that are unattainable by existing methods. This dehydrogenative protocol benefits from using 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) as oxidant that offers interesting chemo- and regio-selective oxidation processes. More notably, the essential role of in situ generated water is disclosed, which protects aliphatic amine moieties from overoxidation via hydrogen bond-enabled interaction.
Collapse
Affiliation(s)
- Biping Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Xiaojie Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Lei Deng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yaping Shang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Xiaoming Jie
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
15
|
Bodnar AK, Szewczyk SM, Sun Y, Chen Y, Huang AX, Newhouse TR. Comprehensive Mechanistic Analysis of Palladium- and Nickel-Catalyzed α,β-Dehydrogenation of Carbonyls via Organozinc Intermediates. J Org Chem 2024; 89:3123-3132. [PMID: 38377547 PMCID: PMC11000628 DOI: 10.1021/acs.joc.3c02572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Introducing degrees of unsaturation into small molecules is a central transformation in organic synthesis. A strategically useful category of this reaction type is the conversion of alkanes into alkenes for substrates with an adjacent electron-withdrawing group. An efficient strategy for this conversion has been deprotonation to form a stabilized organozinc intermediate that can be subjected to α,β-dehydrogenation through palladium or nickel catalysis. This general reactivity blueprint presents a window to uncover and understand the reactivity of Pd- and Ni-enolates. Within this context, it was determined that β-hydride elimination is slow and proceeds via concerted syn-elimination. One interesting finding is that β-hydride elimination can be preferred to a greater extent than C-C bond formation for Ni, more so than with Pd, which defies the generally assumed trends that β-hydride elimination is more facile with Pd than Ni. The discussion of these findings is informed by KIE experiments, DFT calculations, stoichiometric reactions, and rate studies. Additionally, this report details an in-depth analysis of a methodological manifold for practical dehydrogenation and should enable its application to challenges in organic synthesis.
Collapse
Affiliation(s)
- Alexandra K Bodnar
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Suzanne M Szewczyk
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Yang Sun
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Yifeng Chen
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Anson X Huang
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Timothy R Newhouse
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
16
|
Wan Y, Adda AK, Qian J, Vaccaro DA, He P, Li G, Norton JR. Hydrogen Atom Transfer (HAT)-Mediated Remote Desaturation Enabled by Fe/Cr-H Cooperative Catalysis. J Am Chem Soc 2024; 146:4795-4802. [PMID: 38329998 DOI: 10.1021/jacs.3c13085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
An iron/chromium system (Fe(OAc)2, CpCr(CO)3H) catalyzes the preparation of β,γ- or γ,δ-unsaturated amides from 1,4,2-dioxazol-5-ones. An acyl nitrenoid iron complex seems likely to be responsible for C-H activation. A cascade of three H• transfer steps appears to be involved: (i) the abstraction of H• from a remote C-H bond by the nitrenoid N, (ii) the transfer of H• from Cr to N, and (iii) the abstraction of H• from a radical substituent by the Cr•. The observed kinetic isotope effects are consistent with the proposed mechanism if nitrenoid formation is the rate-determining step. The Fe/Cr catalysts can also desaturate substituted 1,4,2-dioxazol-5-ones to 3,5-dienamides.
Collapse
Affiliation(s)
- Yanjun Wan
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322, United States
| | - Augustine K Adda
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Jin Qian
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - David A Vaccaro
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Peixian He
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Gang Li
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322, United States
| | - Jack R Norton
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|
17
|
Ji K, Johnson RP, McNeely J, Al Faruk M, Porco JA. Asymmetric Synthesis of Nidulalin A and Nidulaxanthone A: Selective Carbonyl Desaturation Using an Oxoammonium Salt. J Am Chem Soc 2024; 146:4892-4902. [PMID: 38319883 PMCID: PMC10922861 DOI: 10.1021/jacs.3c13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Nidulaxanthone A is a dimeric, dihydroxanthone natural product that was isolated in 2020 from Aspergillus sp. Structurally, the compound features an unprecedented heptacyclic 6/6/6/6/6/6/6 ring system which is unusual for natural xanthone dimers. Biosynthetically, nidulaxanthone A originates from the monomer nidulalin A via stereoselective Diels-Alder dimerization. To expedite the synthesis of nidulalin A and study the proposed dimerization, we developed methodology involving the use of allyl triflate for chromone ester activation, followed by vinylogous addition, to rapidly forge the nidulalin A scaffold in a four-step sequence which also features ketone desaturation using Bobbitt's oxoammonium salt. An asymmetric synthesis of nidulalin A was achieved using acylative kinetic resolution (AKR) of chiral, racemic 2H-nidulalin A. Dimerization of enantioenriched nidulalin A to nidulaxanthone A was achieved using solvent-free, thermolytic conditions. Computational studies have been conducted to probe both the oxoammonium-mediated desaturation and (4 + 2) dimerization events.
Collapse
Affiliation(s)
- Kaijie Ji
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Richard P. Johnson
- Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - James McNeely
- Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Md Al Faruk
- Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - John A. Porco
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
18
|
Wen C, Li T, Huang Z, Kang QK. Oxidative Dehydrogenation of Alkanes through Homogeneous Base Metal Catalysis. CHEM REC 2023; 23:e202300146. [PMID: 37283443 DOI: 10.1002/tcr.202300146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/25/2023] [Indexed: 06/08/2023]
Abstract
Preparing valuable olefins from cheap and abundant alkane resources has long been a challenging task in organic synthesis, which mainly suffers from harsh reaction conditions and narrow scopes. Homogeneous transition metals catalyzed dehydrogenation of alkanes has attracted much attention for its excellent catalytic activities under relatively milder conditions. Among them, base metal catalyzed oxidative alkane dehydrogenation has emerged as a viable strategy for olefin synthesis for its usage of cheap catalysts, compatibility with various functional groups, and low reaction temperature. In this review, we discuss recent development of base metal catalyzed alkane dehydrogenation under oxidative conditions and their application in constructing complex molecules.
Collapse
Affiliation(s)
- Chenxi Wen
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Ting Li
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Zheng Huang
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qi-Kai Kang
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
19
|
Sheng T, Kang G, Zhuang Z, Chekshin N, Wang Z, Hu L, Yu JQ. Synthesis of β,γ-Unsaturated Aliphatic Acids via Ligand-Enabled Dehydrogenation. J Am Chem Soc 2023; 145:20951-20958. [PMID: 37698388 PMCID: PMC11152581 DOI: 10.1021/jacs.3c06423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
α,β-Dehydrogenation of aliphatic acids has been realized through both enolate and β-C-H metalation pathways. However, the synthesis of isolated β,γ-unsaturated aliphatic acids via dehydrogenation has not been achieved to date. Herein, we report the ligand-enabled β,γ-dehydrogenation of abundant and inexpensive free aliphatic acids, which provides a new synthetic disconnection as well as a versatile platform for the downstream functionalization of complex molecules at remote γ-sites. A variety of free aliphatic acids, including acyclic and cyclic systems with ring sizes from five-membered to macrocyclic, undergo efficient dehydrogenation. Notably, this protocol features good chemoselectivity in the presence of more accessible α-C-H bonds and excellent regioselectivity in fused bicyclic scaffolds. The utility of this protocol has been demonstrated by the late-stage functionalization of a series of bioactive terpene natural products at the γ-sites. Further functionalization of the β,γ-double bond allows for the installation of covalent warheads, including epoxides, aziridines, and β-lactones, into complex natural product scaffolds, which are valuable for targeted covalent drug discovery.
Collapse
Affiliation(s)
- Tao Sheng
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Guowei Kang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Zhe Zhuang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Nikita Chekshin
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Zhen Wang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Liang Hu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
20
|
Nozawa-Kumada K, Hayashi M, Kwon E, Shigeno M, Yada A, Kondo Y. Copper-Catalyzed Intramolecular Olefinic C(sp 2)-H Amidation for the Synthesis of γ-Alkylidene- γ-lactams. Molecules 2023; 28:6682. [PMID: 37764458 PMCID: PMC10537769 DOI: 10.3390/molecules28186682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Herein, we report the copper-catalyzed dehydrogenative C(sp2)-N bond formation of 4-pentenamides via nitrogen-centered radicals. This reaction provides a straightforward and efficient preparation method for γ-alkylidene-γ-lactams. Notably, we could controllably synthesize α,β-unsaturated- or α,β-saturated-γ-alkylidene-γ-lactams depending on the reaction conditions.
Collapse
Affiliation(s)
- Kanako Nozawa-Kumada
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Miyagi, Japan (M.S.); (Y.K.)
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan;
| | - Masahito Hayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Miyagi, Japan (M.S.); (Y.K.)
| | - Eunsang Kwon
- Endowed Research Laboratory of Dimensional Integrated Nanomaterials, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Miyagi, Japan;
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Miyagi, Japan
| | - Masanori Shigeno
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Miyagi, Japan (M.S.); (Y.K.)
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi 332-0012, Saitama, Japan
| | - Akira Yada
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan;
| | - Yoshinori Kondo
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Miyagi, Japan (M.S.); (Y.K.)
| |
Collapse
|
21
|
Schwengers SA, Gerosa GG, Amatov T, Yasukawa N, Brunen S, Leutzsch M, Mitschke B, Shevchenko GA, List B. Direct Regioselective Dehydrogenation of α-Substituted Cyclic Ketones. Angew Chem Int Ed Engl 2023; 62:e202307081. [PMID: 37337974 DOI: 10.1002/anie.202307081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
We disclose a highly regioselective, catalytic one-step dehydrogenation of α-substituted cyclic ketones in the presence of 2,3-dichlorobenzo-5,6-dicyano-1,4-benzoquinone (DDQ). The high regioselectivity originates from a phosphoric acid-catalyzed enolization, selectively affording the thermodynamically preferred enol, followed by the subsequent oxidation event. Our method provides reliable access to several α-aryl and α-alkyl substituted α,β-unsaturated ketones.
Collapse
Affiliation(s)
| | | | - Tynchtyk Amatov
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Naoki Yasukawa
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Sebastian Brunen
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Benjamin Mitschke
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Grigory André Shevchenko
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
22
|
Yuan P, Liu R, Zhu HM, Liao Z, Xiang JC, Wu AX. An I 2-DMSO catalytic manifold enabled aromatization for C-ring editing of podophyllotoxone. Org Biomol Chem 2023; 21:6468-6473. [PMID: 37539709 DOI: 10.1039/d3ob00927k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The precise aromatization of the C-ring of podophyllotoxone to access value-added dehydropodophyllotoxin derivatives conventionally requires the use of equivalent amounts of unsustainable oxidants and suffers from inefficiencies. Taking advantage of the hydridic character of the C8 and C8' of podophyllotoxone, we have developed an I2-DMSO catalytic manifold that enables a green and selective dehydrogenative aromatization to overcome these synthetic challenges. An unprecedented dehydrogenative amination of podophyllotoxone derivatives was also realized using aniline as the reaction partner.
Collapse
Affiliation(s)
- Peng Yuan
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Rui Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Hui-Min Zhu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Zhixin Liao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Jia-Chen Xiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - An-Xin Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
23
|
Meng G, Hu L, Chan HSS, Qiao JX, Yu JQ. Synthesis of 1,3-Dienes via Ligand-Enabled Sequential Dehydrogenation of Aliphatic Acids. J Am Chem Soc 2023; 145:13003-13007. [PMID: 37285407 PMCID: PMC11139440 DOI: 10.1021/jacs.3c03378] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
1,3-Dienes are common scaffolds in biologically active natural products as well as building blocks for chemical synthesis. Developing efficient methods for the synthesis of diverse 1,3-dienes from simple starting materials is therefore highly desirable. Herein, we report a Pd(II)-catalyzed sequential dehydrogenation reaction of free aliphatic acids via β-methylene C-H activation, which enables one-step synthesis of diverse E,E-1,3-dienes. Free aliphatic acids of varying complexities, including the antiasthmatic drug seratrodast, were found to be compatible with the reported protocol. Considering the high lability of 1,3-dienes and lack of protecting strategies, dehydrogenation of aliphatic acids to reveal 1,3-dienes at the late stage of synthesis offers an appealing strategy for the synthesis of complex molecules containing such motifs.
Collapse
Affiliation(s)
| | | | - Hau Sun Sam Chan
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jennifer X. Qiao
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
24
|
Chen XW, Hou ZC, Chen C, Zhang LH, Chen ME, Zhang FM. Enantioselective total syntheses of six natural and two proposed meroterpenoids from Psoralea corylifolia. Chem Sci 2023; 14:5699-5704. [PMID: 37265714 PMCID: PMC10231314 DOI: 10.1039/d3sc00582h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/01/2023] [Indexed: 06/03/2023] Open
Abstract
The first enantioselective total syntheses of six natural and two proposed meroterpenoids isolated from Psoralea corylifolia have been achieved in 7-9 steps from 2-methylcyclohexanone. The current synthetic approaches feature a high level of synthetic flexibility, stereodivergent fashion and short synthetic route, thereby providing a potential platform for the preparation of numerous this-type meroterpenoids and their pseudo-natural products.
Collapse
Affiliation(s)
- Xiao-Wei Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Zi-Chao Hou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Chi Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Ling-Hui Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Meng-En Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| |
Collapse
|
25
|
Chen Z, Li H, Liao Y, Wang M, Su W. Direct synthesis of alkylated 4-hydroxycoumarin derivatives via a cascade Cu-catalyzed dehydrogenation/conjugate addition sequence. Chem Commun (Camb) 2023; 59:6686-6689. [PMID: 37183637 DOI: 10.1039/d3cc01960h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
An efficient approach for the direct synthesis of alkylated 4-hydroxycoumarin derivatives via a Cu-catalyzed cascade dehydrogenation/conjugate addition sequence starting from simple saturated ketones and 4-hydroxycoumarins has been developed. This protocol features excellent functional-group tolerance, easy scale-up, and a broad substrate scope including bioactive molecules. More importantly, a series of marketed drugs, such as warfarin, acenocoumarol, coumachlor, and coumafuryl, can be obtained by this method.
Collapse
Affiliation(s)
- Zhiliang Chen
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Hongyi Li
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Yanjing Liao
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Mengqi Wang
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| |
Collapse
|
26
|
Angyal P, Kotschy AM, Dudás Á, Varga S, Soós T. Intertwining Olefin Thianthrenation with Kornblum/Ganem Oxidations: Ene-type Oxidation to Furnish α,β-Unsaturated Carbonyls. Angew Chem Int Ed Engl 2023; 62:e202214096. [PMID: 36408745 PMCID: PMC10108043 DOI: 10.1002/anie.202214096] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Indexed: 11/22/2022]
Abstract
A widely applicable, practical, and scalable synthetic method for efficient ene-type double oxidation of alkenes is reported via a two-step alkenyl thianthrenium umpolung/Kornblum-Ganem oxidation strategy. This chemo- and stereoselective procedure allows easy access to various α,β-unsaturated carbonyls that may be otherwise difficult or cumbersome to synthesize by conventional methods. For α-olefins, this metal-free transformation can be tuned according to synthetic needs to produce either the elusive (Z)-unsaturated aldehydes or their (E) counterparts. Moreover, this strategy has enabled streamlined synthesis of distinct butadienyl pheromones and kairomones.
Collapse
Affiliation(s)
- Péter Angyal
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary.,Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - András M Kotschy
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary.,Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - Ádám Dudás
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary.,Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - Szilárd Varga
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Tibor Soós
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| |
Collapse
|
27
|
Li H, Yin C, Liu S, Tu H, Lin P, Chen J, Su W. Multiple remote C(sp 3)-H functionalizations of aliphatic ketones via bimetallic Cu-Pd catalyzed successive dehydrogenation. Chem Sci 2022; 13:13843-13850. [PMID: 36544736 PMCID: PMC9710215 DOI: 10.1039/d2sc05370e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
The dehydrogenation-triggered multiple C(sp3)-H functionalizations at remote positions γ, δ or ε, ζ to carbonyl groups of aliphatic ketones with aryl/alkenyl carboxylic acids as coupling partners have been achieved using a bimetallic Cu-Pd catalyst system. This reaction allows access to alkenylated isocoumarins and their derivatives in generally good yields with high functional group tolerance. The identification of bimetallic Cu-Pd synergistic catalysis for efficient successive dehydrogenation of aliphatic ketones, which overcomes the long-standing challenge posed by the successive dehydrogenation desaturation of terminally unsubstituted alkyl chains in aliphatic ketones, is essential to achieving this bimetallic Cu-Pd catalyzed dehydrogenation coupling reaction.
Collapse
Affiliation(s)
- Hongyi Li
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| | - Chang Yin
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350002 China
| | - Sien Liu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| | - Hua Tu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| | - Ping Lin
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| | - Jing Chen
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| |
Collapse
|
28
|
Zheng QC, Peng SY, Cong SQ, Ning XY, Guo Y, Li MJ, Wang WS, Cui XJ, Luo FX. Unexpected Cascade Dehydrogenation Triggered by Pd/Cu-Catalyzed C(sp 3)–H Arylation/Intramolecular C–N Coupling of Amides: Facile Access to 1,2-Dihydroquinolines. Org Lett 2022; 24:8283-8288. [DOI: 10.1021/acs.orglett.2c03203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qiu-Cui Zheng
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
| | - Si-Yuan Peng
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Si-Qi Cong
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xin-Yu Ning
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yan Guo
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Meng-Jiao Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Wen-Shu Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
| | - Xiao-Jie Cui
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
| | - Fei-Xian Luo
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
- Center for Bioimaging & System Biology, Minzu University of China, Beijing 100081, China
| |
Collapse
|
29
|
Yang S, Fan H, Xie L, Dong G, Chen M. Photoinduced Desaturation of Amides by Palladium Catalysis. Org Lett 2022; 24:6460-6465. [PMID: 36040045 DOI: 10.1021/acs.orglett.2c02594] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A photoinduced palladium-catalyzed desaturation method that is suitable for converting the linear amides to their α,β-unsaturated counterparts is reported. The reaction does not require strong base/acid or sulfur/selenium and oxidant reagents and can be carried out at room temperature through a simple one-step operation. The protocol exhibits great scalability and functional group tolerance. The reaction mechanism has been investigated through deuterium labeling experiments, radical clock, radical capture, and kinetic studies. Mechanistic studies suggested a radical pathway involving aryl/alkyl Pd-radical intermediates.
Collapse
Affiliation(s)
- Sen Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Huike Fan
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Licheng Xie
- Huaide College, Changzhou University, Jingjiang 214513, China
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
30
|
Xu B, Su W. A Tandem Dehydrogenation-Driven Cross-Coupling between Cyclohexanones and Primary Amines for Construction of Benzoxazoles. Angew Chem Int Ed Engl 2022; 61:e202203365. [PMID: 35546303 DOI: 10.1002/anie.202203365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 01/27/2023]
Abstract
Herein, we report a transition metal-free, operationally simple, general method for straightforward syntheses of 2-substituted benzoxazoles from readily available cyclohexanones and aliphatic primary amines by an imine α-oxygenation-initiated cascade reaction sequence. The key to achieving high selectivity and excellent functional-group tolerance is the use of TEMPO as a mild oxidant that selectively oxidizes the reaction intermediates through its multiple reactivity modes, thus facilitating the individual steps to proceed in succession. More than 70 substrate combinations are disclosed, demonstrating the reliability of this protocol to synthesize structurally diverse products, including marketed drugs, drug candidate, and natural products that are unattainable by the existing methods.
Collapse
Affiliation(s)
- Biping Xu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, China
| |
Collapse
|
31
|
Keerthana MS, Jeganmohan M. Synthesis of conjugated dienes via palladium-catalysed aerobic dehydrogenation of unsaturated acids and amides. Chem Commun (Camb) 2022; 58:8814-8817. [PMID: 35843120 DOI: 10.1039/d2cc02896d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Pd(II)-catalyzed direct aerobic dehydrogenation of γ,δ-olefinic acids and amides has been demonstrated. The present protocol dehydrogenates the least acidic amides and acids, thus replacing the traditional enolate strategy for dehydrogenation. A broad spectrum of conjugated dienamides and dienoic acids were produced in good to excellent yields. A possible reaction mechanism was proposed and supported by deuterium labelling studies.
Collapse
Affiliation(s)
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
32
|
Sheng T, Zhuang Z, Wang Z, Hu L, Herron AN, Qiao JX, Yu JQ. One-Step Synthesis of β-Alkylidene-γ-lactones via Ligand-Enabled β,γ-Dehydrogenation of Aliphatic Acids. J Am Chem Soc 2022; 144:12924-12933. [PMID: 35802794 DOI: 10.1021/jacs.2c04779] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ligand-enabled Pd-catalyzed regioselective α,β-dehydrogenation of carbonyl compounds via β-methylene C-H activation has recently emerged as a promising transformation. Herein, we report the realization of β,γ-dehydrogenation and subsequent vinyl C-H olefination reactions of free carboxylic acids, thus providing a unique method for the structural diversification of aliphatic acids containing α-quaternary centers through sequential functionalizations of two β-C-H bonds and one γ-C-H bond. This tandem dehydrogenation-olefination-lactonization reaction offers a one-step preparation of β-alkylidene-γ-lactones, which are often difficult to prepare through conventional methods, from inexpensive and abundant free aliphatic acids. A variety of free aliphatic acids, such as isosteviol and grandiflorolic acid natural products, and olefins are compatible with the reported protocol. The newly designed bidentate oxime ether-pyridone and morpholine-pyridone ligands are crucial for this tandem reaction to proceed. Notably, these ligands also enable preferential methylene C-H activation over the previously reported, competing process of methyl C-H bond olefination.
Collapse
Affiliation(s)
- Tao Sheng
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Zhe Zhuang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Zhen Wang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Liang Hu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Alastair N Herron
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jennifer X Qiao
- Discovery Chemistry, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
33
|
Yu WL, Ren ZG, Ma KX, Yang HQ, Yang JJ, Zheng H, Wu W, Xu PF. Cobalt-catalyzed chemoselective dehydrogenation through radical translocation under visible light. Chem Sci 2022; 13:7947-7954. [PMID: 35865906 PMCID: PMC9258329 DOI: 10.1039/d2sc02291e] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
The transformations that allow the direct removal of hydrogen from their corresponding saturated counterparts by the dehydrogenative strategy are a dream reaction that has remained largely underexplored. In this report, a straightforward and robust cobaloxime-catalyzed photochemical dehydrogenation strategy via intramolecular HAT is described for the first time. The reaction proceeds through an intramolecular radical translocation followed by the cobalt assisted dehydrogenation without needing any other external photosensitizers, noble-metals or oxidants. With this approach, a series of valuable unsaturated compounds such as α,β-unsaturated amides, enamides and allylic and homoallylic sulfonamides were obtained in moderate to excellent yields with good chemo- and regioselectivities, and the synthetic versatility was demonstrated by a range of transformations. And mechanistic studies of the method are discussed.
Collapse
Affiliation(s)
- Wan-Lei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
- Frontiers Science Center for Rare Isotopes, Lanzhou University Lanzhou China
| | - Zi-Gang Ren
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Ke-Xing Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Hui-Qing Yang
- Henan and Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University Kaifeng 475004 China
| | - Jun-Jie Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences Lanzhou China
| | - Wangsuo Wu
- Frontiers Science Center for Rare Isotopes, Lanzhou University Lanzhou China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences Lanzhou China
- Frontiers Science Center for Rare Isotopes, Lanzhou University Lanzhou China
| |
Collapse
|
34
|
Xu B, Su W. A Tandem Dehydrogenation‐Driven Cross‐Coupling between Cyclohexanones and Primary Amines for Construction of Benzoxazoles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Biping Xu
- FIRSM: Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter Chemistry CHINA
| | - Weiping Su
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences State Key Laboratory of Structural Chemistry Yangqiao West Road 155# 350002 Fuzhou CHINA
| |
Collapse
|
35
|
Wang J, Zhuang Y, Zhao J, Bi Y, Li C, Bi G, Yang K, Huang X, Zhang W. Copper-catalyzed direct sulfenoamination of saturated ketones via in situ formed enaminones. Org Biomol Chem 2022; 20:1749-1753. [PMID: 35142759 DOI: 10.1039/d1ob02469h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A sequential and efficient protocol for the synthesis of α-thiolated enaminones has been developed using copper-TEMPO systems. This reaction features a broad substrate scope to afford the desired product in good to excellent yields with high stereoselectivity. A preliminary mechanistic study suggests that the in situ formed enaminone acts as the key intermediate.
Collapse
Affiliation(s)
- Jiateng Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, P. R. China.
| | - Yunqing Zhuang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, P. R. China.
| | - Jie Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, P. R. China.
| | - Yusong Bi
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, P. R. China.
| | - Chunyan Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, P. R. China.
| | - Gehua Bi
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, P. R. China.
| | - Kai Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, P. R. China.
| | - Xin Huang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, P. R. China.
| | - Weimin Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, P. R. China.
| |
Collapse
|
36
|
Ikeda T, Ochiishi H, Yoshida M, Yazaki R, Ohshima T. Catalytic Dehydrogenative β-Alkylation of Amino Acid Schiff Bases with Hydrocarbon. Org Lett 2022; 24:369-373. [PMID: 34918939 DOI: 10.1021/acs.orglett.1c04042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A synthetic method for the synthesis of a highly congested α,β-dehydroamino acid through the β-C-H bond activation of an amino acid Schiff base is described. Abundant hydrocarbon feedstock could be used as an alkylating reagent to afford an α,β-dehydroamino acid bearing a quaternary carbon at the γ-position with an exclusively (Z)-geometry. Notably, a tetrasubstituted olefin could be constructed from saturated starting materials. The transformation of the synthesized α,β-dehydroamino acid into unnatural α-amino acid derivatives was also demonstrated.
Collapse
Affiliation(s)
- Tetsu Ikeda
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Haruka Ochiishi
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Mana Yoshida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryo Yazaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Ohshima
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
37
|
Wang Z, Hu L, Chekshin N, Zhuang Z, Qian S, Qiao JX, Yu JQ. Ligand-controlled divergent dehydrogenative reactions of carboxylic acids via C-H activation. Science 2021; 374:1281-1285. [PMID: 34762490 PMCID: PMC9084903 DOI: 10.1126/science.abl3939] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dehydrogenative transformations of alkyl chains to alkenes through methylene carbon-hydrogen (C–H) activation remain a substantial challenge. We report two classes of pyridine-pyridone ligands that enable divergent dehydrogenation reactions through palladium-catalyzed β-methylene C–H activation of carboxylic acids, leading to the direct syntheses of α,β-unsaturated carboxylic acids or γ-alkylidene butenolides. The directed nature of this pair of reactions allows chemoselective dehydrogenation of carboxylic acids in the presence of other enolizable functionalities such as ketones, providing chemoselectivity that is not possible by means of existing carbonyl desaturation protocols. Product inhibition is overcome through ligand-promoted preferential activation of C(sp3)–H bonds rather than C(sp2)–H bonds or a sequence of dehydrogenation and vinyl C–H alkynylation. The dehydrogenation reaction is compatible with molecular oxygen as the terminal oxidant.
Collapse
Affiliation(s)
- Zhen Wang
- The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Liang Hu
- The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Nikita Chekshin
- The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Zhe Zhuang
- The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shaoqun Qian
- The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jennifer X. Qiao
- Discovery Chemistry, Bristol-Myers Squibb, PO Box 4000, Princeton, NJ 08543, USA
| | - Jin-Quan Yu
- The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
38
|
Abstract
Desaturation of inert aliphatic C-H bonds in alkanes to form the corresponding alkenes is challenging. In this communication, a new and practical strategy for remote site-selective desaturation of amides via radical chemistry is reported. The readily installed N-allylsulfonylamide moiety serves as an N radical precursor. Intramolecular 1,5-hydrogen atom transfer from an inert C-H bond to the N-radical generates a translocated C-radical which is subsequently oxidized and deprotonated to give the corresponding alkene. The commercially available methanesulfonyl chloride is used as reagent and a Cu/Ag-couple as oxidant. The remote desaturation is realized on different types of unactivated sp3 -C-H bonds. The potential synthetic utility of this method is further demonstrated by the dehydrogenation of natural product derivatives and drugs.
Collapse
Affiliation(s)
- Yong Xia
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
- School of Chemistry and Chemical EngineeringChongqing UniversityNo.55 University Town South Road, Shapingba DistrictChongqing400044P. R. China
| | - Kalipada Jana
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| |
Collapse
|
39
|
Zhou MJ, Zhang L, Liu G, Xu C, Huang Z. Site-Selective Acceptorless Dehydrogenation of Aliphatics Enabled by Organophotoredox/Cobalt Dual Catalysis. J Am Chem Soc 2021; 143:16470-16485. [PMID: 34592106 DOI: 10.1021/jacs.1c05479] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The value of catalytic dehydrogenation of aliphatics (CDA) in organic synthesis has remained largely underexplored. Known homogeneous CDA systems often require the use of sacrificial hydrogen acceptors (or oxidants), precious metal catalysts, and harsh reaction conditions, thus limiting most existing methods to dehydrogenation of non- or low-functionalized alkanes. Here we describe a visible-light-driven, dual-catalyst system consisting of inexpensive organophotoredox and base-metal catalysts for room-temperature, acceptorless-CDA (Al-CDA). Initiated by photoexited 2-chloroanthraquinone, the process involves H atom transfer (HAT) of aliphatics to form alkyl radicals, which then react with cobaloxime to produce olefins and H2. This operationally simple method enables direct dehydrogenation of readily available chemical feedstocks to diversely functionalized olefins. For example, we demonstrate, for the first time, the oxidant-free desaturation of thioethers and amides to alkenyl sulfides and enamides, respectively. Moreover, the system's exceptional site selectivity and functional group tolerance are illustrated by late-stage dehydrogenation and synthesis of 14 biologically relevant molecules and pharmaceutical ingredients. Mechanistic studies have revealed a dual HAT process and provided insights into the origin of reactivity and site selectivity.
Collapse
Affiliation(s)
- Min-Jie Zhou
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Lei Zhang
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Guixia Liu
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chen Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zheng Huang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
40
|
Direct synthesis of p-methyl benzaldehyde from acetaldehyde via an organic amine-catalyzed dehydrogenation mechanism. iScience 2021; 24:103028. [PMID: 34522868 PMCID: PMC8426279 DOI: 10.1016/j.isci.2021.103028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/25/2021] [Accepted: 08/19/2021] [Indexed: 11/22/2022] Open
Abstract
p-Methyl benzaldehyde (p-MBA) is a class of key chemical intermediates of pharmaceuticals. Conventional industrial processes for p-MBA production involve the consecutive photochlorination, amination, and acid hydrolysis of petroleum-derived p-xylene, while producing vast pollutants and waste water. Herein, we report a direct, green route for selective synthesis of p-MBA from acetaldehyde using a diphenyl prolinol trimethylsilyl ether catalyst. The optimized p-MBA selectivity is up to 90% at an acetaldehyde conversion as high as 99.8%. Intermediate structure and 18O-isotope data revealed that the conversion of acetaldehyde to p-methylcyclohexadienal intermediates proceeds in an enamine-iminium intermediate mechanism. Then, controlled experiments and D-isotope results indicated that the dehydrogenation of p-methylcyclohexadienal to p-MBA and H2 is catalyzed by the same amines through an iminium intermediate. This is an example that metal-free amines catalyze the dehydrogenation (releasing H2), rather than using metals or stoichiometric oxidants. A direct route to produce p-methyl benzaldehyde from biomass-derived acetaldehyde Revealing the reaction kinetics and mechanism under reaction conditions An example of an organic amine-catalyzed dehydrogenation-aromatization reaction
Collapse
|
41
|
Ju W, Wang X, Tian H, Gui J. Asymmetric Total Synthesis of Clionastatins A and B. J Am Chem Soc 2021; 143:13016-13021. [PMID: 34398601 DOI: 10.1021/jacs.1c07511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Herein we report the first total synthesis of polychlorinated steroids clionastatins A and B, which was accomplished asymmetrically by means of a convergent, radical fragment coupling approach. Key features of the synthesis include an Ireland-Claisen rearrangement to introduce the C5 stereocenter (which was ultimately transferred to the C10 quaternary stereocenter of the clionastatins via a traceless stereochemical relay), a regioselective acyl radical conjugate addition to join the two fragments, an intramolecular Heck reaction to install the C10 quaternary stereocenter, and a diastereoselective olefin dichlorination to establish the synthetically challenging pseudoequatorial dichlorides. This work also enabled us to determine that the true structures of clionastatins A and B are in fact C14 epimers of the originally proposed structures.
Collapse
Affiliation(s)
- Wei Ju
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xudong Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Hailong Tian
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jinghan Gui
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
42
|
Wu H, Ding Y, Hu K, Long X, Qu C, Puno PT, Deng J. Bioinspired Network Analysis Enabled Divergent Syntheses and Structure Revision of Pentacyclic Cytochalasans. Angew Chem Int Ed Engl 2021; 60:15963-15971. [PMID: 33860618 DOI: 10.1002/anie.202102831] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 12/11/2022]
Abstract
We accomplished the divergent total syntheses of ten pentacyclic cytochalasans (aspergillin PZ, trichodermone, trichoderones, flavipesines, and flavichalasines) from a common precursor aspochalasin D and revised the structures of trichoderone B, spicochalasin A, flavichalasine C, aspergilluchalasin based on structure network analysis of the cytochalasans biosynthetic pathways and DFT calculations. The key steps of the syntheses include transannular alkene/epoxyalkene and carbonyl-ene cyclizations to establish the C/D ring of pentacyclic aspochalasans. Our bioinspired approach to these pentacyclic cytochalasans validate the proposed biosynthetic speculation from a chemical view and provide a platform for the synthesis of more than 400 valuable cytochalasans bearing different macrocycles and amino-acid residues.
Collapse
Affiliation(s)
- Hai Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yiming Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Kun Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Xianwen Long
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chunlei Qu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Pema-Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Jun Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China.,State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
43
|
Wu H, Ding Y, Hu K, Long X, Qu C, Puno P, Deng J. Bioinspired Network Analysis Enabled Divergent Syntheses and Structure Revision of Pentacyclic Cytochalasans. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hai Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
- University of Chinese Academy of Sciences Beijing 100049 China
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Yiming Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
- University of Chinese Academy of Sciences Beijing 100049 China
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Kun Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Xianwen Long
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
- University of Chinese Academy of Sciences Beijing 100049 China
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Chunlei Qu
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
- University of Chinese Academy of Sciences Beijing 100049 China
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Pema‐Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Jun Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
44
|
Abstract
The development of novel synthetic methods remains a cornerstone in simplifying complex molecule synthesis. Progress in the field of transition metal catalysis has enabled new mechanistic strategies to achieve difficult chemical transformations, increased the value of abundant chemical building blocks, and pushed the boundaries of creative and strategic route design to improve step economy in multistep synthesis. Methodologies to introduce an olefin into saturated molecules continue to be essential transformations because of the plethora of reactions available for alkene functionalization. Of particular importance are dehydrogenation reactions adjacent to electron-withdrawing groups such as carbonyls, which advantageously provide activated olefins that can be regioselectively manipulated. Palladium catalysis occupies a central role in the most widely adopted carbonyl dehydrogenation reactions, but limits to the scope of these protocols persist.In this Account, we describe our group's contributions to the area of transition-metal-catalyzed dehydrogenation using palladium catalysis and more sustainable and economical nickel catalysis. These metals are used in conjunction with allyl and aryl halides or pseudohalides that serve as oxidants to access a unique mechanistic approach for one-step α,β-dehydrogenation of various electron-withdrawing groups, including ketones, esters, nitriles, amides, carboxylic acids, and electron-deficient heteroarenes. The pivotal reaction parameters that can be modified to influence reaction efficiency are highlighted, including base and oxidant structure as well as ligand and salt additive effects. This discussion is expected to serve as a guide for troubleshooting challenging dehydrogenation reactions and provide insight for future reaction development in this area.In addition to enabling dehydrogenation reactions, our group's allyl-Pd and -Ni chemistry can be used for C-C and C-X bond-forming reactions, providing novel disconnections with practical applications for expediting multistep synthesis. These transformations include a telescoped process for ketone α,β-vicinal difunctionalization; an oxidative enone β-functionalization, including β-stannylation, β-silylation, and β-alkylation; and an oxidative cycloalkenylation between unstabilized ketone enolates and unactivated alkenes. These bond-forming methodologies broaden the range of transformations accessible from abundant ketone, enone, and alkene moieties. Both the dehydrogenation and C-C and C-X bond-forming methodologies have been implemented in our group's total synthesis campaigns to provide step-efficient synthetic routes toward diverse natural products.Through the lens of multistep synthesis, the utility and robustness of our dehydrogenation and dehydrogenative functionalization methodologies can be better appreciated, and we hope that this Account will inspire practitioners to apply our methodologies to their own synthetic challenges.
Collapse
Affiliation(s)
- David Huang
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Timothy R Newhouse
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|